3 research outputs found

    Scatter Search Applied to the Inference of a Development Gene Network

    Get PDF
    Efficient network inference is one of the challenges of current-day biology. Its application to the study of development has seen noteworthy success, yet a multicellular context, tissue growth, and cellular rearrangements impose additional computational costs and prohibit a wide application of current methods. Therefore, reducing computational cost and providing quick feedback at intermediate stages are desirable features for network inference. Here we propose a hybrid approach composed of two stages: exploration with scatter search and exploitation of intermediate solutions with low temperature simulated annealing. We test the approach on the well-understood process of early body plan development in flies, focusing on the gap gene network. We compare the hybrid approach to simulated annealing, a method of network inference with a proven track record. We find that scatter search performs well at exploring parameter space and that low temperature simulated annealing refines the intermediate results into excellent model fits. From this we conclude that for poorly-studied developmental systems, scatter search is a valuable tool for exploration and accelerates the elucidation of gene regulatory networks

    Scatter search applied to the inference of a development gene network

    No full text
    Efficient network inference is one of the challenges of current-day biology. Its application to the study of development has seen noteworthy success, yet a multicellular context, tissue growth, and cellular rearrangements impose additional computational costs and prohibit a wide application of current methods. Therefore, reducing computational cost and providing quick feedback at intermediate stages are desirable features for network inference. Here we propose a hybrid approach composed of two stages: exploration with scatter search and exploitation of intermediate solutions with low temperature simulated annealing. We test the approach on the well-understood process of early body plan development in flies, focusing on the gap gene network. We compare the hybrid approach to simulated annealing, a method of network inference with a proven track record. We find that scatter search performs well at exploring parameter space and that low temperature simulated annealing refines the intermediate results into excellent model fits. From this we conclude that for poorly-studied developmental systems, scatter search is a valuable tool for exploration and accelerates the elucidation of gene regulatory networks.We thank Johannes Jaeger for critical feedback and scientific advice. We thankfully acknowledge the computer resources, technical expertise and assistance provided by the Barcelona Supercomputing Center, which is part of the Red Española de Supercomputación. We thank SURFsara (www.surfsara.nl) for the support in using the Lisa Compute Cluster. The Centre for Genomic Regulation (CRG) acknowledges support from the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208. AC kindly acknowledges Fondation Bettencourt Schueller
    corecore