

A Toolkit for Simulation of Desktop Grid Environment

by

PAYAM CHINI FOROUSHAN

17049

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Technology (Hons)

(Business Information System)

September 2014

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

A Toolkit for Simulation of Desktop Grid Environment

by

Payam Chini Foroushan

17049

A project dissertation submitted to the

Business Information Systems Programee

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF TECHNOLOGY (Hons)

(BUSINESS INFORMATION SYSTEMS)

Approved by, ____________________

(Dr Rohiza Binti Ahmad)

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

Spetember 2014

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original

work is my own except as specified in the references and acknowledgements, and that the

original work contained herein have not been undertaken or done by unspecified sources or

persons.

PAYAM CHINI FOROUSHAN

i

ACKNOWLEDGEMENTS

Firstly, I would like to thank the Almighty God for giving me the courage and

wisdom to complete this paper. I would like to express my deep gratitude to my

supervisor, Dr. Rohiza Binti Ahmad for the enthusiastic encouragement, for her

advice and great assistance and guidance given during the completion of this project.

ii

ABSTRACT

Peer to Peers, clusters and grids enable a combination of heterogeneous distributed

recourses to resolve problems in different fields such as science, engineering and

commerce. Organizations within the world wide grid environment network are

offering geographically distributed resources which are administrated by schedulers

and policies.

Studying the resources behavior is time consuming due to their unique behavior and

uniqueness. In this type of environment it is nearly impossible to prove the

effectiveness of a scheduling algorithm. Hence the main objective of this study is to

develop a desktop grid simulator toolkit for measuring and modeling scheduler

algorithm performance.

The selected methodology for the application development is based on prototyping

methodology. The prototypes will be developed using JAVA language united with a

MySQL database. Core functionality of the simulator are job generation, volunteer

generation, simulating algorithms, generating graphical charts and generating reports.

A simulator for desktop grid environment has been developed using Java as the

implementation language due to its wide popularity. The final system has been

developed after a successful delivery of two prototypes. Despite the implementation

of the mentioned core functionalities of a desktop grid simulator, advanced features

such as viewing real-time graphical charts, generating PDF reports of the simulation

result and exporting the final result as CSV files has been also included among the

other features.

iii

TABLE OF CONTENT

ACKNOWLEDGMENTS .. i

ABSTRACT ... ii

LIST OF FIGURES ... v

LIST OF TABLES ..vi

ABBREVIATIONS AND NOMENCLATURES ... vii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Objective .. 3

1.4 Methodology .. 4

1.5 Scope of study .. 5

CHAPTER 2 LITERATURE REVIEW .. 6

2.1 Introduction to simulation .. 6

2.2 Desktop grid environment ... 6

2.3 General Simulator for Distributed Computing .. 8

2.3.1 SimGrid ... 8

2.3.2 GridSim ... 11

2.3.3 GangSim .. 13

2.3.4 SimBOINC .. 17

2.3.5 SimBA ... 17

2.4 Reasons to Develop a New Simulation Toolkit ... 18

CHAPTER 3 METHODOLOGY ... 19

3.1 Research Methodology .. 19

3.2 Research Procedure .. 20

3.3 Development Methodology ... 20

3.3.1 Planning ... 22

3.3.2 Analysis ... 23

3.3.3 Design .. 23

3.3.4 Prototyping .. 24

3.3.5 Implementation & Monitoring .. 24

iv

3.4 Tools required .. 25

3.5 Gantt Chart ... 26

3.6 Key Milestones .. 27

CHAPTER 4 RESULT AND DISCUSSION ... 28

4.1 Requirement Engineering .. 28

4.2 Prototype Design .. 29

4.2.1 Prototype 1.0 Activities ... 29

4.2.2 Problems Encountered With Prototype 1.0 31

4.2.3 Prototype 2.0 Activities ... 34

4.2.4 Problems Encountered With Prototype 2.0 35

4.3 Design of Final System and Graphical User Interface..................................... 40

4.3.1 Job Generation ... 42

4.3.2 Volunteer Generation Panel .. 42

4.3.3 Volunteer Setting ... 43

4.3.4 Viewing Graphical Charts ... 44

4.3.5 Generate PDF Reports and Export CSV Files 46

4.4 Implementation of Final System .. 46

CHAPTER 5 CONCLUSION ... 49

5.1 Conclusion ... 49

5.2 Future works .. 50

REFERENCES .. 52

APPENDICES ... 57

v

LIST OF FIGURES

Figure 1.1: Grid computing environment... 2

Figure 1.2: Research methodology .. 5

Figure 2.1: Conceptual model of Desktop Grid environment 7

Figure 2.2: Different types of API available for SimGrid application. 10

Figure 2.3: GridSim architectural design ... 13

Figure 3.1: Prototype based methodology ... 21

Figure 3.2: Desktop Grid Simulator UseCase Diagram ... 23

Figure 3.3: Gantt Chart for FYPI and FYPII ... 26

Figure 3.4: Key Milestones of FYP I and FYP II .. 27

Figure 4.1: Activity diagram for job generation in prototype 1.0 29

Figure 4.2: Activity diagram for host generation in prototype 1.0 30

Figure 4.3: Structure of ‗Avail_trace‘ Table .. 31

Figure 4.4: Duration to Run the Query for Volunteer Availability............................ 32

Figure 4.5: Java code for adding partitions to ―avail_trace‖ table 33

Figure 4.6: Duration to Run the Same Query After Committing Changes 33

Figure 4.7: Activity diagram for remaining components in prototype 2.0 34

Figure 4.8: Result of Netbean Profiler ... 36

Figure 4.9: Summary of Java Heap Dump ... 37

Figure 4.10: Heap Dump of Classes .. 38

Figure 4.11: Sample of normal try-catch statement ... 38

Figure 4.12: Sample of try-with-resources statement .. 39

Figure 4.13: Result of Final Memory Leakage Testing ... 40

Figure 4.14: Main Panel ... 41

Figure 4.15: Job Generation Panel ... 42

Figure 4.16: Volunteer Generation Panel... 43

Figure 4.17: Setting Panel .. 43

Figure 4.18: Bar Chart for Quantity of Grouping .. 44

Figure 4.19: Pie Chart of Successful and Unsuccessful Job Submission 45

Figure 4.20: Linear Chart for Quantity of Engaged Volunteers 46

Figure 4.21: GUI issue Detected During Final Meeting .. 47

Figure 4.22: Official Website of University Technology Petronas‘ HPC center 48

file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858701
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858702
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858703
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858706
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858707
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858708
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858714
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858715
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858717
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858718
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858719
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858720
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858721
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858722
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858723
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858726
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858728
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858729
file:///D:/_uni/university/sem7/FYP%20II/Payam%20Chini%20Foroushan-dissert%208-dec(2).docx%23_Toc405858731

vi

LIST OF TABLES

Table 2.1: Comparison of GangSim,GridSim and SimGrid simulator 16

Table 3.1: Descrption of Tools Required Desktop Grid Simulator 25

Table 4.1: User and system requirements .. 28

Table 4.2: Summary of Released Prototypes and Issues.. 40

vii

ABBREVIATIONS AND NOMENCLATURES

API Application Programming Interface

SMP Symmetric Multiprocessing

JVM Java Virtual Machine

GVP Guarantee of Victorious Probability

VO Virtual Organization

LS Local Schedulers

ES External Schedulers

DS Data Schedulers

PEPs Policy Enforcement Points

S-PEPs Site Policy Enforcement

V-PEPs Virtual Organization Policy Enforcement

BOINC Berkeley Open Infrastructure for Network Computing

SimBa Simulator of BOINC Applications

UTP Universiti Teknologi Petronas

HPC High Performance Computing

PDF Portable Document Format

GUI Graphical User Interface

HCI Human-Computer Interaction

CSV Comma Separated Variable

GC Garbage Collector

Mb Megabyte

SQL Search and Query Language

CPU Central Processing Unit

1

CHAPTER 1

INTRODUCTION

1.1 Background

A computational grid has been described as ―A hardware and software

infrastructure that provides dependable, consistent, pervasive, and inexpensive access

to high-end computational capabilities.‖ [1].

As explained by Foster and Kesselman [1], Grid computing is a concept which

inherits the grid‘s environment characteristics such as volatility, distribution and

share-ability. This infrastructure and technology is meant to connect heterogeneous

and geographically distributed computers across the network. Figure 1.1

demonstrates the world wide infrastructure of grid computing. Referring to Figure

1.1, it is shown that different types of resources could be shared and connected on the

grid environment such as databases (R3), servers (R4), personal computers and

clusters. In grid computing it is required for resources to follow the ―push based‖

model in order to execute tasks. The jobs need to be pushed from client to the

resources in order to execute jobs [2].

Desktop grid computing is one type of distributed computing which uses the idle

computers around the world for computing power, this type of computing is

following a ―pull based‖ behavior, meaning that the idle resources will push the jobs

from servers to the clients (a vise-versa concept compared to grid computing) in

order to execute them. The concept of desktop grid is that the resources of idle

computers throughout the network would be detected and used [3]. An assemblage of

idle computer resources on the network, which are normally unused, will be used for

a low cost unit computing which is able to perform high-performance tasks [4].

2

Foster and Iamnitchi [3] organized the desktop grid computing into two different

categories as, enterprise computing and volunteer computing. In the enterprise

desktop grid computing model, the idle computer resources from one or more

organization would be used through a high-speed local-area network. On the other

hand, in the volunteer computing model, idle random geographically distributed

recourses over the internet world wide would be used.

In recent years, there has been a significant growth of interest in desktop grid

computing mainly due to the successful outcome of most desktop grid related

projects [5]. Various new algorithm and policies are introduced by researchers in

order to increase the performance of this environment, this new algorithms will be

tested in Desktop Grid Simulators in order to verify its efficiency [6].

1.2 Problem Statement

As similar with other systems, simulation of the algorithms used in the scheduler

is one of the most important steps before the actual usage of the algorithm in the real

world. This is to ensure the efficiency of the job scheduling algorithm prior to its

implementation. However, for desktop grid environment, the challenge is quite

different from other distributed environments.

Figure 1.1: Grid computing environment

3

The main challenge of desktop grid environment is the unrepeatable nature of the

volatile resources since no one has the capability to fully control all available

resources and tasks [7]. Desktop grid computing environment consists of a large

number computing nodes (volunteer) with highly dynamic behavior (the node may

be come up or down in random moments of time) therefore reliable models for

planning of the whole computing (load balancing, algorithms or fault recovery

strategies) are highly desired. In order to use the strengths and contain the weakness

of desktop grid environments for different projects, project designers need to study

the efficiency of different project parameters and scheduling policies without

affecting the desktop grid community.

Several challenges arise in doing this in desktop grid environments:

 The time required to measure project throughput, total number of

results delivered to the scientists in a given amount of time, under

different parameter settings can be significant.

 Problems due to testing might upset volunteers, even to the degree

that they leave a project [8].

 Limited ―desktop grid‖ simulators are available. The complexity of

simulators are relatively high, to an extend which impossible for

normal users without programming knowledge to fully understand the

simulator toolkit.

1.3 Objective

In order to solve the problems or challenges mentioned in this study, it is

necessary to conduct ―performance‖ studies in a simulated environment. Within a

simulated enviornment it is possible to test a wide range of hypotheses in a short

period of time without affecting the desktop grid community. Hence, the objective

for this study can be broken into:

4

 To study the requirements for desktop grid environment simulator

 To design the desktop grid environment simulation toolkit

 To test the simulator for evaluating algorithms of schedulers with relatively

easy complexity usable for general users.

1.4 Methodology

To achieve the objectives following research methodology has been conducted:

 Conducting literature review related to grid environment simulation

 Collect information related to desktop grid environments from experts

in order to analyze the desktop grid environment

 Constructing the framework for simulation of desktop grid

environment

 Implementation of the constructed framework into a simulation toolkit

to test the simulation process

Figure 1.2 demonstrates the four step research methodology process used in this

study.

5

1.5 Scope of study

This study is limited to the development of a simulator toolkit for desktop grid

environment. The scope will be focusing on the current simulator toolkits. The scope

is mainly focused on analysis of the simulator system and constructing the

simulator‘s framework. Eventually, the simulator will be developed.

Studying different literatures related to desktop grid environment

Gathering information from experts

Framework construction

Developing the toolkit simulator

Testing

Figure 1.2: Research methodology

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to simulation

Simulation can be a very influential tool if it is used appropriately within an

academically correct context. As defined by Shannon [9] simulation is ―The process

of designing a model of a real system and conducting experiments with this model

for purpose either of understanding the behavior of the system or of evaluation

various strategies (within the limits imposed by a criterion or set of criteria) for the

operation of the system‖.

According to this definition, discrete event is a type of simulation which could be

followed during architecture design. A massive advantage of discrete-event approach

is the ability to follow the real system dynamics [10]. On the other hand various

other types of simulation models, such as high-powered optimization models are

unable to mimic the variable and dynamics of a system. This mimic ability of

discrete-event model gives the system a unique way to structure, function and

analyze result.

2.2 Desktop grid environment

A desktop grid computing environment contains nodes (volunteer), brokers and

schedulers [11]. The main target of this environment is to complete huge bulk of jobs

which is submitted through the server. Figure 2.1 demonstrates a conceptual model

of Desktop Grid environment.

7

According to above figure, the process of completing jobs within this environment

can be described as following:

1. Job gets assigned to the broker

2. The broker breaks the job into smaller independent portions (referred as

sub-jobs or tasks) according to a pre-defined policy

3. Tasks will be assigned to the volunteers and executed

4. Executed tasks will be send back to the server

In the last decade, studies on desktop grid computing have shown that there is the

an opportunity use to the idle CPU cycle within a network of million computers

distributed worldwide [12]. The fact that only one tenth of the entire processing

power of idle computer resources is being used, confirms that the resources in both

personal computers and organizational computers are underutilized [13]. Hence, the

interest has been elevated on using the available ide resource over the Internet. This

new technology has been referred to as Internet computing, other alternative names

given are peer to peer (P2P) computing [14], distributed computing and

enterprise/desktop grid computing [15].

Grid desktop computing could be helpful in resolving large-scale issues, as an

instance SETI@home is the first project which attempts to use distributed computing

Figure 2.1: Conceptual model of Desktop Grid environment

8

as a tool to analyze the radio signals from space using millions of computers

worldwide [16].

Anderson, et al. [17] claimed that SETI@home project performed 221 million of

work units with an average throughput of 27.36 TFLOPS during a 12 month period

which is a significant result and also demonstrates the power of Desktop grid

computing. Anderson, et al. [17] further argues there are enough available computers

connected through the internet to support 100 projects as big as SETI@home, this

indicates the vast potential of expansion of this field.

2.3 General Simulator for Distributed Computing

According to Donassolo, et al. [7] grid computing and volunteer computing

platforms include thousands of volunteers which have heterogeneous specifics and

volatile behavior. Due to this two specifications, experimenting with real-world

platforms of volunteer computing is quite challenging and hence most of the

researches will be based on simulation [18]. There are various different types of

simulation method and modeling depending on the discipline and area which the

research is focused. It is difficult to re-use simulation models from different

disciplines due to the lack of mutual criteria‘s in each discipline [10]. There are

numerous simulators developed and proposed for grid computing, although only few

of them specified for simulation of the desktop grid environment [19].

The main purpose of following sections is to review literature related to general

simulators of volunteer computing and grid environment. The outcome of the

literature shall identify the minimum requirements of a complete desktop grid

simulation toolkit.

2.3.1 SimGrid

SimGrid Is the first simulator developed in 1998 and is still widely been used up

till today. The main core functionality of SimGrid is to simulate distributed

application in heterogeneous and distributed environment [19].

9

SimGrid provides a set of core functionalities that enables the user to simulate

domains of application and computing environment topologies. This simulator uses

an event-based approach for its simulation. The main and most important section in

the simulation process is to simulate the resources (also referred as volunteers). The

assumption of this simulator is that each individual resource has two performance

characteristics as: latency (the amount of seconds required to access a resource) and

service rate (quantity of work units completed in one second). Two mechanisms are

provided by SimGrid for simulating the mentioned performance characteristics, first

mechanisms is based on the actual traces driven form the real platform and second is

a set of constant values for each resource. Real world traces are able to generate via

different volunteer computing monitoring tools. Unfortunately, using only traces is

not sufficient to simulate every behavior of the resources due to many hidden

characteristics of each individual resource; however, it will be a first step and

guidance for current simulators which could be improved over time [20].

Correct implementation of a simulator is highly crucial for good performance and

accurate result, the implementation of Simgrid and its test suit consist of

approximately 10,000 lines of C code. The main target of the developers were to

implement techniques to improve the speed and memory usage, as an instance, traces

in SimGrid will only be loaded only when needed and un-used traces will be

distracted. These techniques are crucial to be used in due to the large quantity of

resources throughout the simulation process.

Another technique introduced by Casanova [20] to improve the CPU

performance and efficacy during simulation is the use of a multi-level trace model

where each additional level is using a coarser time scale rather than traditional

singular-level trace model. Experiments on a Pentium II 360MHZ indicated that with

the use of a multi-level trace model the ratio between Simgrid CPU time and virtual

time simulated will decrease from 10
-6

 to 10
-10

 which is a significant improvement.

However, maintaining a multi-level trace requires an extra memory cost due to its

complexity but it the cost is well worth considering the performance improvement.

10

The first application of SimGrid is PSTSim, a simulator mainly targeted to

simulate and evaluate scheduling strategies for parameter sweep application. The

second application or simulator based on SimGrid is DagSim which is focused on

simulating scheduling algorithms for applications which are based on DAG structure.

These two simulators are completely different in the means of purpose, structure,

architecture and design. However, SimGrid‘s flexibility was amendable within both

of the simulators.

Casanova [20] argues that, although it is possible to generate accurate results

using SimGrid toolkit, however, it is still not user friendly enough and a user with

limited programming skills and knowledge might face difficulties using this toolkit.

The main strength of SimGrid, which is not available on other simulators, is the

ability to simulate computation and background traffic of the recourses. The models

are constructed using C files and XML which might be challenging for non-expert

users to understand. According to Donassolo, et al. [7] versions of SimGrid has been

released on a regular basis, in the current version there are four APIs provided

(MSG, GRAS, SimDAG, and SMPI) each of these APIs are provided for a particular

use. Figure 2.1 shows different types of APIs available for current release.

Figure 2.2: Different types of API available for SimGrid application.

11

In a study on redistribution a SimGrid application was used in order to generate

and simulate a two-step algorithm for parallel mixed structured application [21].

Wen, et al. [22] proposed a new algorithm for grid scheduling, the algorithm was

experimented and verified by a simulation using SimGrid toolkit. In another study

based on distributed environment, SimGrid was the tool used in order to simulate

task reallocation in different clusters [23].

2.3.2 GridSim

Another widely used grid simulator which has been updated to version 5.0

recently is the GridSim simulator. According to Buyya and Murshed [24], Gridsim is

a java-based district-event toolkit mainly developed for simulating heterogeneous

resources as well as models and users. The main advantage of this highly flexible

toolkit is the ability to simulate various different types of classes including machines

and schedulers. The GridSim toolkit supports simulation and modeling of PCs,

SMPs, workstations, and distributed different configured clusters.

Buyya and Murshed [24] further described the grid computing environment as a

peer-to-peer computing network. An interesting fact in this paper is the emphasis on

the broker‘s role within the grid computing architecture. For proving the scalability

and reliability of SimGrid, Buyya and Murshed [24] developed a grid recourse

broker, referred as Nimrod-G which performed scheduling of task-framing

application on geographically distributed resources. It supports budget scheduling

based on market-based economic models.

Different classes of heterogeneous users, resources and brokers could be

simulated using GridSim toolkit. Brokers, also referred as schedulers, have the

responsibility to select the resources for each user and deliver the tasks to the

aggregated for each individual user. Hence each user has its own private broker

which is responsible to submit jobs to the central scheduler. This enables the central

scheduler is targeted for a global optimization such as higher performance and

system utilization of different resources based on their broker policy.

12

Main features of Gridsim include:

 Ability to simulate dynamic and static schedulers

 It is possible to locate the resources at any time zone

 Tasks of the application could be heterogeneous

 No limits are set for job submission to resources

GridSim‘s architecture is a multilayered architecture as demonstrated in Figure

2.2; its first layer is related to the java‘s runtime environment also referred as JVM

(JAVA virtual Machine). The second layer is mainly for using the interfaces created

at the first layer and build an elementary discrete-event infrastructure; Simjava is

among the most popular discrete-event infrastructure in JAVA which is also been

used in SimGrid‘s implementation. The third layer is concerned with simulating and

modeling of fundamental Grid entities for instance, information services, resources

and etc. The fourth layer is for modeling the Grid brokers and schedulers, the fifth

and final layer focusing on simulating and modeling application and recourse based

on different scenarios.

13

Figure 2.3: GridSim architectural design

Yu and Buyya [25] used GridSim simulator in order to simulate a grid

environment which enables them to test their proposed genetic algorithm in order to

schedule scientific workflow application. In grid environment idle resources are

constantly competing for getting a task. Yao, et al. [26] introduced a Guarantee of

Victorious Probability (GVP) algorithm to increase the efficiency of task

submissions to the resources. Another research used the GridSim simulator simply to

create a grid environment in order to experiment on statistical perspective of job

scheduling and job allocation [27].

2.3.3 GangSim

GangSim is another tool used for grid desktop simulation. It was developed to

support simulation of schedulers in grid environment with a particular emphasis on

14

examination of interaction between community and local resource allocation

algorithm [28]. One of the main advantages of GangSim is the ability to simulate

virtual organization users and planers beside the normal ability to model site policies.

Another advantage is that GangSim enables to run and combine different simulation

components on parallel basis [29]. However, the basic assumption of GangSim is

that each job runs for minimum of 100 seconds which might be too long for some

models, specially service related models, Hence it is not possible to simulate all type

of models using GangSim [30].

GangSim is able to model following processes: job submission process, resource

monitoring and usage of policy infrastructure. Dumitrescu and Foster [28] listed 7

different components included in GangSim toolkit.

 Site: characterized by its disk space, size of CPU and memory, and

networks. Each of the characteristics is loaded and stored into a

configuration file during the startup.

 Virtual Organization (VO): composes from a set of users who are

submitting jobs, which might be grouped into workloads. Each job

has its own requirements to get completely executed; these

requirements will be distributed in files among the sites in the

beginning.

 Local Schedulers, External Schedulers and Data Schedulers (LS, ES,

DS): These schedulers are mainly representing points where

scheduling decision is performed.

 Monitor Data Points (MDPs): Represent the monitoring component of

the simulator also referred as nodes which consist of information

gathered from internal and external schedulers.

 Policy Enforcement Points (PEPs): This component is responsible for

policy enforcement based on the gathered information from related

operation and this information would be used to set resources

allocation [31, 32].

 Site Policy Enforcement (S-PEPs): Is mainly responsible for

validation of the entire process. As an instance, jobs are immediately

removed if they are not following the policy requirements.

15

 Virtual Organization Policy Enforcement (V-PEPs): Have the same

context as S-PEPs but mainly are focused on virtual organizations

rather than sites.

GridSim simulation toolkit has not been widely used in studies due to in-

popularity and limitations. However, numerous reliable sources acknowledge

GridSim as toolkit for grid environment simulations [28, 29, 33, 34].

Table 2.1 indicates a comparison between SimGrid, GridSim and GangSim

toolkit, a comparison between different types of simulators could eventually lead us

to find the mutual components in each simulator. These mutual components are

fundamental of simulation application which is crucial to be implemented into the

grid desktop simulator toolkit.

16

Table 2.1: Comparison of GangSim,GridSim and SimGrid simulator

Name Advantage Disadvantage Key Specialty

SimGrid

Follows a multi-

level trace model

which increases the

performance of the

application.

Too complex

structure due to

various types of

API‘s.

simulate and

evaluate scheduling

strategies for

parameter sweep

application

GridSim

Since each user has

its own broker,

central scheduler is

targeted for a global

optimization such as

higher performance

and system

utilization of

different resources

based on their

broker policy

With an increase

in user population,

the quantity of

brokers will

increase which

decreases the

memory space

and CPU

performance.

simulating

heterogeneous

resources as well as

models and users

GangSim

Ability to simulate

virtual organization

users and planers

beside the normal

ability to model site

policies.

Unsuitable to

simulate every

model since the

basic assumption

is that each job

runs for a

minimum 100

seconds which

might be too long

for some

particular models.

Simulation of

schedulers in grid

environment with a

particular emphasis

on examination of

interaction between

community and

local resource

allocation

algorithm

17

2.3.4 SimBOINC

SimBOINC [35] is a simulator for desktop grids systems. Berkeley Open

Infrastructure for Network Computing (BOINC) is a well-known framework used in

volunteer computing projects [36], SimBOINC is a simulator in order to test and

evaluate new scheduling policies in BOINC and other desktop grid systems.

SimBOINC‘s infrastructure is based on the SimGrid and its main target is to simulate

distributed and parallel computing systems [35].

2.3.5 SimBA

SimBA (Simulator of BOINC Applications) [8] is a discrete event simulator

which models the main functions of BOINC. SimBA is able to model main

components of desktop grid environment such as job generation, workload

generation and tasks distribution. The entire simulation process in SimBA will be

performed in a virtual environment which is volatile, heterogeneous, and distributed

as how it is in the real grid environment. SimBA simulates the creation,

characterization, and termination of volunteers by using trace files obtained from real

BOINC projects.

A trace file contains information such as generate time of jobs, type of operating

system and the availability duration of volunteers. Fundamental components of

SimBA are to generate work-units, to create a number of instances for each work-

unit or replicas based on the project replication policy; to dispatch instances work

unit to volunteers according to scheduling algorithm policy; to model behavior of

volunteer availability and unavailability, heterogeneity of volunteers by

characterization which is obtained from the real trace file; to determine the status of a

returned results from volunteers using the characterization of volunteer‘s

unsuccessful rate that are obtained from the trace file; To determine the legitimacy of

completed results by the project‘s confirmation policy; and finally the component of

performance computation in terms of throughput [8, 37, 38].

18

2.4 Reasons to Develop a New Simulation Toolkit

Some of the main components of desktop grid environment such as availability

of volunteers and reliability of the volunteers are simulated through statistical

formulas and distributions, which is a major disadvantage of current simulators.

These formulas and distributions are reliable for simulations yet not as accurate as

the real grid environment. Hence, developing a simulator which can use a set of

‗trace data‘ to model the availability and reliability of volunteers will significantly

increase the reliability of the simulation process [39, 40].

This simulator will be developed according to the collected trace by the expert in

our second level of methodology (Referring to Figure 1.2 in Section 1.4). The trace is

gained from real trace data set of SETI@home project for a period of 10 months

retrieved from http://setiathome.berkeley.edu/index.php.

19

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

In order to have a better understanding of the simulation processes and

simulator‘s component, a qualitative research has been conducted. Desktop grid

computing is precisely a newly introduced concept in computer science and limited

researches have been conducted related to this field, hence conducting a quantitative

research related to desktop grid computing is quiet difficult and nearly impossible.

Firstly, it is important to understand the behavior of volunteers and jobs in reality

which will provide the researcher a full understanding of the simulation process and

the requirements. In order to fulfill this step, a study on a 10-month real life data set

generated from SETI@home has been conducted. The main analysis on the data was

conducted by High Performance Computing (HPC) Service Center located at

University Technology PETRONAS Malaysia campus.

Secondly, a conceptual model is required in order to ease the process of

development of the simulator toolkit. This conceptual model integrates a desktop

grid simulator which is able to simulate volunteer behavior in a huge time frame (eg.

10 months) in a relatively shorter time frame without interrupting their process in the

server and storing the results into the workstation in user friendly format (such as

PDF) so that it could be used for future references.

20

3.2 Research Procedure

There are five phases involved in conducting this research, in the first phase the

author identifies the process and activities involved in developing a desktop grid

simulator toolkit, this is done through considering and reviewing various literatures

related to desktop grid environments simulator.

The second phase is to collect information related to desktop grid prototype from

experts in order to analyze the desktop grid environment; this is done by analyzing

the result of the semi-structured interviews taken from UTP‘s HPC staffs that have

some expertise with desktop grid computing. This information from the semi-

structured interviews could also be helpful to identify functions of the desktop

simulator toolkit.

The third phase is constructing the framework of desktop grid environment,

which is then followed by the fourth step. The methodology will be applied here,

whereby the prototype will be developed. In the fifth phase developed prototypes

should be evaluated and tested by experts on a regular basis. The feedbacks should

be documented properly and implemented in the next prototype version. Each

prototype of the desktop grid simulator toolkit would be tested and evaluated by HPC

staff on monthly basis for verification purposes. It is also necessary to conduct

different types of testing to ensure functionality, reliability, durability and flexibility

of the finished simulator toolkit. The analysis of the feedbacks should be reviewed

before the final user acceptance testing.

3.3 Development Methodology

The main development strategy for the grid desktop simulator used is prototyping

strategy. According to Sommerville [41], prototypes are initial versions of an

application which demonstrate the core functionalities; the main purpose of a

prototype is to give more information about the main problem.

21

 This development strategy will repeat the 3 main phases of analysis; design and

implementation concurrently until the final release get accepted and verified [42].

This enables the users to test and evaluate prototypes before the finial application

release which is an advantage.

 Prototyping approach includes 5 main phases as following:

1. Planning

2. Analysis

3. Design

4. Develop prototype

5. Testing & maintenance

6. Release the final system

Each phase needs to follow the sequence demonstrated in figure 3.1.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16. Figure 3.1 Prototype based methodology

Figure 3.1: Prototype based methodology

22

3.3.1 Planning

Planning is one of the most important steps in project development since within

this phase the scope, requirement, specification and objectives should be clarified

before moving to further phases. An understanding of Software Development

Lifecycle is crucial to ease the planning process. It is possible to break down this

phase into three main categories.

I) Studying and understanding different literature: Detail analysis and

deep understanding could be gained from reading related literatures

written by researchers related to the scope of topic. The literature

review (Referring Chapter 2) is mainly focused on breaking down and

evaluating other simulators related to volunteer computing. This

enables the developer to find and gather all the mutual factors within

different simulators, these mutual factors are crucial to exist in the

desktop grid simulator toolkit hence all of them should be included in

the planning.

II) Evaluation of similar simulators: This step can be helpful to get ideas

on designing the GUI. User interface is one of the most important

components within each application which should follow HCI rules

and standards. Testing and evaluating similar and related applications

to desktop grid computing, such as gridsim and simgrid could be

helpful for determining a suitable GUI design.

III) Information gathering from experts: This is conducted through semi-

structured interviews with UTP‘s HPC staff that are expertise in

volunteer computing field. It is recommended to discuss and evaluate

the entire gathered project requirement with the experts in order to

confirm and validate and then only compile the project plan based on

the validated requirements.

23

3.3.2 Analysis

In this phase, it is required to analyze all the gathered information from the

resources and describe important facts and assumptions. The main activity in this

stage is to research more on proposed system such as the feasibility of the system and

time constraints. Within this phase the technical requirements will be finalized to get

used in later stages.

3.3.3 Design

In this phase development of the basic architecture design will be conducted

which will be based on the analyzed information gathered in previous phases. The

design should be explained in detail and documented for future references. Following

is the conceptual model of the desktop grid simulator toolkit:

Figure 3.2: Desktop Grid Simulator UseCase Diagram

24

3.3.4 Prototyping

In this step an initial prototype should be developed based on the architecture

design in section 3.3.3. The flow of the processes should follow a sequence; firstly

the prototype is required to generate jobs and tasks. Job arrival in a desktop grid

environment should be simulated according to a passion process or it should be

possible to manually change the arrival rate [39]. Second the user is required to

generate volunteer‘s (resources), with the volunteer generation the respective notes

of the volunteer should be also loaded into the system. Third, user should be able to

change the simulation setting (Time zone, RAM distribution etc.). The second step is

to implement more advanced features of the simulator such as generating PDF

reports, implementing graphical analysis and exporting result into CSV file in later

releases of the prototype.

3.3.5 Implementation & Monitoring

Implementation mainly focuses on programming and testing. In each developed

prototype, all the functions will be tested and evaluated. Once all the function

perform as required by the requirements, the entire application components will be

integrated and a final version gets compiled. This final version would be given to the

target users to test including feedback forms. All the gathered information from the

feedbacks would be compared back to the planning, analysis and design process if

there is any mismatch or satisfaction the process gets repeated till the user has a

complete satisfaction.

25

3.4 Tools required

Table 3.1: Descrption of Tools Required Desktop Grid Simulator

Purpose Application Name Version
Release Date/

Update

System Development Tool NetBeans 8.0.1 9-Sep-2014

Database query and

administration

Aqua Data Studio
13.0.4-5 18-Oct-2013

Database design MySQL Workbench 6.2 23-Sep-2014

Data migration from MS excel to

database

MySQL for excel
6.2 23-Sep-2014

Drawing diagrams Edraw Max 6.0 8-Aug-20133

Drawing diagrams Gliffy Online based 2013

Generating Reports
Jaspersoft iReport

Designer
5.6.0 10-Feb-2014

26

3.5 Gantt Chart

Figure 3.3: Gantt Chart for FYPI and FYPII

27

3.6 Key Milestones

Figure 3.4: Key Milestones of FYP I and FYP II

Project Proposal
 (18-May-14)

Requirment Gathering
 (11-jun-14)

Requirment Analysis
 (25-jun-14)

System Design
 (16-Jul-14)

Sumbition of Interim Report
 (8-Aug-14)

FYPI Defense
 (20-Aug-14)

Develop Functionalities
(10-Sep-14)

21-Apr-14 10-Jun-14 30-Jul-14 18-Sep-14 7-Nov-14 27-Dec-14 15-Feb-15

Testing (5-Nov-14)

Implementation
In HPC Center
(23-Nov-14)

Pre-Sedex
(26-Nov-14)

Sedex
(8-Dec-14)

VIVA
(22-Dec-14)

Submition of
Dissertation
 (6-Jan-15)

28

CHAPTER 4

RESULT AND DISCUSSION

4.1 Requirement Engineering

The requirements of a system displays the purpose of a system, it is also

concerned to identify different functionalities which the system is required to

perform. This information is necessary for completing the analysis phase. User

requirement is the main service which software is supposed to perform according to

the outcome of semi-structured interviews taken. System requirement is the detailed

description of software‘s functionalities and services which is the based on literatures

reviewed. It is possible to set the most important sections of a desktop grid

environment as the initial requirement. Table 4.1 shows both user requirement and

system specification for the simulation toolkit.

Table 4.1: User and system requirements

User Requirement 1 Simulate and evaluate scheduling policies

System

Requirement

1.1 User shall be able to generate workloads, jobs and tasks

1.2 User shall be able to generate volunteers

1.3 User shall be able to change default volunteer generation

Setting

1.4 User shall be able to view graphical charts of the result

1.5 User shall be able to create PDF reports of the result

1.6 User shall be able to extract the entire simulation details as

a CSV file on their local system

29

4.2 Prototype Design

In order to deliver a fully functional desktop grid simulator toolkit, prototypes

shall be released to be tested and verified by the experts. After the verification test

the final system might be released and implemented in HPC center. Through a total

period of 8 months two prototypes have been released.

4.2.1 Prototype 1.0 Activities

The first step to develop prototype 1.0 is by evaluating each functionality and

activity involved in the application. This is possible through transferring all the

gathered information to a conceptual design. Figure 4.1 is the activity diagram for

job generation in prototype 1.0. In the first step the user should be able to access the

system; second step is that the user should open the job generation tab implemented

in the main page (or press CTR + J). Third, the user should be able modify

parameters required for job generation and finally in the fourth step the process

should successfully be finished.

Figure 4.1: Activity diagram for job generation in prototype 1.0

30

Figure 4.2 indicates the process of generating available volunteers, First the user

should access the system; the second step is to open the host generation tab from the

main page. In the third step user is required to create an archive which is a storage

implemented within the application to store all the previous generated volunteers. In

the fourth stage, it is optimal to change the settings for the host generation process.

Any necessary changes to the default settings could be performed under the setting

tab accessible from the host generation page.

Figure 4.2: Activity diagram for host generation in prototype 1.0

At this point, the simulator requires a database in order to keep the information

about the volunteers, workload archives, jobs, tasks, the data trace and the result of

the simulation. Knowing the mentioned requirements, a database containing 6 tables

has been created using MySql workbench as shown in Appendix A.

31

4.2.2 Problems Encountered With Prototype 1.0

As explained in section 2.4, this simulator uses a ‗real trace‘ set of data in order

to perform its simulation. This data has been stored in a database table named as

―avail_trace‖ (referring to Appendix A). This table contains 8,497,274 rows of data

storing information about each volunteer. Figure 4.3 shows all the information stored

in ‗avail_trace‘ table.

Figure 4.3: Structure of ‗Avail_trace‘ Table

The column ―event_start_time‖ in Figure 4.3 refers to the time and date which a

volunteer started to be available in the grid desktop environment (all the dates are

saved as epoch time), on the other hand, ―event_end_time‖ refers to the time and

date which a volunteer became unavailable due to any reason. Hence, it is self-

explanatory that it is only possible to submit tasks to volunteers within the period of

their availability which starts from the ―event_start_time‖ and lasts till the

―event_end_time‖. Thus, within the simulation process, prior to each task submission

a query should be run in order to check the availability of the volunteer.

32

This query requires joining information from ―volunteer‖ table and ―avail_trace‖ in

order to find the availability status of the volunteers in a specific time before each

task submission.

As mentioned in section 2.4, the data acquired from SETI@Home project,

contains information about 38,166 volunteers which is saved in ―volunteer‖ table.

Hence, the simulator is required to join two tables containing 38,166 and 8,497,274

rows of information before each task submission. As expected, at first this join would

consume massive time and memory of the system. Testing proved that 10.639

seconds of time was required for this query to be run (Figure 4.4).

Figure 4.4: Duration to Run the Query for Volunteer Availability

The quantity of task submissions depends on the user requirement and can be

calculated using Equation 1. In a standard grid simulation environment a total

number of 4 tasks will be submitted per 10 minute of simulation time [43-45]. Thus,

assuming for a simulation period of 1 month 4,320 task submissions are required.

 ()

 ()
 (1)

It is compulsorily to check the availability of volunteers before each task

submission. Hence assuming that each availability check consumes 10.639 seconds

of the simulation time, the total 4,320 checks before the entire tasks submissions

33

would take up to 45,960.48 seconds (4,320 x 10.639) summing up to an approximate

duration of enormous 12 hours, only for this section of simulation which is definitely

not efficient. In order to overcome this issue, two B-TREE indexes had been

implemented on ―event_start_time‖ and ―event_end_time‖ column since both of the

mentioned columns were involved in the where condition of the query. Moreover, a

total number of 1,000 partitions have been added to ―avail_trace‖ table in order

classify the table. The partitions were implemented on ―event_start_time‖ column

using a java for loop as shown in figure 4.5.

 String query;

 long Time=1176450815; //starting date of simulation (based on epoch time)

 query ="ALTER TABLE avail_trace PARTITION BY RANGE (event_start_time) (";

 for (int i=0; i<1000;i++){ //This for loop runs for 1,000 times

 time+=600; //time interval of arriving tasks (depending on user)

 query+="PARTITION trace_"+i+" VALUES LESS THAN ("+time+") ENGINE =MyISAM,";

 }

 query+="PARTITION avil_max VALUES LESS THAN MAXVALUE ENGINE = MyISAM);";

 System.out.println(query);//The „alter table‟ query will be printed in the console

After committing above changes, the query shall be run again. Figure 4.6

demonstrated the new outcome of the same query:

Figure 4.5: Java code for adding partitions to ―avail_trace‖ table

Figure 4.6: Duration to Run the Same Query After Committing Changes

34

By adding two indexes and 1,000 partitions the duration of execution an

―Availability‖ search on volunteers has been fallen from 10.639 to 0.094 which is a

decrease of 10.545 seconds. This change is able to save time up to 10.545 seconds

before each task submission; hence in total there is a potential decrease of 45,554.4

seconds (4,330 x 10.545) over the entire duration of simulation.

4.2.3 Prototype 2.0 Activities

The activities of Prototype 2.0 are same as Prototype 1.0; however, three

additional components must be integrated within the system. As explained in section

4.1, viewing graphical charts, generating PDF reports and exporting the result as

CSV files are part of the system requirements which have not been implemented in

Prototype 1.0. The activity diagram of remaining components is shown in Figure 4.7

users are first required to access the system, the next step is to perform a simulation.

After the simulation users are able to view graphical analysis of the simulation in the

simulator, generate PDF reports about the simulated result and lastly to dump the

entire result in a CSV file.

Figure 4.7: Activity diagram for remaining components in prototype 2.0

35

4.2.4 Problems Encountered With Prototype 2.0

During the development process of prototype 2.0, two major bugs were

discovered by the HPC experts. First the application would crush after running for

long time of periods with an error as java.lang.OutOfMemoryError: Java heap space

prompted through the console following by an immediate crash. The second issue

was a bit more complicated to cope with; the application performance would

decrease significantly over time.

The first error was encountered due to an insufficient size of heap allocated to the

JVM environment. The default heap size given to any java program is 64 MB which

can be modified by customizing the –Xmx parameter prior to the running of the

application [46, 47]. Since simulations normally run for a long duration, allocating

1024 MB of heap size is sufficient for the application [48] and the issue was

resolved.

The second issue encountered due to memory leakage of objects within different

classes. As described by Findeisen and Seidman [49] memory leak occurs when a

section of the program is being held by the memory although that particular section

has no use and is out of value. Despite the implementation of garbage collection

technology in JAVA, memory leaks are still a frequent occurrence within JAVA

applications. In JAVA, a memory leak occurs when there is a hidden reference to an

unused object within the application. Despite the fact that the objects is no longer

usable, the garbage collector would not erase the object from the memory due to

existence of the reference [50].

In order to overcome this issue three steps need to be followed:

1. Confirm if there is any memory leakage

2. Take a heap dumb of the application using Netbeans Profiler

3. Resolve the issue

36

Netbeans Profiler can be attached to a running JVM in order to analyze the heap

and garbage collection behavior during the simulation process. Any suspicious

behavior of these two parameters can confirm a memory leakage. Figure 4.8 is a

screenshot of the profiling result.

As seen in the figure above, three parameters can be evaluated using the built-in

Netbeans profiler. The first diagram represents the total free and allocated heap size

dynamically throughout the simulation process. The second shows the JAVA

Garbage Collector (GC) behavior which in this case is indeed behaving incorrectly.

―Surviving Generations‖ is referred to all objects allocated on the JVM heap since

the profiling session started. In this particular case, objects are surviving each

garbage collection and they are remaining in the heap (memory) which confirms the

memory leak. Since the JAVA memory leak has been confirmed, a heap dump is

required to be generated. The source of the leaking JAVA object can only be

detected by evaluating a generated heap dump from the application. Thus, a heap

dumb of prototype 2.0 had been generated as shown in Figure 4.9.

Figure 4.8: Result of Netbean Profiler

37

 This heap dump includes much useful information, a search of biggest

objects ordered by size shows that 75 MB of the memory was occupied with a JTable

object. After searching for the source, it was discovered that this JTable was

implemented in the GUI of Prototype 1.0 for showing the entire 38,166 volunteers. It

was determined that throughout the simulation GUI objects are the most memory

consumers, hence the solution is to deactivate the memory consuming objects before

the simulation and reload the after the simulation process.

Netbean Profiler‘s heap dump enables users to view the garbage collection

behavior for the entire classes. Further investigation on the heap dump revealed that

some default java classes such as char[], java.lang.String and java.lang.Integer are

not being properly removed from the heap by the Garbage Collector. Figure 4.10

indicates the investigation process, basically using the heap it is possible to view the

percentage of memory usage of each class throughout the simulation process. Using

this information, it is possible to indicate which class is the most memory consuming

class and henceforth that class‘ Garbage Collection is not working properly.

Figure 4.9: Summary of Java Heap Dump

38

After tracking the source of the leaking classes within the project, it was

discovered that the leakage occurs due to the JAVA database connection and

prepared statements. The core functionality of prepared statement is to retrieve data

from the database[51]. It is compulsory to enclose prepared statements within JAVA

try-catch blocks as shown In Figure 4.11. However, the disadvantage of using try-

catch is that the objects within the blocks will not be properly closed after the end of

each block [52].

 String sql="Any Query";

try {

 con = datasource.getConnection(); //get the database connection

 pst=con.prepareStatement(sql); // declaration of prepare statement

 rs=pst.executeQuery(sql);} // execution of the query

catch (SQLException e) {

 JOptionPane.showMessageDialog(null, e); // catch any exception

 log.debug(e); // generation logs

} finally { //to close each statement

 try { if (rs != null) rs.close(); } catch(Exception e){ }

 try { if (stmt != null) stmt.close(); } catch(Exception e)

{}

 try { if (con != null) con.close(); } catch(Exception e)

{}

 try { if (pst != null) pst.close(); } catch(Exception e)

{}}

 Figure 4.11: Sample of normal try-catch statement

Figure 4.10: Heap Dump of Classes

39

The solution of this problem is to use try-with-recourses statement rather than

try-catch statement. The try-with-resources statement is a try statement that declares

one or more resources. A resource is an object that must be closed after the program

is finished with it. The try-with-resources statement ensures that each resource is

closed at the end of the statement hence it eliminates any risk of memory leakage.

Overall, through the process of developing any large JAVA project, it is

recommended to use private access objects rather than public objects since private

objects are forced to be closed after usage which allows the garbage collector to

work properly.

A sample of try-with-recourses statement which has been implemented in the

system is represented in Figure 4.12.

String sql="Any Query";

 try (connection con) { // take note that „con‟ is not public anymore

 con = datasource.getConnection(); //get the database connection

 PreparedStatement pst=con.prepareStatement(sql); // declaration of

//prepare statement

 ResultSet rs=pst.executeQuery(sql); // execution of the query

 //perform any task}

 catch (SQLException e) {

 JOptionPane.showMessageDialog(null, e); // catch any exception

 log.debug(e); // generation logs

} //finally {} block is no more required and “con”, “pst”, “rs” objects get

closed at this point.

At this stage, after all the changes have been committed a final testing is required

to be performed in order to confirm there is no more memory leakage. Same as the

initial testing, the built-in Netbeans Profiler will be attached to the JVM while

running the simulator. Figure 4.13 shows the outcome of the testing.

Figure 4.12: Sample of try-with-resources statement

40

In summary, two prototypes have been released throughout duration of 6 months.

Various bugs and issues have been confronted throughout the process of developing

these prototypes; however, the major issues are summarized in Table 4.2.

Table 4.2: Summary of Released Prototypes and Issues

Version Functionalities Issues Resolution

1.0
 Job Generation

 Volunteer

Generation

Query for checking

volunteer availability

takes too long

Implement two indexes

and partitioning.

2.0

 View

Graphical

Charts

 Generate PDF

reports

 Export Result

in CSV

1. Heap size is too

small

2. Program slows down

over time

1. Configurator –Xmx

parameter

2. Using heap dumps to

locate the leaking objects

4.3 Design of Final System and Graphical User Interface

After the development of each prototype, semi-structured interviews have been

conducted with the HPC experts in order to gather their feedbacks. Without the

acceptance of the experts the development would not go into further stages, this

enables the system developer to conduct unit testing on the system meanwhile the

Figure 4.13: Result of Final Memory Leakage Testing

41

development stage. Sommerville [41] explains that unit testing could be performed

throughout the development process with testing each developed component before

moving to the next component. Duration of three weeks was requested from the HPC

expert in order to use the system fully and test each single component of the system

under different conditions. Several feedbacks have been given, however, majority of

the feedbacks were related to improvements of the GUI.

Graphical User Interface is one of the most important outcomes; the GUI should

be usable, reliable and easy to understand. Figure 4.14 demonstrates the GUI for the

main panel of the simulator. The three icons on the toolbar (1) are referring to home

panel, job generation panel and volunteer generation panel respectively. Under

―Current Information‖ (2) all the information about any running simulation will be

displayed such as the stage of simulation, how long it is expected to be run, current

position of the loop (this is mainly implemented for debugging purposes and lastly

the completed percentage of the simulation process.

On the dashboard (3) information about the previous simulation results will be

displayed, however, prior to this a result history shall be selected from the ―History

of Results‖ (4) table. In the ―Start of Simulation‖ (5) column, users are able to start

their required simulation with entering the number of required dates in to the text-

box and clicking ―Simulate‖ button. With checking the hibernate checkbox beside

the ―Simulate‖ button, once the simulation is done the system will automatically get

into hibernate condition after all saving the result.

Figure 4.14: Main Panel

42

4.3.1 Job Generation

Figure 4.15 demonstrates the GUI for job generation. ―Workload‖ (1) means to

.archive generated jobs at one particular time frame. A workload is automatically

created before jobs can be generated; this workload basically functions as an archive

of generated jobs. Parameters (2) such as task prefix, job size, break job and task

interval could be manipulated from this screen. The job arrival could be either in

batches (manually configurator) or according to poison distribution (3).

Figure 4.15: Job Generation Panel

4.3.2 Volunteer Generation Panel

Figure 4.16 indicates the GUI of host generation tab; it is possible to add archives

by clicking on the ―add‖ (1) button on the left side. In order to generate new hosts,

the quantity of the required amount should be inserted into the text box following by

clicking on the ―add‖ (2) button on the right side which will generate new hosts. By

default, the default settings of the grid desktop simulator will be used unless the user

changes the settings by clicking on the ―Setting‖ (3) button on the ribbon at the top.

(1)

(2)

(3)

43

Figure 4.16: Volunteer Generation Panel

4.3.3 Volunteer Setting

Figure 4.17 demonstrates the settings page implemented within the application,

the user is able to manipulate all the simulation settings (mainly host generation

volunteer setting). Settings such as volunteer‘s location, time zone, RAM and

processor weightage could be modified using this functionality of the application.

Figure 4.17: Setting Panel

44

4.3.4 Viewing Graphical Charts

Graphical charts are representation of data in a visual format, which are easier for

users to digest and understand. The aim of including a graphical chart within your

project is to demonstrate a set of data which in this case is the result of the

simulation. In each simulation there are three essential factors which the user is

required to know after each simulation process. The first important factor is to

compare the volunteer‘s grouping before and after simulation.

Grouping of volunteers has been used in various researches in order to increase

the reliability of desktop grid environment [45, 53, 54]. Using the grouping

approach, volunteers are classified into different groups based on their computing

characteristics such as RAM size, CPU size and quantity of processors. These

groupings could be dynamic based on your policy configuration; it is necessarily to

compare the quantity of volunteers at the end of the simulation in order to discover

the efficiency of the policy.

Figure 4.18: Bar Chart for Quantity of Grouping

The figure above shows the bar chart which is available to generate with

selecting a simulation history (1) followed by clicking on the bar chart button (2).

This graph, demonstrates the group category horizontally and quantity of volunteers

vertically. Hence, users can compare the quantity of volunteers within a group prior

and post simulation process.

45

The second important result factor is the success ratio of the simulation process.

Success ratio refers to the successful/unsuccessful quantity of jobs compared to the

entire job submission quantity. This can be demonstrated using a pie chart

represented in Figure 4.19.

The last factor which is compulsory for a user to know after each simulation is

the quantity of participated volunteers throughout the simulation period. This can be

demonstrated in a simple line graph as in Figure 4.20. By clicking on the Linear

Graph Button (1) a linear chart will be constructed which contains the information

about the quantity of used volunteers throughout the simulation process. A volunteer

is considered as ―used‖ or ―engaged‖ if at least one task submission occurred to the

volunteer (regardless the outcome of it). The horizontal axis refers to the number of

simulated months throughout the simulation, the vertical axis indicated the quantity

of engaged volunteers.

Figure 4.19: Pie Chart of Successful and Unsuccessful Job Submission

46

4.3.5 Generate PDF Reports and Export CSV Files

As drawn in section‘s 3.3.3 Use Case Diagram (Figure 3.2) and also

demonstrated in section 4.1‘s System Requirement Table (Table 4.1) the system shall

be able to generate PDF Reports and export the end result as CSV file on your local

computer. These two functionalities could be perform through the system‘s

dashboard located at the home panel as in Figure 4.14, in this panel by clicking on

―Export PDF‖ button (6) or ―Export CSV‖ button (7) user‘s demanded action would

be performed. Appendix B indicates an instance of a PDF report and Appendix C an

example of an exported result in CSV format.

4.4 Implementation of Final System

In this phase, the finished version of the system should be evaluated by the end

user. In this case, the simulator was presented to the experts in HPC center at UTP in

order to get feedback and comments. In the first semi-structured interview the

feedbacks were both positive and negative. The negative feedbacks were about the

application‘s GUI.

Figure 4.20: Linear Chart for Quantity of Engaged Volunteers

47

 In prototype 1.0, the GUI would freeze during the process due to the heavy load

of work. This issue has been resolved by implementing a java swingWork framework

for improving the concurrency. However, this issue was resolved in the final version

of the simulator but the HPC experts demanded a major change of the layout

behavior. Previously, a normal JAVA layout was implemented to the system. Hence,

new JAVA forms would appear above the previous forms. As instance, in Figure

4.21 it is visible that the user is requesting for the ―Volunteer Generation Tab‖ (1)

from the ―Main Panel‖, by clicking on that a new JAVA form (JForm) would appear

in front of your current view (2). As mentioned by HPC experts, this behavior is not

pleasant to the users according to basic Human Computer Interaction (HCI) rules

Figure 4.21: GUI issue Detected During Final Meeting

Hence, the implementation was postponed due to the new requested changes. In

order to overcome this ―interference‖ layer issue in JAVA, CardLayout flow could

be implemented into the system [55, 56]. Using CardLayout enables an integrated

and embedded view of all forms only in one page in other words, only one card

(form) is visible at a time, and the container acts as a stack of cards. Once the

changes have been committed a replacement meeting had been arranged.

(1)
(2)

48

 On 26-November-2014, HPC experts officially accepted the project. Experts

agreed that the system is fully functional and all the requirements have been fulfilled.

Ever since, this desktop grid environment simulator is used by the HPC experts for

personal research purposes. Figure 4.22 shows the official UTP HPC center website

accessible through http://hpc.utp.edu.my/. This simulator has been listed as one of

the official projects of HPC computing center after the final implementation.

Implementing the system in HPC service center was not an objective of this paper,

however, it is an enormous advantage for the system reliability level since grid

computing researchers could modify and improve the system if required. Any

academic activity should be aimed to increase knowledge and assist the advancement

of science, thus it is an honor if the developed desktop grid environment simulator

could assist any other research.

Figure 4.22: Official Website of University Technology Petronas‘ HPC center

http://hpc.utp.edu.my/

49

CHAPTER 5

CONCLUSION

5.1 Conclusion

Desktop Grid environment‘s main functionality is to break down enormous bulk

of jobs into smaller tasks and distributes these tasks throughout its entire network.

Within the grid network, distributed and heterogeneous volunteers perform these

tasks and return it to the server. Having a large network of volunteers worldwide

enables scientists to perform huge jobs using this grid network rather than using

super computers.

The grid network could have an enormous size (depending on the number of

volunteers), any changes on the parameters (job size, quantity of volunteers or etc.)

of this network might be costly and time consuming. Hence, scientists and

researchers tend to simulate an instance of the grid environment virtually using a

simulator and any further testing or research would be performed on the simulated

environment rather than the actual environment. Currently, only few desktop grid

simulators are accessible for research purposes and researches agree that it is

troublesome to use the current simulators due to their complexity.

A study conducted on other related simulators such as SimGrid, GridSim,

GangSim, SimBOINC and SimBa proved that the current simulators use

mathematical formulas and distributions in order to simulate some characteristics of

the environment. Hence, it was concluded that in order to make the simulator more

accurate, it is recommended to use a set of ‗real trace‘ data rather than statistical

information.

50

The research methodology used in this study was based on studying other related

projects and interviewing experts from UTP‘s HPC service center. According to all

the gather information from reviewing other literatures and semi-structured

interviews, the requirements of the system could be gathered and finalize. The

simulator was developed using JAVA programming language based on the

requirements using a prototyping development methodology. Two different

prototypes have been developed throughout a period of 7 months; various challenges

had been raised through this process which could be overcome with the assistance of

HPC experts.

The desktop grid simulator toolkit is meant to simulate and model scheduling

policy, job generation and host generation in a grid environment. Additional features

such viewing graphical charts, generating PDF reports and exporting result as CSV

files has also been implemented into the simulator. The process of the entire

simulation process will take few minutes‘ up to maximum few hours depending on

the selected model size. The implemented GUI decreased the system‘s complexity,

as stated in the objectives, due to the implemented CardLayout. Since the simulator

toolkit is based on an offline JAVA programming, there is no downtime or

interruption resources involved in the grid environment.

The final system was implemented only after the HPC experts confirmed that the

desktop grid environment is fully functional. This implementation was not among the

objectives of this study, however, it increases the reliability of the simulator since

researchers may improve and maintain the system.

5.2 Future works

Currently, it is among desktop grid simulators‘ assumption that there is no

network transmission time throughout the process of simulation. Network

transmission time refers to the delay of job transmission due to any network

difficulty. Unfortunately, SETI@home does not provide any data concerning this

network delays throughout the grid environment.

51

It is among one of the current hypothesis of desktop grid environment simulators

that this network transmission time equals to zero and does not exist, however, in

does exist in the actual desktop grid environment. Thus, further researches could be

conducted in order to discover a novel mathematical distribution for mimicking this

characteristic of the actual grid environment and implement it in any desktop grid

environment simulator to increase its reliability.

52

REFERENCES

[1] I. Foster and C. Kesselman, "Globus: A metacomputing infrastructure

toolkit," International Journal of High Performance Computing Applications,

vol. 11, pp. 115-128, 1997.

[2] Z. Balaton, G. Gombas, P. Kacsuk, A. Kornafeld, J. Kovács, A. C. Marosi, et

al., "Sztaki desktop grid: a modular and scalable way of building large

computing grids," in Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007. IEEE International, 2007, pp. 1-8.

[3] I. Foster and A. Iamnitchi, "On death, taxes, and the convergence of peer-to-

peer and grid computing," in Peer-to-Peer Systems II, ed: Springer, 2003, pp.

118-128.

[4] L. F. Sarmenta, "Volunteer computing," Massachusetts Institute of

Technology, 2001.

[5] S. Choi, M. Baik, C. Hwang, J. Gil, and H. Yu, "Volunteer availability based

fault tolerant scheduling mechanism in desktop grid computing

environment," in Network Computing and Applications, 2004.(NCA 2004).

Proceedings. Third IEEE International Symposium on, 2004, pp. 366-371.

[6] F. Costa, L. Silva, G. Fedak, and I. Kelley, "Optimizing data distribution in

desktop grid platforms," Parallel Processing Letters, vol. 18, pp. 391-410,

2008.

[7] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, "Fast and scalable

simulation of volunteer computing systems using simgrid," in Proceedings of

the 19th ACM International Symposium on High Performance Distributed

Computing, 2010, pp. 605-612.

[8] M. Taufer, A. Kerstens, T. Estrada, D. A. Flores, and P. J. Teller, "SimBA: A

Discrete Event Simulator for Performance Prediction of Volunteer

Computing Projects," in PADS, 2007, pp. 189-197.

[9] R. E. Shannon, Systems simulation: the art and science: Prentice-Hall, 1975.

[10] R. G. Ingalls, "Introduction to simulation," in Proceedings of the 40th

Conference on Winter Simulation, 2008, pp. 17-26.

[11] I. Foster and C. Kesselman, The Grid 2: Blueprint for a new computing

infrastructure: Elsevier, 2003.

[12] P. Domingues, B. Sousa, and L. Moura Silva, "Sabotage-tolerance and trust

management in desktop grid computing," Future Generation Computer

Systems, vol. 23, pp. 904-912, 2007.

53

[13] M. W. Mutka and M. Livny, "The available capacity of a privately owned

workstation environment," Performance Evaluation, vol. 12, pp. 269-284,

1991.

[14] A. Oram, "Peer-to-peer: Harnessing the power of disruptive technologies,"

SIGMOD Record, vol. 32, p. 57, 2003.

[15] A. Chien, B. Calder, S. Elbert, and K. Bhatia, "Entropia: architecture and

performance of an enterprise desktop grid system," Journal of Parallel and

Distributed Computing, vol. 63, pp. 597-610, 2003.

[16] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky, "SETI@

HOME—massively distributed computing for SETI," Computing in science

& engineering, vol. 3, pp. 78-83, 2001.

[17] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,

"SETI@ home: an experiment in public-resource computing,"

Communications of the ACM, vol. 45, pp. 56-61, 2002.

[18] S. Bagchi, "Simulation of grid computing infrastructure: challenges and

solutions," in Proceedings of the 37th conference on Winter simulation, 2005,

pp. 1773-1780.

[19] A. Manacero, R. S. Lobato, P. H. Oliveira, M. A. Garcia, A. I. Guerra, V.

Aoqui, et al., "iSPD: an iconic-based modeling simulator for distributed

grids," in Proceedings of the 45th Annual Simulation Symposium, 2012, p. 5.

[20] H. Casanova, "Simgrid: A toolkit for the simulation of application

scheduling," in Cluster Computing and the Grid, 2001. Proceedings. First

IEEE/ACM International Symposium on, 2001, pp. 430-437.

[21] S. Hunold, T. Rauber, and F. Suter, "Redistribution aware two-step

scheduling for mixed-parallel applications," in Cluster Computing, 2008

IEEE International Conference on, 2008, pp. 50-58.

[22] X.-m. Wen, W. Zhao, and F.-x. Meng, "Research of Grid Scheduling

Algorithm Based on P2P_Grid Model," in Electronic Commerce and

Business Intelligence, 2009. ECBI 2009. International Conference on, 2009,

pp. 41-44.

[23] Y. Caniou, G. Charrier, and F. Desprez, "Analysis of tasks reallocation in a

dedicated grid environment," in Cluster Computing (CLUSTER), 2010 IEEE

International Conference on, 2010, pp. 284-291.

[24] R. Buyya and M. Murshed, "Gridsim: A toolkit for the modeling and

simulation of distributed resource management and scheduling for grid

computing," Concurrency and computation: practice and experience, vol. 14,

pp. 1175-1220, 2002.

54

[25] J. Yu and R. Buyya, "Scheduling scientific workflow applications with

deadline and budget constraints using genetic algorithms," Scientific

Programming, vol. 14, pp. 217-230, 2006.

[26] L. Yao, G. Dai, H. Zhang, S. Ren, and Y. Niu, "A novel algorithm for task

scheduling in grid computing based on game theory," in High Performance

Computing and Communications, 2008. HPCC'08. 10th IEEE International

Conference on, 2008, pp. 282-287.

[27] B. Lu and H. Zhang, "Grid load balancing scheduling algorithm based on

statistics thinking," in Young Computer Scientists, 2008. ICYCS 2008. The

9th International Conference for, 2008, pp. 288-292.

[28] C. L. Dumitrescu and I. Foster, "GangSim: a simulator for grid scheduling

studies," in Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE

International Symposium on, 2005, pp. 1151-1158.

[29] M. R. K. Grace, S. S. Priya, and S. Surya, "A Survey on Grid Simulators,"

2012.

[30] F. Berman, G. Fox, and A. J. G. Hey, Grid Computing: Making the Global

Infrastructure a Reality: Wiley, 2003.

[31] D. Kosiur, Understanding Policy-Based Networking: Wiley, 2001.

[32] K. Ranganathan and I. Foster, "Decoupling computation and data scheduling

in distributed data-intensive applications," in High Performance Distributed

Computing, 2002. HPDC-11 2002. Proceedings. 11th IEEE International

Symposium on, 2002, pp. 352-358.

[33] N. A. Singh and M. Hemalatha, "High performance computing network for

cloud environment using simulators," arXiv preprint arXiv:1203.1728, 2012.

[34] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, "Towards

Simulating the Internet of Things," in Advanced Information Networking and

Applications Workshops (WAINA), 2014 28th International Conference on,

2014, pp. 444-448.

[35] D. Kondo, "SimBOINC: A simulator for desktop grids and volunteer

computing systems," ed, 2007.

[36] D. P. Anderson, "Boinc: A system for public-resource computing and

storage," in Grid Computing, 2004. Proceedings. Fifth IEEE/ACM

International Workshop on, 2004, pp. 4-10.

[37] F. Borrajo, Y. Bueno, I. De Pablo, B. Santos, F. Fernández, J. García, et al.,

"SIMBA: A simulator for business education and research," Decision Support

Systems, vol. 48, pp. 498-506, 2010.

55

[38] D. A. Flores, T. Estrada, M. Taufer, P. J. Teller, and A. Kerstens, "Simba: a

discrete event simulator for performance prediction of volunteer computing

projects," in Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, 2006, p. 168.

[39] B. Javadi, D. Kondo, J.-M. Vincent, and D. P. Anderson, "Discovering

Statistical Models of Availability in Large Distributed Systems: An Empirical

Study of SETI@home," IEEE Transactions on Parallel and Distributed

Systems, vol. 22, pp. 1896-1903, 2011.

[40] J. Brevik, D. Nurmi, and R. Wolski, "Automatic methods for predicting

machine availability in desktop grid and peer-to-peer systems," in Cluster

Computing and the Grid, 2004. CCGrid 2004. IEEE International

Symposium on, 2004, pp. 190-199.

[41] I. Sommerville, Software Engineering: Pearson Education, 2011.

[42] A. Dennis, R. M. Roth, and B. H. Wixom, System [sic] Analysis and Design:

John Wiley & Sons, Limited, 2013.

[43] A. Galstyan, K. Czajkowski, and K. Lerman, "Resource allocation in the grid

using reinforcement learning," in Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems-Volume 3, 2004,

pp. 1314-1315.

[44] M. Tang, B.-S. Lee, X. Tang, and C.-K. Yeo, "The impact of data replication

on job scheduling performance in the Data Grid," Future Generation

Computer Systems, vol. 22, pp. 254-268, 2006.

[45] J. H. Abawajy, "Fault-tolerant scheduling policy for grid computing

systems," in Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International, 2004, p. 238.

[46] J.-S. Kim and Y. Hsu, "Memory system behavior of Java programs:

methodology and analysis," in ACM SIGMETRICS Performance Evaluation

Review, 2000, pp. 264-274.

[47] J.-S. Kim and Y. Hsu, "Analyzing Memory Reference Traces of Java

Programs," in Workload Characterization for Computer System Design, ed:

Springer, 2000, pp. 25-48.

[48] J. G. Fernández, "Performance improvement of multithreaded java

applications execution on multiprocessor systems," Universitat Politècnica de

Catalunya, 2005.

[49] P. Findeisen and D. I. Seidman, "Identifying memory leaks in computer

systems," ed: Google Patents, 2008.

[50] M. D. Bond and K. S. McKinley, "Tolerating memory leaks," in ACM

Sigplan Notices, 2008, pp. 109-126.

56

[51] R. Greenwald, R. Stackowiak, and J. Stern, Oracle essentials: Oracle9 i,

Oracle8 i & Oracle8: O'Reilly & Associates, Inc., 2001.

[52] M. Konda, What's New in Java 7?: " O'Reilly Media, Inc.", 2011.

[53] M. Khan, I. Hyder, B. Chowdhry, F. Shafiq, and H. Ali, "A novel fault

tolerant volunteer selection mechanism for volunteer computing," Sindh

University Research Journal—Science Series, vol. 44, pp. 138-143, 2012.

[54] M. K. Khan, S. I. Hyder, G. U. Ahmed, S. Begum, and M. Aamir, "A Group

Based Replication Mechanism to Reduce the Wastage of Processing Cycles

in Volunteer Computing," Wireless Personal Communications, vol. 76, pp.

591-601, 2014.

[55] J. Zukowski, Java AWT reference vol. 3: O'Reilly, 1997.

[56] J. Cowell, "The Layout Managers," in Essential Java 2 fast, ed: Springer,

1999, pp. 128-139.

57

Appendix A: Entity Relationship Diagram of the Implemented MySQL Database

58

Appendix B: Generated PDF Report by the Application

59

Appendix C: Exported Result in A CSV File.

	ACKNOWLEDGEMENTS
	ABSTRACT
	tABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 IntroductioN
	1.1 Background
	1.2 Problem Statement
	1.3 Objective
	1.4 Methodology
	1.5 Scope of study

	Chapter 2 LITERATURE REVIEW
	2.1 Introduction to simulation
	2.2 Desktop grid environment
	2.3 General Simulator for Distributed Computing
	2.3.1 SimGrid
	2.3.2 GridSim
	2.3.3 GangSim
	2.3.4 SimBOINC
	2.3.5 SimBA

	2.4 Reasons to Develop a New Simulation Toolkit

	Chapter 3 METHODOLOGY
	3.1 Research Methodology
	3.2 Research Procedure
	3.3 Development Methodology
	3.3.1 Planning
	3.3.2 Analysis
	3.3.3 Design
	3.3.4 Prototyping
	3.3.5 Implementation & Monitoring

	3.4 Tools required
	3.5 Gantt Chart
	3.6 Key Milestones

	Chapter 4 Result and Discussion
	4.1 Requirement Engineering
	4.2 Prototype Design
	4.2.1 Prototype 1.0 Activities
	4.2.2 Problems Encountered With Prototype 1.0
	4.2.3 Prototype 2.0 Activities
	4.2.4 Problems Encountered With Prototype 2.0

	4.3 Design of Final System and Graphical User Interface
	4.3.1 Job Generation
	4.3.2 Volunteer Generation Panel
	4.3.3 Volunteer Setting
	4.3.4 Viewing Graphical Charts
	4.3.5 Generate PDF Reports and Export CSV Files

	4.4 Implementation of Final System

	Chapter 5 CONCLUSION
	5.1 Conclusion
	5.2 Future works
	REFERENCES
	Appendix A: Entity Relationship Diagram of the Implemented MySQL Database
	Appendix B: Generated PDF Report by the Application
	Appendix C: Exported Result in A CSV File.

