10,852 research outputs found

    Transform-based Distributed Data Gathering

    Full text link
    A general class of unidirectional transforms is presented that can be computed in a distributed manner along an arbitrary routing tree. Additionally, we provide a set of conditions under which these transforms are invertible. These transforms can be computed as data is routed towards the collection (or sink) node in the tree and exploit data correlation between nodes in the tree. Moreover, when used in wireless sensor networks, these transforms can also leverage data received at nodes via broadcast wireless communications. Various constructions of unidirectional transforms are also provided for use in data gathering in wireless sensor networks. New wavelet transforms are also proposed which provide significant improvements over existing unidirectional transforms

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    The Hybrid Algorithm for Data Collection over a Tree Topology in WSN

    Get PDF
    Wireless sensor networks have wide range of application such as analysis of traffic, monitoring of environmental, industrial process monitoring, technical systems, civilian and military application. Data collection is a basic function of wireless sensor networks (WSN) where sensor nodes determine attributes about a phenomenon of concern and transmits their readings to a common base station(sink node). In this paper, we use contention-free Time Division Multiple Access (TDMA) support scheduling protocols for such data collection applications over tree-based routing topology. We represent a data gathering techniques to get the growing capacity, routing protocol all along with algorithms planned for remote wireless sensor networks. This paper describes about the model of sensor networks which has been made workable by the junction of micro-electro-mechanical systems technologies, digital electronics and wireless communications. Firstly the sensing tasks and the potential sensor network applications are explored, and assessment of factors influencing the design of sensor networks is provided. In our propose work using data compression and packet merging techniques; or taking advantage of the correlation in the sensor readings. Consider continuous monitoring applications where perfect aggregation is achievable, i.e., every node is capable of aggregate the entire packets expected from its children as well as that generate by itself into a particular packet before transmit in the direction of its sink node or base station or parent node. Keyword: Aggregation, Data Converge-cast, Data fusion, Energy Efficiency, Routing and TDMA
    • …
    corecore