3 research outputs found

    Algorithms for Scheduling Problems and Integer Programming

    Get PDF
    The first part of this thesis gives approximation results to scheduling problems. The classical makespan minimization problem on identical parallel machines asks for a distribution of a set of jobs to a set of machines such that the latest job completion time is minimized. For this strongly NP-complete problem we give a new EPTAS algorithm. In fact, it admits a practical implementation which beats the currently best approximation ratio of the MULTIFIT algorithm. A well-studied extension of the problem is the partition of the jobs into classes which impose a class-specific setup time on a machine whenever the processing switches to a job of a different class. For these so-called scheduling problems with batch setup times we present a 1.5-approximation algorithm for each of the three major settings. We achieve similar results for the likewise natural variant of many shared resources scheduling (MSRS) where instead of imposing a setup time each class is identified by a resource which can be occupied by at most one of its jobs at a time. For MSRS we present a 1.5-approximation and two EPTAS results. The second part provides results for fixed-priority uniprocessor real-time scheduling and variants of block-structured integer programming. We give a new approach to compute worst-case response times which admits a polynomial-time algorithm for harmonic periods even in the presence of task release jitters. In more detail, we prove a duality between Response Time Computation (RTC) and the Mixing Set problem. Furthermore, both problems can be expressed as block-structured integer programs which are closely related to simultaneous congruences. However, the setting of the famous Chinese Remainder Theorem is that each congruence has to have a certain remainder. We relax this setting such that the remainder of each congruence may lie in a given interval. We show that the smallest solution to these congruences can be computed in polynomial time if the set of divisors is harmonic
    corecore