1,023 research outputs found

    Horizontale en verticale samenwerking in distributieketens met cross-docks

    Get PDF
    Logistiek dienstverleners staan voor grote uitdagingen op het gebied van duurzaamheid, in het bijzonder vanwege de steeds kleiner wordende zendingen die just-in-time bij de klant moeten worden afgeleverd. Samenwerking tussen partners in de distributieketen en met concurrenten daarbuiten biedt kansen om deze uitdagingen het hoofd te bieden. Dit proefschrift richt zich op samenwerkingsvormen in distributieketens met cross-docks. Cross-docks zijn logistieke centra die bedrijven in staat stellen om kleine zendingen gegroepeerd te transporteren zonder dat daarvoor tussentijdse opslag nodig is. In een cross-dock worden goederen direct van inkomende naar uitgaande vrachtwagens verplaatst. Het succesvol toepassen van cross-docking vereist verticale samenwerking tussen partners in opeenvolgende stadia van de distributieketen. Horizontale samenwerking ontstaat tussen mogelijk concurrerende bedrijven die vergelijkbare activiteiten in verschillende distributieketens uitvoeren. Dit proefschrift presenteert theoretische modellen voor horizontale en verticale samenwerking in distributieketens met cross-docks en bestudeert oplossingsmethodieken waarmee de duurzaamheid van deze ketens kan worden verbeterd. Daarvoor worden concepten uit de vakgebieden informatiesystemen, Operations Research en Supply Chain Management gecombineerd. De in dit proefschrift beschreven classificatie van wiskundige cross-docking modellen onthult nieuwe onderzoeksvragen gericht op een betere afstemming tussen interne cross-dock processen en ketenlogistiek. Een simulatiestudie illustreert hoe geringe aanpassingen in de ketenlogistiek tot grote prestatieverbeteringen in het cross-dock leiden. Op het gebied van horizontale samenwerking is een methode ontwikkeld die de uitwisseling van ladingen tussen transporteurs systematiseerd. Een reeks casussen toont aan dat doorbraken in ICT ontwikkeling nodig zijn om samenwerkende transporteurs in staat te stellen gezamenlijk planningsbeslissingen te nemen

    Development Of Models And Solution Methods For Different Drayage Applications

    Get PDF
    In the last decades, intermodal freight transport is becoming more attractive in the global supply chains and freight transport policy makings. Intermodal freight transport provides a cost-effective, reliable, and efficient movement of freight by utilizing the strengths of different transport modes. The initial and final segment of intermodal freight transport, performed by truck, is known as “drayage.” The scheduling of truck movements in drayage operation within the service area of an intermodal terminal is an operational problem which leads to a truck scheduling problem that determines the efficient schedule of trucks while satisfying all transportation demands and constraints. Drayage accounts for a large percentage of the origin-destination expenses in the intermodal transport. Efficient planning of the drayage operations to improve the economic performance of this operation can increase the efficiency and attractiveness of intermodal transport. The primary objective of this research is to apply operation research techniques to optimize truck movements in drayage operation. The first study in this dissertation considers the drayage problem with time constraints at marine container terminals imposed by the truck appointment system and time-windows at customer locations. A mathematical model is proposed that solve the empty container allocation problem, vehicle routing problem, and appointment booking problem in an integrated manner. This model is an extension of a multiple traveling salesman problem with time windows (m-TSPTW) which is known to be NP-hard (i.e., non-deterministic polynomial-time hard). To solve this model, a reactive tabu search (RTS) algorithm is developed and its accuracy and computational efficiency are evaluated against an industry-established solver IBM ILOG CPLEX. In comparison with the CPLEX, RTS was able to find optimal or near-optimal solution in significantly shorter time. This integrated approach also allows for more accurate evaluation of the effects of the truck appointment system on the drayage operation. The second study extends the drayage literature by incorporating these features in drayage problem: (1) treating tractor, container, and chassis as separate resources which are provided in different locations, (2) ensuring that container and chassis are of the same size and type, (3) considering the possibility that drayage companies can sub-contract the work to owner-operators, and (4) a heterogeneous mix of drayage vehicles (from company fleet and owner-operators) with different start and end locations is considered; drayage company’s trucks start at company’s depot and should return to one of the company’s depots whereas owner-operators’ trucks should return to the same location from where they originated. A mixed-integer quadratic programming model is developed that solves scheduling of tractors, full containers, empty containers, and chassis jointly. A RTS algorithm combined with an insertion heuristic is developed to tackle the problem. The experimental results demonstrated the feasibility of the developed model and solution methodology. The results show that the developed integrated model is capable of finding the optimal solutions and is solvable within a reasonable time for operational problems. This new model allowed us to assess the effectiveness of different chassis supply models on drayage operation time, the percentage of empty movements and air emissions. The fourth work builds on our previous work and extends the integrated drayage scheduling model to consider uncertainty in the (un)packing operation. Recognizing the inherent difficulty in obtaining an accurate probability distribution, this paper develops two new stochastic drayage scheduling models without explicit assumption about the probability distributions of the (un)packing times. The first model assumes that only the mean and variance of the (un)packing times are available, and the second model assumes that the mean as well as the upper and lower bounds of the (un)packing times are available. To demonstrate the feasibility of the developed models, they are tested on problem instances with real-life characteristics. Future work would address the real-time scheduling of drayage problem. It would assume trucks’ locations, travel times, and customer requests are updated throughout the day. We would propose a solution approach for solving such a complex model. The solution approach would be based on re-optimization of the drayage problem and consist of two phases: (1) initial optimization at the beginning of the day, and (2) re-optimization during operation. The third study of this dissertation addresses the impact of a new trend in the North American intermodal terminals in using second-tier facilities on drayage operation. These facilities are located outside the terminals and are used to store loaded containers, empty containers, and chassis. This work builds on our previous work and extends the integrated drayage scheduling model to incorporate these features into drayage problem: (1) trucks do not have to wait at customers’ locations during the packing and unpacking operations, (2) drayage operations include a drop yard (i.e., second-tier facility) for picking up or/and dropping off loaded containers outside the marine container terminal, and (3) the job requests by customers is extended to include empty container pickup, loaded container pickup, empty container delivery, and loaded container delivery. As the mathematical model is an extension of the m-TSPTW, a RTS combined with an insertion heuristic developed by the authors is used to solve the problems

    Investments in solid waste management : opportunities for environmental improvement

    Get PDF
    This paper presents the findings of a brief evaluation of World Bank experience in municipal solid waste management (MSWM) and recommends approaches to improving future Bank performance in this subsector. The paper is presented in four chapters. Chapter I describes the methodology by which the MSWM investments were reviewed and presents definitions and discussion of the benefits of MSWM to the environment and urban productivity in developing countries. Chapter II presents the overall results relating to to the Bank's total lending for solid waste management, including the findings of the Regional evaluation of MSWM lending. Chapter III examines the findings related to the design and implementation of the Bank's MSWM components and discusses such issues as the size and scope of investments, borrowing levels, cost recovery, and private sector participation. Finally, chapter IV presents recommendations for improving the design and execution of future MSWM projects or components. Annexes to the paper include a series of tables containg summary data on MSWM components in Bank projects and eight individual case studies highlighting specific MSWM projects or components in selected countries.Urban Solid Waste Management,Sanitation and Sewerage,TF030632-DANISH CTF - FY05 (DAC PART COUNTRIES GNP PER CAPITA BELOW USD 2,500/AL,Waste Disposal&Utilization,Energy and Environment

    Concepts, Mechanisms, and Algorithms to Measure the Potential of Container Sharing in Seaport Hinterland Transportation

    Get PDF
    This thesis analyzes how trucking companies of a hinterland region can improve their routes if shipping companies allow the mutual exchange of their containers. In this case, trucking companies that are assigned by shipping companies cooperate by sharing information regarding which locations empty containers are currently stacked. These containers can then be integrated into a vehicle's route of any operating trucking company in the hinterland. The investigation aims at measuring the quantitative potential of the container sharing idea by means of problem settings illustrating realistic hinterland regions of a seaport. As a first step, the impact of street turns on the transportation costs of a trucking company should be measured. By forbidding or allowing the use of street turns for a single trucking company, the potential of the container sharing idea can be indicated, and the interrelation of empty container movements and transportation costs can be shown. As a further step, the benefit of exchanging empty containers between several trucking companies needs to be analyzed. In doing so, it is possible to investigate the potential and realistic limits of container sharing

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (2/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 2 of

    The impact of just-in-time manufacturing on the transportation sector

    Get PDF
    The Just-in-time philosophy has become more and more the focus of interest when companies define their strategies to be successful in future competition. JIT was introduced by Toyota in the early seventies and rapidly adopted by many other Japanese firms. In the eighties, American and European companies were compelled to consider this new manufacturing approach in their own strategies if they wanted to hold their position as world class manufacturers and keep pace with the international competition. Since then, an increasing number of companies have been planning or implementing JIT principles in their production process. [Continues.
    • …
    corecore