3,024 research outputs found

    Improved inference and autotyping in EEG-based BCI typing systems

    Get PDF
    ABSTRACT The RSVP Keyboard TM is a brain-computer interface (BCI)-based typing system for people with severe physical disabilities, specifically those with locked-in syndrome (LIS). It uses signals from an electroencephalogram (EEG) combined with information from an n-gram language model to select letters to be typed. One characteristic of the system as currently configured is that it does not keep track of past EEG observations, i.e., observations of user intent made while the user was in a different part of a typed message. We present a principled approach for taking all past observations into account, and show that this method results in a 20% increase in simulated typing speed under a variety of conditions on realistic stimuli. We also show that this method allows for a principled and improved estimate of the probability of the backspace symbol, by which mis-typed symbols are corrected. Finally, we demonstrate the utility of automatically typing likely letters in certain contexts, a technique that achieves increased typing speed under our new method, though not under the baseline approach

    Designing Text Entry Methods for Non-Verbal Vocal Input

    Get PDF
    Katedra počítačové grafiky a interakc

    Intelligent Techniques to Accelerate Everyday Text Communication

    Get PDF
    People with some form of speech- or motor-impairments usually use a high-tech augmentative and alternative communication (AAC) device to communicate with other people in writing or in face-to-face conversations. Their text entry rate on these devices is slow due to their motor abilities. Making good letter or word predictions can help accelerate the communication of such users. In this dissertation, we investigated several approaches to accelerate input for AAC users. First, considering that an AAC user is participating in a face-to-face conversation, we investigated whether performing speech recognition on the speaking-side can improve next word predictions. We compared the accuracy of three plausible microphone deployment options and the accuracy of two commercial speech recognition engines. We found that despite recognition word error rates of 7-16%, our ensemble of n-gram and recurrent neural network language models made predictions nearly as good as when they used the reference transcripts. In a user study with 160 participants, we also found that increasing number of prediction slots in a keyboard interface does not necessarily correlate to improved performance. Second, typing every character in a text message may require an AAC user more time or effort than strictly necessary. Skipping spaces or other characters may be able to speed input and reduce an AAC user\u27s physical input effort. We designed a recognizer optimized for expanding noisy abbreviated input where users often omitted spaces and mid-word vowels. We showed using neural language models for selecting conversational-style training text and for rescoring the recognizer\u27s n-best sentences improved accuracy. We found accurate abbreviated input was possible even if a third of characters was omitted. In a study where users had to dwell for a second on each key, we found sentence abbreviated input was competitive with a conventional keyboard with word predictions. Finally, AAC keyboards rely on language modeling to auto-correct noisy typing and to offer word predictions. While today language models can be trained on huge amounts of text, pre-trained models may fail to capture the unique writing style and vocabulary of individual users. We demonstrated improved performance compared to a unigram cache by adapting to a user\u27s text via language models based on prediction by partial match (PPM) and recurrent neural networks. Our best model ensemble increased keystroke savings by 9.6%

    Guidelines for Feature Matching Assessment of Brain–Computer Interfaces for Augmentative and Alternative Communication

    Get PDF
    Purpose--Brain–computer interfaces (BCIs) can provide access to augmentative and alternative communication (AAC) devices using neurological activity alone without voluntary movements. As with traditional AAC access methods, BCI performance may be influenced by the cognitive–sensory–motor and motor imagery profiles of those who use these devices. Therefore, we propose a person-centered, feature matching framework consistent with clinical AAC best practices to ensure selection of the most appropriate BCI technology to meet individuals\u27 communication needs. Method--The proposed feature matching procedure is based on the current state of the art in BCI technology and published reports on cognitive, sensory, motor, and motor imagery factors important for successful operation of BCI devices. Results--Considerations for successful selection of BCI for accessing AAC are summarized based on interpretation from a multidisciplinary team with experience in AAC, BCI, neuromotor disorders, and cognitive assessment. The set of features that support each BCI option are discussed in a hypothetical case format to model possible transition of BCI research from the laboratory into clinical AAC applications. Conclusions--This procedure is an initial step toward consideration of feature matching assessment for the full range of BCI devices. Future investigations are needed to fully examine how person-centered factors influence BCI performance across devices

    Augmentative and alternative communication (AAC) advances: A review of configurations for individuals with a speech disability

    Get PDF
    High-tech augmentative and alternative communication (AAC) methods are on a constant rise; however, the interaction between the user and the assistive technology is still challenged for an optimal user experience centered around the desired activity. This review presents a range of signal sensing and acquisition methods utilized in conjunction with the existing high-tech AAC platforms for individuals with a speech disability, including imaging methods, touch-enabled systems, mechanical and electro-mechanical access, breath-activated methods, and brain–computer interfaces (BCI). The listed AAC sensing modalities are compared in terms of ease of access, affordability, complexity, portability, and typical conversational speeds. A revelation of the associated AAC signal processing, encoding, and retrieval highlights the roles of machine learning (ML) and deep learning (DL) in the development of intelligent AAC solutions. The demands and the affordability of most systems hinder the scale of usage of high-tech AAC. Further research is indeed needed for the development of intelligent AAC applications reducing the associated costs and enhancing the portability of the solutions for a real user’s environment. The consolidation of natural language processing with current solutions also needs to be further explored for the amelioration of the conversational speeds. The recommendations for prospective advances in coming high-tech AAC are addressed in terms of developments to support mobile health communicative applications
    • …
    corecore