2,014 research outputs found

    Scheduling of real-time traffic in IEEE 802.11 networks

    Get PDF
    Real-time applications require the provision of time-bounded services from the network, however, the scheduling algorithms used in wired networks are not suitable for wireless networks because they assume that the channel is error free. Besides, the scheduler has only a limited knowledge of the arrival processes of the uplink traffic. In this paper, we propose scheduling algorithms for the transport of real-time traffic in IEEE 802.11 wireless LANs which deal with channel errors. We also present the simulation results obtained with these algorithms

    Management of services differentiation and guarantee in IEEE 802.11e wireless LANs

    Get PDF

    Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs

    Get PDF
    The emerging widespread use of real-time multimedia applications over wireless networks makes the support of quality of service (QoS) a key problem. In this paper, we focus on QoS support mechanisms for IEEE 802.11 wireless ad-hoc networks. First, we review limitations of the upcoming IEEE 802.11e enhanced DCF (EDCF) and other enhanced MAC schemes that have been proposed to support QoS for 802.11 ad-hoc networks. Then, we describe a new scheme called adaptive fair EDCF that extends EDCF, by increasing the contention window during deferring periods when the channel is busy, and by using an adaptive fast backoff mechanism when the channel is idle. Our scheme computes an adaptive backoff threshold for each priority level by taking into account the channel load. The new scheme significantly improves the quality of multimedia applications. Moreover, it increases the overall throughput obtained both in medium and high load cases. Simulution results show that our new scheme outperforms EDCF and other enhanced schemes. Finally, we show that the adaptive fair EDCF scheme achieves a high degree of fairness among applications of the same priority level

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness
    • …
    corecore