360 research outputs found

    A Fast Scheduling Algorithm for WDM Optical Networks

    Get PDF
    Wavelength Division Multiplexing (WDM) is emerging as the most promising approach to exploit the huge bandwidth of optical fibre. This approach divides the optical spectrum into many different channels where each channel corresponds to a different wavelength. Single-hop WDM networks are attractive in local area environment where all the nodes can be connected to a single broadcast facility. In a single-hop WDM broadcast network, the transmitter must know when to transmit a packet and at which wavelength, while the receiver must know when to tune to the appropriate wavelength to receive the packet. This process requires some form of coordination. Many researches have focused on the scheduling algorithms that perform this kind of coordination. This thesis proposes a scheduling algorithm for the WDM broadcast networks. The algorithm employs a theory in graph, known as edge colouring of bipartite multigraph to produce the transmission schedule, which is free from collision due to the nature of the edge colouring. An optimal edge colouring of bipartite multi graph can be found in O(M log2 N) time, where M is number of packets selected for scheduling, and N is the number of the nodes. This time complexity can be improved to O(log3 N) by parallel processing using O(M) processors. Two variations of implementation of the scheduling algorithm have been proposed, namely the Variable Frame Size (VFS) and Limited Frame Size (LFS) schemes. These schemes use different criteria to select packets from the nodes for scheduling. The VFS scheme is simple, but supports only best effort transmissions. The LFS scheme ensures the frame size of the transmission schedule is bounded, thus enabling it to support bandwidth guarantee to the nodes up to a node's fair share of the network capacity. The LFS scheme is capable of supporting constant bit rate and unspecified bit rate service categories, analogous to the Asynchronous Transfer Mode (ATM) services. The results show that the LFS scheme performs better than the VFS scheme in terms of channel utilisation, packet loss probability and network throughput for all the simulated traffic patterns, especially at heavy loads. Besides, the LFS scheme respects any level of bandwidth guarantee, while the unused bandwidth can be used for best effort transmissions. The results also show that the VFS and LFS schemes are future-proof as they are able to capitalise on the increase in the number of wavelength channels

    Multicasting in WDM Single-Hop Local Lightwave Networks

    Get PDF
    In modem networks, the demand for bandwidth and high quality of service (QoS) requires the efficient utilisation of network resources such as transmitters, receivers and channel bandwidth. One method for conserving these resources is to employ efficient implementations of multicasting wherever possible. Using multicasting, a source sending a message to multiple destinations may schedule a single transmission which can then be broadcasted to multiple destinations or forwarded from one destination to another, thus conserving the source transmitter usage and channel bandwidth. This thesis investigates the behaviour of single-hop WDM optical networks when they carry multicast traffic. Each station in the network has a fixed-wavelength transceiver and is set to operate on its own unique wavelength as a control channel. Each station also has a tuneable wavelength transceiver in order to transmit or receive signals to or from all the other stations. A transmission on each channel is broadcasted by a star coupler to all nodes. Multicasting in single-hop WDM networks has been studied with different protocols. This thesis studies the multicasting performance adopting receiver collision avoidance (RCA) protocol as a multicasting protocol. This study takes into consideration the effect of the tuneable transceiver tuning time which is the time required to switch from one wavelength to another, and the propagation time required by a packet to propagate from one node to another. The strategy in RCA protocol is that nodes request transmission time by sending a control packet at the head of their queues. Upon receipt of this information all nodes run a deterministic distributed algorithm to schedule the transmission of the multicast packet. With the control information, nodes determine the earliest time at which all the members of the multicast group can receive the packet and the earliest time at which it can be transmitted. If a node belongs to the multicast group addressed in the control packet, its receiver must become idle until all nodes in the group have tuned to the appropriate wavelength to receive the packet. This problem leads to poor transmission and consequently low channel utilisation. However, throughput degradation due to receiver conflicts decreases as the multicast size increases. This is because for a given number of channels, the likelihood of a receiver being idle decreases as the number of intended recipients per transmission increases. The number of wavelengths available in a WDM network continues to be a major constraint. Thus in order to support a large number of end users, such networks must use and reuse wavelengths efficiently. This thesis also examines the number of wavelengths needed to support multicasting in single-hop optical networks

    An Efficient Medium Access Control Strategy for High Speed WDM Multiaccess Networks

    Get PDF
    A medium access control (MAC) strategy that accounts for the limited tunability of present-day lasers and filters and yet supports a large total number of wavelengths in the network is proposed. Full interconnectivity, contention-free access and a high value of concurrency are achieved by dividing the network into disjunct subnetworks on a wavelength basis and by reconfiguring these subnetworks on a time basis. Each subnetwork allows for simplified access to be implemented with fast tunable transceivers each assessing only a moderate number of wavelengths. A performance analysis shows that this concept is most efficient when applied to a high-level broadband interconnection metropolitan area network (MAN

    New trends on Optical Access Networks: DBAs for 10G EPON and Long-Reach PON

    Get PDF
    The access network infrastructure plays an important role in the overall performance of the network, next generation access networks (NGA) must be able to access diverse services, and should incorporate adequate architectures that include mechanisms for the integration of different technologies. New optical access technologies trends are: WDM, 10 Gb/s, and longer reach/higher splits. It is also important to take into account the evolution of the installed legacy PONs to the next generation optical access networks. The present paper goes through such topics, focusing on the research being carried out to develop dynamic bandwidth algorithms for the 10 Gb/s new EPON standard (IEEE 802.3av). We summarize results and point out issues that will require further investigation.Postprint (published version

    A survey of multicasting protocols for broadcast-and-select single-hop networks

    Full text link

    Random algorithms for scheduling multicast traffic in WDM broadcast-and-select networks

    Full text link

    On IP over WDM burst-switched long haul and metropolitan area networks

    Get PDF
    The IP over Wavelength Division Multiplexing (WDM) network is a natural evolution ushered in by the phenomenal advances in networking technologies and technical breakthroughs in optical communications, fueled by the increasing demand in the reduction of operation costs and the network management complexity. The unprecedented bandwidth provisioning capability and the multi-service supportability of the WDM technology, in synergy with the data-oriented internetworking mechanisms, facilitates a common shared infrastructure for the Next Generation Internet (NGJ). While NGI targets to perform packet processing directly on the optical transport layer, a smooth evolution is critical to success. Intense research has been conducted to design the new generation optical networks that retain the advantages of packet-oriented transport prototypes while rendering elastic network resource utilization and graded levels of service. This dissertation is focused on the control architecture, enabling technologies, and performance analysis of the WDM burst-switched long haul and Metropolitan Area Networks (MANs). Theoretical analysis and simulation results are reported to demonstrate the system performance and efficiency of proposed algorithms. A novel transmission mechanism, namely, the Forward Resource Reservation (ERR) mechanism, is proposed to reduce the end-to-end delay for an Optical Burst Switching (OBS)-based IP over WDM system. The ERR scheme adopts a Linear Predictive Filter and an aggressive reservation strategy for data burst length prediction and resource reservation, respectively, and is extended to facilitate Quality of Service (QoS) differentiation at network edges. The ERR scheme improves the real-time communication services for applications with time constraints without deleterious system costs. The aggressive strategy for channel holding time reservations is proposed. Specifically, two algorithms, the success probability-driven (SPD) and the bandwidth usage-driven (BUD) ones, are proposed for resource reservations in the FRRenabled scheme. These algorithms render explicit control on the latency reduction improvement and bandwidth usage efficiency, respectively, both of which are important figures of performance metrics. The optimization issue for the FRR-enabled system is studied based on two disciplines - addressing the static and dynamic models targeting different desired objectives (in terms of algorithm efficiency and system performance), and developing a \u27\u27crank back\u27\u27 based signaling mechanism to provide bandwidth usage efficiency. The proposed mechanisms enable the network nodes to make intelligent usage of the bandwidth resources. In addition, a new control architecture with enhanced address resolution protocol (E-ARP), burst-based transmission, and hop-based wavelength allocation is proposed for Ethernet-supported IP over WDM MANs. It is verified, via theoretical analysis and simulation results, that the E-ARP significantly reduces the call setup latency and the transmission requirements associated with the address probing procedures; the burst-based transport mechanism improves the network throughput and resource utilization; and the hop-based wavelength allocation algorithm provides bandwidth multiplexing with fairness and high scalability. The enhancement of the Ethernet services, in tandem with the innovative mechanisms in the WDM domain, facilitates a flexible and efficient integration, thus making the new generation optical MAN optimized for the scalable, survivable, and IP-dominated network at gigabit speed possible
    corecore