544 research outputs found

    Bandwidth-guaranteed fair scheduling with effective excess bandwidth allocation for wireless networks

    Get PDF
    Traffic scheduling is key to the provision of quality of service (QoS) differentiation and guarantees in wireless networks. Unlike its wireline counterpart, wireless communications pose special channel-specific problems such as time-varying link capacities and location-dependent errors. These problems make designing efficient and effective traffic scheduling algorithms for wireless networks very challenging. Although many wireless packet scheduling algorithms have been proposed in recent years, issues such as how to improve bandwidth efficiency and maintain goodput fairness with various link qualities for power-constrained mobile hosts remain unresolved. In this paper, we devise a simple wireless packet scheduling algorithm called bandwidth-guaranteed fair scheduling with effective excess bandwidth allocation (BGFS-EBA), which addresses these issues. Our studies reveal that BGFS-EBA effectively distributes excess bandwidth, strikes a balance between effort-fair and outcome-fair, and provides a delay bound for error-free flows and transmission effort guarantees for error-prone flows. © 2008 IEEE.published_or_final_versio

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the Takács Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Distributive Network Utility Maximization (NUM) over Time-Varying Fading Channels

    Full text link
    Distributed network utility maximization (NUM) has received an increasing intensity of interest over the past few years. Distributed solutions (e.g., the primal-dual gradient method) have been intensively investigated under fading channels. As such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under time-varying channels is in general unknown. In this paper, we shall investigate the convergence behavior and tracking errors of the iterative primal-dual scaled gradient algorithm (PDSGA) with dynamic scaling matrices (DSC) for solving distributive NUM problems under time-varying fading channels. We shall also study a specific application example, namely the multi-commodity flow control and multi-carrier power allocation problem in multi-hop ad hoc networks. Our analysis shows that the PDSGA converges to a limit region rather than a single point under the finite state Markov chain (FSMC) fading channels. We also show that the order of growth of the tracking errors is given by O(T/N), where T and N are the update interval and the average sojourn time of the FSMC, respectively. Based on this analysis, we derive a low complexity distributive adaptation algorithm for determining the adaptive scaling matrices, which can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed dynamic scaling matrix algorithm over several baseline schemes, such as the regular primal-dual gradient algorithm

    Type-Aware Error Control for Robust Interactive Video Services over Time-Varying Wireless Channels

    Full text link
    • …
    corecore