881 research outputs found

    The approaches to quantify web application security scanners quality: A review

    Get PDF
    The web application security scanner is a computer program that assessed web application security with penetration testing technique. The benefit of automated web application penetration testing is huge, which web application security scanner not only reduced the time, cost, and resource required for web application penetration testing but also eliminate test engineer reliance on human knowledge. Nevertheless, web application security scanners are possessing weaknesses of low test coverage, and the scanners are generating inaccurate test results. Consequently, experimentations are frequently held to quantitatively quantify web application security scanner's quality to investigate the web application security scanner's strengths and limitations. However, there is a discovery that neither a standard methodology nor criterion is available for quantifying the web application security scanner's quality. Hence, in this paper systematic review is conducted and analysed the methodology and criterion used for quantifying web application security scanners' quality. In this survey, the experiment methodologies and criterions that had been used to quantify web application security scanner's quality is classified and review using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol. The objectives are to provide practitioners with the understanding of methodologies and criterions that available for measuring web application security scanners' test coverage, attack coverage, and vulnerability detection rate, while provides the critical hint for development of the next testing framework, model, methodology, or criterions, to measure web application security scanner quality

    Attack Taxonomy Methodology Applied to Web Services

    Get PDF
    With the rapid evolution of attack techniques and attacker targets, companies and researchers question the applicability and effectiveness of security taxonomies. Although the attack taxonomies allow us to propose a classification scheme, they are easily rendered useless by the generation of new attacks. Due to its distributed and open nature, web services give rise to new security challenges. The purpose of this study is to apply a methodology for categorizing and updating attacks prior to the continuous creation and evolution of new attack schemes on web services. Also, in this research, we collected thirty-three (33) types of attacks classified into five (5) categories, such as brute force, spoofing, flooding, denial-of-services, and injection attacks, in order to obtain the state of the art of vulnerabilities against web services. Finally, the attack taxonomy is applied to a web service, modeling through attack trees. The use of this methodology allows us to prevent future attacks applied to many technologies, not only web services.Con la rápida evolución de las técnicas de ataque y los objetivos de los atacantes, las empresas y los investigadores cuestionan la aplicabilidad y eficacia de las taxonomías de seguridad. Si bien las taxonomías de ataque nos permiten proponer un esquema de clasificación, son fácilmente inutilizadas por la generación de nuevos ataques. Debido a su naturaleza distribuida y abierta, los servicios web plantean nuevos desafíos de seguridad. El propósito de este estudio es aplicar una metodología para categorizar y actualizar ataques previos a la continua creación y evolución de nuevos esquemas de ataque a servicios web. Asimismo, en esta investigación recolectamos treinta y tres (33) tipos de ataques clasificados en cinco (5) categorías, tales como fuerza bruta, suplantación de identidad, inundación, denegación de servicios y ataques de inyección, con el fin de obtener el estado del arte de las vulnerabilidades contra servicios web. Finalmente, se aplica la taxonomía de ataque a un servicio web, modelado a través de árboles de ataque. El uso de esta metodología nos permite prevenir futuros ataques aplicados a muchas tecnologías, no solo a servicios web

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    State of Alaska Election Security Project Phase 2 Report

    Get PDF
    A laska’s election system is among the most secure in the country, and it has a number of safeguards other states are now adopting. But the technology Alaska uses to record and count votes could be improved— and the state’s huge size, limited road system, and scattered communities also create special challenges for insuring the integrity of the vote. In this second phase of an ongoing study of Alaska’s election security, we recommend ways of strengthening the system—not only the technology but also the election procedures. The lieutenant governor and the Division of Elections asked the University of Alaska Anchorage to do this evaluation, which began in September 2007.Lieutenant Governor Sean Parnell. State of Alaska Division of Elections.List of Appendices / Glossary / Study Team / Acknowledgments / Introduction / Summary of Recommendations / Part 1 Defense in Depth / Part 2 Fortification of Systems / Part 3 Confidence in Outcomes / Conclusions / Proposed Statement of Work for Phase 3: Implementation / Reference

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    Requirements and Recommendations for IoT/IIoT Models to automate Security Assurance through Threat Modelling, Security Analysis and Penetration Testing

    Full text link
    The factories of the future require efficient interconnection of their physical machines into the cyber space to cope with the emerging need of an increased uptime of machines, higher performance rates, an improved level of productivity and a collective collaboration along the supply chain. With the rapid growth of the Internet of Things (IoT), and its application in industrial areas, the so called Industrial Internet of Things (IIoT)/Industry 4.0 emerged. However, further to the rapid growth of IoT/IIoT systems, cyber attacks are an emerging threat and simple manual security testing can often not cope with the scale of large IoT/IIoT networks. In this paper, we suggest to extract metadata from commonly used diagrams and models in a typical software development process, to automate the process of threat modelling, security analysis and penetration testing, without detailed prior security knowledge. In that context, we present requirements and recommendations for metadata in IoT/IIoT models that are needed as necessary input parameters of security assurance tools.Comment: 8 pages, Proceedings of the 14th International Conference on Availability, Reliability and Security (ARES 2019) (ARES '19), August 26-29, 2019, Canterbury, United Kingdo
    corecore