3 research outputs found

    A Toolkit for Simulation of Desktop Grid Environment

    Get PDF
    Peer to Peers, clusters and grids enable a combination of heterogeneous distributed recourses to resolve problems in different fields such as science, engineering and commerce. Organizations within the world wide grid environment network are offering geographically distributed resources which are administrated by schedulers and policies. Studying the resources behavior is time consuming due to their unique behavior and uniqueness. In this type of environment it is nearly impossible to prove the effectiveness of a scheduling algorithm. Hence the main objective of this study is to develop a desktop grid simulator toolkit for measuring and modeling scheduler algorithm performance. The selected methodology for the application development is based on prototyping methodology. The prototypes will be developed using JAVA language united with a MySQL database. Core functionality of the simulator are job generation, volunteer generation, simulating algorithms, generating graphical charts and generating reports. A simulator for desktop grid environment has been developed using Java as the implementation language due to its wide popularity. The final system has been developed after a successful delivery of two prototypes. Despite the implementation of the mentioned core functionalities of a desktop grid simulator, advanced features such as viewing real-time graphical charts, generating PDF reports of the simulation result and exporting the final result as CSV files has been also included among the other features

    A Toolkit for Simulation of Desktop Grid Environment

    Get PDF
    Peer to Peers, clusters and grids enable a combination of heterogeneous distributed recourses to resolve problems in different fields such as science, engineering and commerce. Organizations within the world wide grid environment network are offering geographically distributed resources which are administrated by schedulers and policies. Studying the resources behavior is time consuming due to their unique behavior and uniqueness. In this type of environment it is nearly impossible to prove the effectiveness of a scheduling algorithm. Hence the main objective of this study is to develop a desktop grid simulator toolkit for measuring and modeling scheduler algorithm performance. The selected methodology for the application development is based on prototyping methodology. The prototypes will be developed using JAVA language united with a MySQL database. Core functionality of the simulator are job generation, volunteer generation, simulating algorithms, generating graphical charts and generating reports. A simulator for desktop grid environment has been developed using Java as the implementation language due to its wide popularity. The final system has been developed after a successful delivery of two prototypes. Despite the implementation of the mentioned core functionalities of a desktop grid simulator, advanced features such as viewing real-time graphical charts, generating PDF reports of the simulation result and exporting the final result as CSV files has been also included among the other features

    Scheduler simulation using iSPD, an iconic-based computer grid simulator

    No full text
    Increased accessibility to high-performance computing resources has created a demand for user support through performance evaluation tools like the iSPD (iconic Simulator for Parallel and Distributed systems), a simulator based on iconic modelling for distributed environments such as computer grids. It was developed to make it easier for general users to create their grid models, including allocation and scheduling algorithms. This paper describes how schedulers are managed by iSPD and how users can easily adopt the scheduling policy that improves the system being simulated. A thorough description of iSPD is given, detailing its scheduler manager. Some comparisons between iSPD and Simgrid simulations, including runs of the simulated environment in a real cluster, are also presented. © 2012 IEEE
    corecore