4 research outputs found

    Scheduling of Hard Real-Time Multi-Thread Periodic Tasks

    Full text link
    In this paper we study the scheduling of parallel and real-time recurrent tasks. Firstly, we propose a new parallel task model which allows recurrent tasks to be composed of several threads, each thread requires a single processor for execution and can be scheduled simultaneously. Secondly, we define several kinds of real-time schedulers that can be applied to our parallel task model. We distinguish between two scheduling classes: hierarchical schedulers and global thread schedulers. We present and prove correct an exact schedulability test for each class. Lastly, we also evaluate the performance of our scheduling paradigm in comparison with Gang scheduling by means of simulations

    Techniques Optimizing the Number of Processors to Schedule Multi-threaded Tasks

    Full text link
    These last years, we have witnessed a dramatic increase in the number of cores available in computational platforms. Concurrently, a new coding paradigm dividing tasks into smaller execution instances called threads, was developed to take advantage of the inherent parallelism of multiprocessor platforms. However, only few methods were proposed to efficiently schedule hard real-time multi-threaded tasks on multiprocessor. In this paper, we propose techniques optimizing the number of processors needed to schedule such sporadic parallel tasks with constrained deadlines. We first define an optimization problem determining, for each thread, an intermediate (artificial) deadline minimizing the number of processors needed to schedule the whole task set. The scheduling algorithm can then schedule threads as if they were independent sequential sporadic tasks. The second contribution is an efficient and nevertheless optimal algorithm that can be executed online to determine the thread's deadlines. Hence, it can be used in dynamic systems were all tasks and their characteristics are not known a priori. We finally prove that our techniques achieve a resource augmentation bound of 2 when the threads are scheduled with algorithms such as U-EDF, PD2, LLREF, DP-Wrap, etc. © 2012 IEEE.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Scheduling of Hard Real-Time Multi-Phase Multi-Thread Periodic Tasks. Real-Time Systems: The International Journal of Time-Critical Computing

    No full text
    In this paper we study the scheduling of parallel and real-time recurrent tasks on multiprocessor platforms. Firstly, we propose a new parallel task model which allows recurrent tasks to be composed of several phases, each one composed of several threads. Each thread requires a single processor for execution and can be scheduled simultaneously. We then propose an algorithm to transpose popular Fork-Join task model to our MPMT task model. Secondly, we define several kinds of real-time schedulers that can be applied to our parallel task model. We distinguish between two scheduling classes: Hierarchical schedulers and Global Thread schedulers. We present and prove correct an exact schedulability test for each class. Lastly, we also evaluate the performance of our scheduling paradigm in comparison with Gang scheduling by means of simulations. In this work we extend the work of Lupu and Goossens in Scheduling of hard real-time multi-thread periodic tasks (Real-Time and Network Systems, 2011) which considers mono-phase multi-thread task model. We extend their previous results to a Multi-Phase Multi-Thread task model.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore