8 research outputs found

    Protecting Voice Controlled Systems Using Sound Source Identification Based on Acoustic Cues

    Full text link
    Over the last few years, a rapidly increasing number of Internet-of-Things (IoT) systems that adopt voice as the primary user input have emerged. These systems have been shown to be vulnerable to various types of voice spoofing attacks. Existing defense techniques can usually only protect from a specific type of attack or require an additional authentication step that involves another device. Such defense strategies are either not strong enough or lower the usability of the system. Based on the fact that legitimate voice commands should only come from humans rather than a playback device, we propose a novel defense strategy that is able to detect the sound source of a voice command based on its acoustic features. The proposed defense strategy does not require any information other than the voice command itself and can protect a system from multiple types of spoofing attacks. Our proof-of-concept experiments verify the feasibility and effectiveness of this defense strategy.Comment: Proceedings of the 27th International Conference on Computer Communications and Networks (ICCCN), Hangzhou, China, July-August 2018. arXiv admin note: text overlap with arXiv:1803.0915

    An improved normalized gain-based score normalization technique for spoof detection algorithm

    Get PDF
    A spoof detection algorithm supports the speaker verification system to examine the false claims by an imposter through careful analysis of input test speech. The scores are employed to categorize the genuine and spoofed samples effectively. Under the mismatch conditions, the false acceptance ratio increases and can be reduced by appropriate score normalization techniques. In this article, we are using the normalized Discounted Cumulative Gain (nDCG) norm derived from ranking the speaker’s log-likelihood scores. The proposed scoring technique smoothens the decaying process due to logarithm with an added advantage from the ranking. The baseline spoof detection system employs Constant Q-Cepstral Co-efficient (CQCC) as the base features with a Gaussian Mixture Model (GMM) based classifier. The scores are computed using the ASVspoof 2019 dataset for normalized and without normalization conditions. The baseline techniques including the Zero normalization (Z-norm) and Test normalization (T-norm) are also considered. The proposed technique is found to perform better in terms of improved Equal Error Rate (EER) of 0.35 as against 0.43 for baseline system (no normalization) wrt to synthetic attacks using development data. Similarly, improvements are seen in the case of replay attack with EER of 7.83 for nDCG-norm and 9.87 with no normalization (no-norm). Furthermore, the tandem-Detection Cost Function (t-DCF) scores for synthetic attack are 0.015 for no-norm and 0.010 for proposed normalization. Additionally, for the replay attack the t-DCF scores are 0.195 for no-norm and 0.17 proposed normalization. The system performance is satisfactory when evaluated using evaluation data with EER of 8.96 for nDCG-norm as against 9.57 with no-norm for synthetic attacks while the EER of 9.79 for nDCG-norm as against 11.04 with no-norm for replay attacks. Supporting the EER, the t-DCF for nDCG-norm is 0.1989 and for no-norm is 0.2636 for synthetic attacks; while in case of replay attacks, the t-DCF is 0.2284 for the nDCG-norm and 0.2454 for no-norm. The proposed scoring technique is found to increase spoof detection accuracy and overall accuracy of speaker verification system

    Vulnerability assessment in the use of biometrics in unsupervised environments

    Get PDF
    Mención Internacional en el título de doctorIn the last few decades, we have witnessed a large-scale deployment of biometric systems in different life applications replacing the traditional recognition methods such as passwords and tokens. We approached a time where we use biometric systems in our daily life. On a personal scale, the authentication to our electronic devices (smartphones, tablets, laptops, etc.) utilizes biometric characteristics to provide access permission. Moreover, we access our bank accounts, perform various types of payments and transactions using the biometric sensors integrated into our devices. On the other hand, different organizations, companies, and institutions use biometric-based solutions for access control. On the national scale, police authorities and border control measures use biometric recognition devices for individual identification and verification purposes. Therefore, biometric systems are relied upon to provide a secured recognition where only the genuine user can be recognized as being himself. Moreover, the biometric system should ensure that an individual cannot be identified as someone else. In the literature, there are a surprising number of experiments that show the possibility of stealing someone’s biometric characteristics and use it to create an artificial biometric trait that can be used by an attacker to claim the identity of the genuine user. There were also real cases of people who successfully fooled the biometric recognition system in airports and smartphones [1]–[3]. That urges the necessity to investigate the potential threats and propose countermeasures that ensure high levels of security and user convenience. Consequently, performing security evaluations is vital to identify: (1) the security flaws in biometric systems, (2) the possible threats that may target the defined flaws, and (3) measurements that describe the technical competence of the biometric system security. Identifying the system vulnerabilities leads to proposing adequate security solutions that assist in achieving higher integrity. This thesis aims to investigate the vulnerability of fingerprint modality to presentation attacks in unsupervised environments, then implement mechanisms to detect those attacks and avoid the misuse of the system. To achieve these objectives, the thesis is carried out in the following three phases. In the first phase, the generic biometric system scheme is studied by analyzing the vulnerable points with special attention to the vulnerability to presentation attacks. The study reviews the literature in presentation attack and the corresponding solutions, i.e. presentation attack detection mechanisms, for six biometric modalities: fingerprint, face, iris, vascular, handwritten signature, and voice. Moreover, it provides a new taxonomy for presentation attack detection mechanisms. The proposed taxonomy helps to comprehend the issue of presentation attacks and how the literature tried to address it. The taxonomy represents a starting point to initialize new investigations that propose novel presentation attack detection mechanisms. In the second phase, an evaluation methodology is developed from two sources: (1) the ISO/IEC 30107 standard, and (2) the Common Evaluation Methodology by the Common Criteria. The developed methodology characterizes two main aspects of the presentation attack detection mechanism: (1) the resistance of the mechanism to presentation attacks, and (2) the corresponding threat of the studied attack. The first part is conducted by showing the mechanism's technical capabilities and how it influences the security and ease-of-use of the biometric system. The second part is done by performing a vulnerability assessment considering all the factors that affect the attack potential. Finally, a data collection is carried out, including 7128 fingerprint videos of bona fide and attack presentation. The data is collected using two sensing technologies, two presentation scenarios, and considering seven attack species. The database is used to develop dynamic presentation attack detection mechanisms that exploit the fingerprint spatio-temporal features. In the final phase, a set of novel presentation attack detection mechanisms is developed exploiting the dynamic features caused by the natural fingerprint phenomena such as perspiration and elasticity. The evaluation results show an efficient capability to detect attacks where, in some configurations, the mechanisms are capable of eliminating some attack species and mitigating the rest of the species while keeping the user convenience at a high level.En las últimas décadas, hemos asistido a un despliegue a gran escala de los sistemas biométricos en diferentes aplicaciones de la vida cotidiana, sustituyendo a los métodos de reconocimiento tradicionales, como las contraseñas y los tokens. Actualmente los sistemas biométricos ya forman parte de nuestra vida cotidiana: es habitual emplear estos sistemas para que nos proporcionen acceso a nuestros dispositivos electrónicos (teléfonos inteligentes, tabletas, ordenadores portátiles, etc.) usando nuestras características biométricas. Además, accedemos a nuestras cuentas bancarias, realizamos diversos tipos de pagos y transacciones utilizando los sensores biométricos integrados en nuestros dispositivos. Por otra parte, diferentes organizaciones, empresas e instituciones utilizan soluciones basadas en la biometría para el control de acceso. A escala nacional, las autoridades policiales y de control fronterizo utilizan dispositivos de reconocimiento biométrico con fines de identificación y verificación individual. Por lo tanto, en todas estas aplicaciones se confía en que los sistemas biométricos proporcionen un reconocimiento seguro en el que solo el usuario genuino pueda ser reconocido como tal. Además, el sistema biométrico debe garantizar que un individuo no pueda ser identificado como otra persona. En el estado del arte, hay un número sorprendente de experimentos que muestran la posibilidad de robar las características biométricas de alguien, y utilizarlas para crear un rasgo biométrico artificial que puede ser utilizado por un atacante con el fin de reclamar la identidad del usuario genuino. También se han dado casos reales de personas que lograron engañar al sistema de reconocimiento biométrico en aeropuertos y teléfonos inteligentes [1]–[3]. Esto hace que sea necesario investigar estas posibles amenazas y proponer contramedidas que garanticen altos niveles de seguridad y comodidad para el usuario. En consecuencia, es vital la realización de evaluaciones de seguridad para identificar (1) los fallos de seguridad de los sistemas biométricos, (2) las posibles amenazas que pueden explotar estos fallos, y (3) las medidas que aumentan la seguridad del sistema biométrico reduciendo estas amenazas. La identificación de las vulnerabilidades del sistema lleva a proponer soluciones de seguridad adecuadas que ayuden a conseguir una mayor integridad. Esta tesis tiene como objetivo investigar la vulnerabilidad en los sistemas de modalidad de huella dactilar a los ataques de presentación en entornos no supervisados, para luego implementar mecanismos que permitan detectar dichos ataques y evitar el mal uso del sistema. Para lograr estos objetivos, la tesis se desarrolla en las siguientes tres fases. En la primera fase, se estudia el esquema del sistema biométrico genérico analizando sus puntos vulnerables con especial atención a los ataques de presentación. El estudio revisa la literatura sobre ataques de presentación y las soluciones correspondientes, es decir, los mecanismos de detección de ataques de presentación, para seis modalidades biométricas: huella dactilar, rostro, iris, vascular, firma manuscrita y voz. Además, se proporciona una nueva taxonomía para los mecanismos de detección de ataques de presentación. La taxonomía propuesta ayuda a comprender el problema de los ataques de presentación y la forma en que la literatura ha tratado de abordarlo. Esta taxonomía presenta un punto de partida para iniciar nuevas investigaciones que propongan novedosos mecanismos de detección de ataques de presentación. En la segunda fase, se desarrolla una metodología de evaluación a partir de dos fuentes: (1) la norma ISO/IEC 30107, y (2) Common Evaluation Methodology por el Common Criteria. La metodología desarrollada considera dos aspectos importantes del mecanismo de detección de ataques de presentación (1) la resistencia del mecanismo a los ataques de presentación, y (2) la correspondiente amenaza del ataque estudiado. Para el primer punto, se han de señalar las capacidades técnicas del mecanismo y cómo influyen en la seguridad y la facilidad de uso del sistema biométrico. Para el segundo aspecto se debe llevar a cabo una evaluación de la vulnerabilidad, teniendo en cuenta todos los factores que afectan al potencial de ataque. Por último, siguiendo esta metodología, se lleva a cabo una recogida de datos que incluye 7128 vídeos de huellas dactilares genuinas y de presentación de ataques. Los datos se recogen utilizando dos tecnologías de sensor, dos escenarios de presentación y considerando siete tipos de instrumentos de ataque. La base de datos se utiliza para desarrollar y evaluar mecanismos dinámicos de detección de ataques de presentación que explotan las características espacio-temporales de las huellas dactilares. En la fase final, se desarrolla un conjunto de mecanismos novedosos de detección de ataques de presentación que explotan las características dinámicas causadas por los fenómenos naturales de las huellas dactilares, como la transpiración y la elasticidad. Los resultados de la evaluación muestran una capacidad eficiente de detección de ataques en la que, en algunas configuraciones, los mecanismos son capaces de eliminar completamente algunos tipos de instrumentos de ataque y mitigar el resto de los tipos manteniendo la comodidad del usuario en un nivel alto.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Cristina Conde Vila.- Secretario: Mariano López García.- Vocal: Farzin Derav

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems
    corecore