8,683 research outputs found

    Investigation of implementing a synchronization protocol under multiprocessors hierarchical scheduling

    Get PDF
    In the multi-core and multiprocessor domain, there has been considerable work done on scheduling techniques assuming that real-time tasks are independent. In practice a typical real-time system usually share logical resources among tasks. However, synchronization in the multiprocessor area has not received enough attention. In this paper we investigate the possibilities of extending multiprocessor hierarchical scheduling to support an existing synchronization protocol (FMLP) in multiprocessor systems. We discuss problems regarding implementation of the synchronization protocol under the multiprocessor hierarchical scheduling

    Robust Partitioned Scheduling for Static-Priority Real-Time Multiprocessor Systems with Shared Resources

    Get PDF
    International audienceWe focus on the partitioned scheduling of sporadic real-time tasks with constrained deadlines. The scheduling policy on each processor is static-priority. The considered tasks are not independent and the consistency of these shared data is ensured by a multiprocessor synchronization protocol. Considering these assumptions, we propose a partitioned scheduling algorithm which tends to maximize the robustness of the tasks to the Worst Case Execution Time (WCET) overruns faults. We describe the context of the problem and we outline our solution based on simulated annealing

    A Stretching Algorithm for Parallel Real-time DAG Tasks on Multiprocessor Systems

    Get PDF
    International audienceParallelism is becoming more important nowadays due to the increasing use of multiprocessor systems. In this paper, we study the problem of scheduling periodic parallel real-time Directed Acyclic graph (DAG) tasks on m homogeneous multiprocessor systems. A DAG task is an example of inter-subtask parallelism. It consists of a collection of dependent subtasks under precedence constraints. The dependencies between subtasks make scheduling process more challenging. We propose a stretching algorithm applied on each DAG tasks to transform them into a set of independent sequential threads with intermediate offsets and deadlines. The threads obtained with the transformation are two types, (i) fully-stretched master threads with utilization equal to 1 and (ii) constrained-deadline independent threads. The fully-stretched master threads are assigned to dedicated processors and the remaining processors m' ≤ m, are scheduled using global EDF scheduling algorithm. Then, we prove that preemptive global EDF scheduling of stretched threads has a resource augmentation bound equal to (3+ √ 5)/2 for all tasksets with n < ϕ * m , where n is the number of tasks in the taskset and ϕ is the golden ratio 1

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler

    An Experimental Analysis of DAG Scheduling Methods in Hard Real-time Multiprocessor Systems

    Get PDF
    International audienceThe scheduling of real-time parallel tasks on multiprocessor systems is more complicated than the one of independent sequential tasks, specially for the Directed Acyclic Graph (DAG) parallel model. The complexity is due to the structure of the DAG tasks and the precedence constraints between their subtasks. The trivial DAG scheduling method is to apply directly common real-time scheduling algorithms despite their lack of compatibility with the parallel model. Another scheduling method called the stretching method is summarized as converting each parallel DAG task in the set into a collection of independent sequential threads that are easier to be scheduled. In this paper, we are interested in analyzing global preemptive scheduling of DAGs using both methods by showing that both methods are not comparable in the case of using Deadline Monotonic (DM) and Earliest Deadline First (EDF) scheduling algorithms. Then we use extensive simulations to compare and analyze their performance
    corecore