4 research outputs found

    Invertibility of graph translation and support of Laplacian Fiedler vectors

    Full text link
    The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the ii'th node is invertible if and only if all eigenvectors are nonzero on the ii'th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property.Comment: 21 pages, 7 figure

    Data Representation for Learning and Information Fusion in Bioinformatics

    Get PDF
    This thesis deals with the rigorous application of nonlinear dimension reduction and data organization techniques to biomedical data analysis. The Laplacian Eigenmaps algorithm is representative of these methods and has been widely applied in manifold learning and related areas. While their asymptotic manifold recovery behavior has been well-characterized, the clustering properties of Laplacian embeddings with finite data are largely motivated by heuristic arguments. We develop a precise bound, characterizing cluster structure preservation under Laplacian embeddings. From this foundation, we introduce flexible and mathematically well-founded approaches for information fusion and feature representation. These methods are applied to three substantial case studies in bioinformatics, illustrating their capacity to extract scientifically valuable information from complex data

    Harmonic Analysis Inspired Data Fusion for Applications in Remote Sensing

    Get PDF
    This thesis will address the fusion of multiple data sources arising in remote sensing, such as hyperspectral and LIDAR. Fusing of multiple data sources provides better data representation and classification results than any of the independent data sources would alone. We begin our investigation with the well-studied Laplacian Eigenmap (LE) algorithm. This algorithm offers a rich template to which fusion concepts can be added. For each phase of the LE algorithm (graph, operator, and feature space) we develop and test different data fusion techniques. We also investigate how partially labeled data and approximate LE preimages can used to achieve data fusion. Lastly, we study several numerical acceleration techniques that can be used to augment the developed algorithms, namely the Nystrom extension, Random Projections, and Approximate Neighborhood constructions. The Nystrom extension is studied in detail and the application of Frame Theory and Sigma-Delta Quantization is proposed to enrich the Nystrom extension
    corecore