
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2022

Intelligent Techniques to Accelerate Everyday Text Intelligent Techniques to Accelerate Everyday Text

Communication Communication

Jiban Krishna Adhikary
Michigan Technological University, jiban@mtu.edu

Copyright 2022 Jiban Krishna Adhikary

Recommended Citation Recommended Citation
Adhikary, Jiban Krishna, "Intelligent Techniques to Accelerate Everyday Text Communication", Open
Access Dissertation, Michigan Technological University, 2022.
https://doi.org/10.37099/mtu.dc.etdr/1405

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1405
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1405&utm_medium=PDF&utm_campaign=PDFCoverPages

INTELLIGENT TECHNIQUES TO ACCELERATE EVERYDAY
TEXT COMMUNICATION

By
Jiban Krishna Adhikary

a dissertation
Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY
2022

©2022 Jiban Krishna Adhikary

This dissertation has been approved in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy in Computer Science.

Department of Computer Science

Dissertation Advisor: Dr. Keith Vertanen

Committee Member: Dr. Scott Kuhl

Committee Member: Dr. Laura Brown

Committee Member: Dr. Elizabeth Veinott

Department Chair: Dr. Linda Ott

dedicated to my parents

Contents

Abstract xii

1 Introduction 1
1.1 Motivation . 1
1.2 Overview and Contributions . 3
1.3 Relationship to Previous Publications . 8

2 Overview of Text Entry Interfaces and LanguageModeling 9
2.1 Text Entry Interfaces . 10
2.2 Language Modeling . 13
2.3 How Text Entry Interfaces Use Language Models 23
2.4 Evaluation . 25

3 Investigating Speech Recognition for Improving Predictive AAC 31
3.1 Introduction . 31
3.2 RelatedWork . 32
3.3 Speech Data Collection . 33
3.4 Language Modeling Experiments . 37
3.5 Discussion and Limitations . 44
3.6 Conclusions . 46

4 Dwell-based Text Entry and Partner Speech Context 48
4.1 Introduction . 48
4.2 RelatedWork . 49
4.3 Experiment 1: Crowdsourced Dwell Keyboard Study 50
4.4 Experiment 2: Using Partner Speech Context in a Simulated Keyboard . . . 57
4.5 Discussion . 64
4.6 Conclusion . 66

iv

5 Accelerating Text Communication via Abbreviated Sentence Input 67
5.1 Introduction . 67
5.2 RelatedWork . 69
5.3 Free-form Abbreviation Study . 72
5.4 Conversational Language Modeling . 74
5.5 Recognizing Noisy Abbreviated Input 77
5.6 User Study . 81
5.7 Discussion . 86
5.8 Conclusion . 90

6 LanguageModel Personalization 91
6.1 Introduction . 91
6.2 Related work . 92
6.3 Language Model Personalization . 96
6.4 Experiments . 98
6.5 Discussion . 106
6.6 Conclusion . 108

7 Conclusion 109
7.1 Discussion . 109
7.2 Future Work and Limitations . 112
7.3 Final Remarks . 114

Appendix A Appendix 115
A.1 Abbreviation Study Instructions . 115
A.2 Error Rate to Compression . 116
A.3 Selecting Training Data . 116
A.4 Recognizing Noisy Abbreviated Input 116

References 133

v

Listing of figures

1.1 Using partner speech recognition results as context to improve next word pre-
diction. 4

1.2 A system taking an abbreviated sentence as input and expanding it to the in-
tended text. 6

1.3 Personalizing a language model with a user’s written history may provide good
word predictions. 7

2.1 A smartphone keyboard. There are three prediction slots above the keyboard.
The user has already entered This is. Considering the entered phrase as a con-
text the keyboard has generated the most probable three next words and of-
fered them in the suggestion slots. 10

2.2 A row-column scanning keyboard. If a user wants to select a letter from A–
F, the user will press a switch when the first row is highlighted. 11

2.3 The Dasher [130] interface. The user has currently written “My ”. The red
line shows the direction a user would point in order to write “My name is ”. 12

2.4 An eye-gaze keyboard interface [2]. 13
2.5 Standard recurrent neural network architecture. xt denotes a vector represen-

tation of a character or a word at time step t. ht denotes hidden state at time
step t. T denotes an activation function. 20

2.6 Recurrent neural network with LSTM units. LSTM units use different type
of gates such as input gate, forget gate, cell state, and output gate and can keep
track of the context in the hidden states through time. 22

2.7 A decoder can generate a list of tokens using a beam search. In this figure a beam
width of 2 is considered. For each token, the probability of the token accord-
ing to a language model is shown. In each step of the beam search candidate
tokens are pruned using a probability threshold and the beam width. 24

vi

2.8 Text input progression with suggestion slots. A green bounding rectangle around
a key or a slot represents that the user has tapped this key or slot. In the sec-
ond image, a list of most probable words was offered based on the previous
word this. For the phrase this is anticipated, there is a total of 10 taps. . . . 27

2.9 Input progress of a phrase with time. ‘_’ represents a space. 28
2.10 A reference text versus a user text aligned to view character mismatch. . . . 29

3.1 The application used to record dialogues. 34
3.2 Participants’ per utterance WER using the Google recognizer and audio from

a headset microphone. 37
3.3 WER on audio dialogue turns without noise and with three different injected

noise levels. 38
3.4 Perplexities using speech recognition on partner turns rather than reference

transcripts. Results for no added noise, and for three levels of injected noise. 44

4.1 The dwell keyboard interface. In this example, the user is entering the text ‘i
have a great idea’. The user has entered ‘i have a’ so far and currently dwelling
on the fifth suggestion slot containing the word ‘great’. The red rectangle in-
dicates that the mouse pointer is currently hovering on this key and the blue
shade fills the entire key after 1000ms (one second) has passed. 51

4.2 WPM versus CER plot for each slot. Each dot represents a participant. . . . 55

5.1 Error rate of automatic expansion with increasing abbreviation of the input. 74
5.2 The word (left) and sentence (right) keyboard modes from our user study. The

circle is centered on the user’s touch location with a green arc showing progress
towards the one second dwell time. 81

5.3 Entry and error rate in our user study. 84
5.4 Entry rates for each block of four phrases. 85
5.5 Participants’ entry and error rate in each condition of the user study. 86

6.1 Graph showing keystrokes savings for each user in three different settings and
with noisy touch data. Ensemble (flat) represents the combination of back-
ground language model, unigram cache, RNNLM, and PPM-12 with a flat
start. Ensemble (primed) represents when the models were primed with the
seed text. Users are sorted according to the keystroke savings using the 12-gram
background language model. 105

A.1 Instructions given to workers in our free-from abbreviation crowdsourced study
in Chapter 5. 116

vii

A.2 Error rate of automatic expansion with increasing abbreviation of the input
in the final study in Chapter 5. 117

viii

Listing of tables

3.1 A dialogue created by Amazon Turk workers. 34
3.2 Word Error Rate (WER %) using different microphones and speech recogniz-

ers. Results are formatted as mean± 95% bootstrap confidence intervals. . 37
3.3 N-gram perplexity varying training data. 39
3.4 Perplexities with added features. We reset the RNNLM between each sentence

or after each dialogue. 40
3.5 Perplexity of models trained on two-sided dialogues and mixtures of dialogue

and twitter models. 42

4.1 Entry rate, character error rate, backspaces-per-character, and keystroke sav-
ings result from dwell keyboard AmazonMechanical Turk study. ± values
denote 95% user‐wise bootstrap confidence intervals. 54

4.2 An example of a dialogue between an AAC user and a communicating part-
ner. During training and evaluation we removed punctuation and converted
the cases to lower case. 58

4.3 Keystroke savings and estimated entry rate results from the simulated keyboard
experiments. ± values denote sentence‐wise 95% bootstrap confidence inter-
vals [11]. 63

4.4 Keystroke savings and estimated entry rate results on the last turn of each di-
alogue from the simulated keyboard experiments. ± values denote sentence‐wise
95% bootstrap confidence intervals [11]. 64

5.1 Impact of selection method on training sentences and performance of letter
language models. 76

5.2 Error rates and decoder performance using different search methods and vowel
drop probabilities. ± values denote sentence-wise 95% bootstrap confidence
intervals [11]. 80

5.3 User performance in each condition in our user study. Results formatted as:
mean± SD [min, max]. 82

ix

6.1 Keystroke savings (KS) on the Enron test data when all the adaptive models
had a flat start versus when the models were primed. No spatial noise was ap-
plied to the simulated touches. ± values denote 95% user-wise bootstrap con-
fidence intervals. 102

6.2 Keystroke savings (KS), character error rate (CER), and word error rate (WER)
on the Enron test data when all the adaptive models had a flat start (middle
section) versus when the models were primed (bottom section). Spatial noise
applied to simulated touches. ± values denote 95% user-wise bootstrap con-
fidence intervals. 104

A.1 Examples of selected text data using three different approaches described in
Chapter 5. For BERT and cross-entropy difference selection Top, Mid, and
Bottom represent the absolute positions in the ordered list according to their
scores. 117

A.2 Abbreviated and noisy input and the resulting recognition results from Chap-
ter 5. The input text represents the closest key to each tap observation in our
data. Recognition errors are underlined. 118

x

Acknowledgments

At first I want to express my sincere gratitude to my advisor, Keith, for his constant sup-
port, inspiration, sharp insight, and meticulous attention to details. He has been always
been an excellent support and source of new ideas throughout this work.

I want to express my profound appreciation to my committee members, Dr. Scott Kuhl,
Dr. Laura Brown, and Dr. Elizabeth Veinott for their time and energy in improving this
work.

I want to acknowledge the Computer Science Department at Michigan Tech, the National
Science Foundation, and the Michigan Tech graduate school for providing financial sup-
port during my stay at Michigan Tech.

Lastly, I am grateful to my family members and to my wife Sristy. Sristy has been my strength
and source of inspiration during the difficult days of COVID-19 pandemic. This work
would not have been possible if she was not there for me.

xi

Abstract

People with some form of speech- or motor-impairments usually use a high-tech aug-
mentative and alternative communication (AAC) device to communicate with other peo-
ple in writing or in face-to-face conversations. Their text entry rate on these devices is slow
due to their motor abilities. Making good letter or word predictions can help accelerate
the communication of such users. In this dissertation, we investigated several approaches
to accelerate input for AAC users. First, considering that an AAC user is participating in
a face-to-face conversation, we investigated whether performing speech recognition on the
speaking-side can improve next word predictions. We compared the accuracy of three plau-
sible microphone deployment options and the accuracy of two commercial speech recogni-
tion engines. We found that despite recognition word error rates of 7–16%, our ensemble
of n-gram and recurrent neural network language models made predictions nearly as good
as when they used the reference transcripts. In a user study with 160 participants, we also
found that increasing number of prediction slots in a keyboard interface does not necessar-
ily correlate to improved performance.

Second, typing every character in a text message may require an AAC user more time or
effort than strictly necessary. Skipping spaces or other characters may be able to speed in-
put and reduce an AAC user’s physical input effort. We designed a recognizer optimized
for expanding noisy abbreviated input where users often omitted spaces and mid-word
vowels. We showed using neural language models for selecting conversational-style training
text and for rescoring the recognizer’s n-best sentences improved accuracy. We found ac-
curate abbreviated input was possible even if a third of characters was omitted. In a study
where users had to dwell for a second on each key, we found sentence abbreviated input
was competitive with a conventional keyboard with word predictions.

Finally, AAC keyboards rely on language modeling to auto-correct noisy typing and
to offer word predictions. While today language models can be trained on huge amounts
of text, pre-trained models may fail to capture the unique writing style and vocabulary of
individual users. We demonstrated improved performance compared to a unigram cache by
adapting to a user’s text via language models based on prediction by partial match (PPM)
and recurrent neural networks. Our best model ensemble increased keystroke savings by
9.6%.

xii

1
Introduction

1.1 Motivation

The characteristic that separates human beings from other species is the ability to com-

municate in explicit ways, for example, by speaking or in writing. Other species can also

communicate via sounds or making noise, but their communication is not as advanced as

human beings. One of the most important ways we communicate is via face-to-face con-

1

versations. It is also one of the most effective ways of acquiring knowledge. But sometimes

this means of communication is hampered when a person cannot talk due to a motor- or

speech-impairment. People having a speaking disorder may use some form of Augmen-

tative and Alternative Communication (AAC) [1]. For example, an AAC user may use a

low-tech aid such as a paper notebook to communicate or they may use a high-tech tablet

computer that speaks for them.

High-tech AAC devices let users communicate by entering text using an AAC interface.

However, the rate at which they enter text on an interface is usually very low often less than

10 words-per-minute [45, 60, 64, 96, 107, 114]. These AAC devices typically make use of

a language model (to be discussed in Chapter 2) to suggest word predictions. They also use

only the AAC user’s side of a conversation for predicting words. However, real life con-

versations are two-sided spoken dialogues where one side affects the responses of the other

side. Intuitively, for better suggestions it makes sense to model both sides of a conversation.

We believe further gain on an AAC user’s response can be achieved by using the speech of

the communication partner as input context. In order to use partner speech as context, we

can perform automatic speech recognition on the partner speech to convert it to text. Then

we can use this result as a context to a language model which is trained on two-sided con-

versations.

Due to an AAC user’s motor ability, it might be difficult for them to enter every charac-

ter of every word in a sentence during writing. For example, their input might be slow or it

might be physically tiring for them to provide the input. One way to reduce their workload

could be to reduce the number of characters they enter. In other words, they could enter

some characters of the words but not all the characters in the words.

2

AAC users can also benefit from the text they have already written using their device.

AAC devices normally use a static language model to suggest word predictions to the user.

The model predicts the next word for a given context but the model does not get updated

as new phrases are written on the device. For example, the probability of a next word for

a given context does not change even if the same word appears after the context again and

again in the future. Normally people tend to repeat words and phrases during writing. One

way to provide better suggestions to an AAC interface would be to make use of a user’s

written history and adapt the language model with time.

In this dissertation, we will consider the above solutions and their advantages and disad-

vantages to design text entry interfaces for AAC users. We will examine if these interfaces

help able-bodied users accelerate their input in a simulated rate-limited text entry setting.

While evaluating a text entry interface in the upcoming chapters, we did not involve ac-

tual AAC users. Since we did not know if our proposed methods would work or not, we

did not want AAC users to directly test an unproven interface. Instead, we performed sim-

ulation experiments and conducted user studies with able-bodied people with simulated

rate-limited text input.

1.2 Overview and Contributions

Chapter 2 introduces some text entry interfaces for AAC users and what techniques we

use to provide auto-correction and word suggestions. We discuss how text entry interfaces

make use of statistical language models. Besides statistical language models, we describe

more advanced language models such as Recurrent Neural Network Language Models

(RNNLMs) and transformer based models. Then we discuss different metrics that are used

3

Language Model

Figure 1.1: Using partner speech recognition results as context to improve next word prediction.

to evaluate a text entry system.

Below is a short summary and a list of the highlights of the remaining chapters:

Chapter 3: Investigating Speech Recognition for Improving Predictive AAC

In this chapter, we collect speech data and compare recognition accuracy of different plau-

sible microphone setups on an AAC device. We also compare recognition accuracy of two

commercial automatic speech recognition engines. Then we discuss training language mod-

els and report how these models perform with different test sets. Finally, we conduct of-

fline experiments to show how speech context can be used to enhance face-to-face commu-

nication. In this case, we assume a user enters text via an AAC device and the communica-

tion partner speaks and we perform speech recognition on the partner’s speech (Figure 1.1).

The main takeaways from this chapter are:

• Speech can be recorded and accurately recognized using various microphones in different

locations.

• A speaking partner’s recognized text can be successfully used as context to improve AAC

4

user’s next word predictions.

• Predictions made with partner speech recognition results as context are nearly as good as

using reference transcripts.

Chapter 4: Dwell-based Text Entry and Partner Speech Context

In this chapter, we describe a crowdsourced user study simulating AAC-user like interac-

tion by able-bodied people on a dwell keyboard. On a dwell keyboard a user dwells over a

key for a certain period of time to activate it. Dwelling on a key can be done using a mouse

pointer or eye-gaze. In this chapter, first we try to find what number of suggestion slots is

appropriate for a dwell keyboard. We use a dwell time of 1000ms and have users dwell on

a key using a mouse pointer. From empirical interaction data, we also find the average time

a user spends to actuate a key. Then we investigate via offline experiments if using partner

speech recognition results as context to a language model and using different number of

slots enhance user performance by reducing the number of keystrokes. Based on the esti-

mated time to actuate a tap from the first study, we also calculate estimated entry rates with

different number of slots. The key takeaways from this chapter are:

• Using a 1000ms dwell time and 2–9 slots, users can enter text at 9–11 words-per-minute.

• On an average users spent 2298ms per key tap during dwell typing.

• With partner speech context and five suggestion slots, a simulated user’s keystroke savings

improved from 56.9% to 58.1%.

Chapter 5: Accelerating Text Communication via Abbreviated Sentence Input

5

Decoder

hveagrtdy have a great day

Figure 1.2: A system taking an abbreviated sentence as input and expanding it to the intended text.

In this chapter, we investigate input of conversational text by removing some letters of a

sentence. To expand such input we need good language models and for good language

models we require large amount of text data representing everyday conversations. There-

fore, we propose an intelligent data selection technique to select conversational text using

a neural model called BERT [29]. By conducting offline experiments and by conducting

a crowdsourced user-study, we show that simulated rate-limited users can effectively input

text by removing mid-word vowels and spaces between words. The key findings from this

chapter are:

• A neural model e. g. BERT can be used to select target data from an out-of-domain data

source and the quality of sampled data is slightly better than data sampled with existing

approach.

• Theoretically, 38.2% characters can be saved during a text input process by not entering

spaces between words and mid-word vowels.

• After practice, users entered text at 9.6 words-per-minute when they skipped mid-word

vowels and spaces between words. When users entered text word-by-word and used word

predictions, the entry rate was 9.9 words-per-minute.

6

Personalized Language Model

User’s written history

Figure 1.3: Personalizing a language model with a user’s written history may provide good word
predictions.

Chapter 6: Language Model Personalization

We examine different personalization techniques to enhance the quality of a user’s next

word predictions. We use a publicly available dataset containing a set of users’ chronolog-

ical written text. We conduct experiments with these users’ text data and examine the per-

formance of three different adaptive language models. The key results from this chapter

are:

• An ensemble of a n-gram language model, a unigram cache, prediction by partial match-

ing (PPM), and a recurrent neural network language model provides improved perfor-

mance compared to using only an n-gram language model.

• With noiseless touch input the best personalized model achieved a 8.3% increase in keystrokes

savings compared to a n-gram language model.

• With noisy input the best model achieved a 9.6% increase in keystroke savings compared

to using only a n-gram character language model.

7

1.3 Relationship to Previous Publications

Chapter 3 and Chapter 5 have been previously published and some passages have been

quoted verbatim from the following publications:

(i) Investigating Speech Recognition for Improving Predictive AAC. Jiban Ad-

hikary, Robbie Watling, Crystal Fletcher, Alex Stanage, and Keith Vertanen. In Pro-

ceedings of the Workshop on Speech and Language Processing for Assistive Tech-

nologies (SLPAT 2019).

(ii) Accelerating Text Communication via Abbreviated Sentence Input. Jiban Ad-

hikary, Jamie Berger, and Keith Vertanen. In the Joint Conference of the 59th An-

nual Meeting of the Association for Computational Linguistics and the 11th Inter-

national Joint Conference on Natural Language Processing (ACL-IJCNLP 2021).

8

2
Overview of Text Entry Interfaces and

Language Modeling

Entering text is a ubiquitous task. We use different text entry interfaces in our day-to-day

life. In this chapter, first we briefly talk about different text entry interfaces. Then we will

unravel different mechanisms behind a typical text entry system. This will not only provide

9

Figure 2.1: A smartphone keyboard. There are three prediction slots above the keyboard. The user
has already entered This is. Considering the entered phrase as a context the keyboard has gener‐
ated the most probable three next words and offered them in the suggestion slots.

the reader a general understanding about text entry research but also provide useful insight

while reading the upcoming chapters.

2.1 Text Entry Interfaces

We can broadly categorize the text entry interfaces into two types based on the type of user:

2.1.1 Mainstream Text Entry Interfaces

This type of interfaces include different physical and virtual keyboards that normally peo-

ple use to enter text. For example, desktop keyboards, smartphone keyboards (Figure 2.1),

10

A B C D E

G H I J K

M N O P Q

S T U V W

Y Z ENTER SPACE ,

F

L

R

X

.

HELLO |

Figure 2.2: A row‐column scanning keyboard. If a user wants to select a letter from A–F, the user
will press a switch when the first row is highlighted.

and smartwatch keyboards. Touchscreen keyboards on smartphones or smartwatches nor-

mally provide auto-corrections and word predictions above the keyboard.

2.1.2 Text Entry Interfaces for AAC Users

Due to an AAC user’s motor abilities, they normally do not use a mainstream keyboard

interface. Literate AAC users use a variety of techniques to provide input on a keyboard.

Input can be via a touchscreen [31, 77, 102], eye-tracker [30, 130], physical switches [7, 72,

112], or brain activity [55, 89].

A very common AAC user interface is a row-column scanning keyboard with a switch

[27, 69, 73, 100]. In this type of keyboard, there are a number of rows and each row con-

tains a set of letters. Each row is highlighted cyclically and a user uses a switch to select a

row containing the intended letter. Then the keyboard cyclically highlights every column

in the selected row and the user can further pinpoint the desired letter in that row using the

switch. Figure 2.2 shows a row-column scanning keyboard.

Figure 2.3 shows the Dasher [130] interface for AAC users. In Dasher, a stream of letters

11

Figure 2.3: The Dasher [130] interface. The user has currently written “My ”. The red line shows the
direction a user would point in order to write “My name is ”.

.

are shown to be coming towards the screen. Then the user steers the interface through the

path of the letter sequence they want. In this case, a mouse pointer [129], eye-gaze [115],

and even brain waves [135] can be used. Dasher uses a probabilistic model to predict the

likely character combinations for the next piece of text. If a character or combination of

characters is more probable, then it displays that character or combination of characters

more prominently in the stream.

Figure 2.4 shows an eye-gaze keyboard interface. In this type of keyboard, a user’s eye

movement is tracked using an eye tracker. A user needs to look at a key for a certain amount

of time to click it. Dwell time can vary but can be adjusted [74, 75, 86, 98, 99].

12

Figure 2.4: An eye‐gaze keyboard interface [2].

2.2 Language Modeling

Language modeling is the process of determining the probability of a next word given a

sequence of words. Language modeling is an integral part of speech recognition, machine

translation, natural language generation, parts of speech tagging, information retrieval, and

other applications. Given a word sequence w1...wi, the goal of a language model is to deter-

mine the probability P(w1...wi). Predictive text entry interfaces normally show word pre-

dictions above the keyboard when a user is typing text. These word predictions are made

by conditioning on the text the user has already entered. We use language modeling to offer

the most probable word predictions in an interface.

13

2.2.1 N-gramModel

An n-gram is a sequence of n symbols where a symbol could be a character or a word. A 2-

gram or bigram is a two-word sequence like the quick, quick brown, or brown fox, and a

3-gram or trigram is a three-word sequence like the quick brown or quick brown fox.

Suppose we are given the task to compute the probability of a word w given a word se-

quence or history h. If the history h is the quick brown fox jumps and the word w is

over, then we can estimate the probability from the frequency counts of w and h given a

large corpus:

P(over|the quick brown fox jumps) =
C(the quick brown fox jumps over)
C(the quick brown fox jumps)

(2.1)

where C represents the count of a phrase.

Let us assume that we have a sequence of iwords, wi
1 = w1...wi. We can determine the

probability of the entire sequence by the chain rule of probability:

P(wi
1) = P(w1)P(w2|w1)P(w3|w2

1)...P(wi|wi−1
1) (2.2)

=
i∏

j=1

P(wj|w
j−1
1). (2.3)

The intuition behind n-grammodeling is that instead of computing the probability of a

word given its entire history, we can approximate the history by just the last few words. For

example, for a bigrammodel, we can approximate the probability of a word given all previ-

ous words, P(wi|wi−1
1) by calculating the conditional probability just of the preceding word

14

P(wi|wi−1). For example, in Equation 2.1, we can approximate the probability P(over|the

quick brown fox jumps) as P(over|jumps).

For a trigram language model, we approximate the conditional probability using only the

preceding two words. For 4-gram, we approximate the conditional probability using the

preceding 3 words, and so on. The general equation for the n-gram approximation is:

P(wi|wi−1
1) ≈ P(wi|wi−1

i−n+1). (2.4)

The simplest way to estimate these n-gram probabilities is to use Maximum Likelihood

Estimation. For example, in case of a bigrammodel, given a word wi and its preceding word

wi−1, we have:

P(wi|wi−1) =
C(wi−1wi)∑
w C(wi−1w)

. (2.5)

Since, the sum of all bigrams that start with a given word wi−1 must be equal to the uni-

gram count for that word wi−1, we get:

P(wi|wi−1) =
C(wi−1wi)

C(wi−1)
. (2.6)

Smoothing. Usually we use a text corpus called a training set to count different n-grams

and to generate a list of words or the vocabulary. Sometimes it may happen that we have

some words in the vocabulary which appear in some different text corpus in an unseen

context. For example, they may appear after a word they never appeared after in the train-

ing set. For such cases, to avoid assigning zero probabilities, we shave off a bit probability

15

mass from the frequent events and give it to the infrequent events. This process is called

discounting or smoothing. Some smoothing functions include Laplace smoothing (add-1

smoothing), add-k smoothing, Stupid backoff [12], and Kneser-Ney smoothing [59].

Laplace smoothing or add-one smoothing adds one to each count. Add-k smoothing

adds fractional count k(0.5, 0.05, 0.1) instead of adding 1 to each count. A related term to

smoothing is discounting where we discount (i.e. lower) some non-zero probability mass

and give this mass to zero counts. In backoff, if we cannot estimate the probability using

an n-gram we back off to lower-order n-grams. For example, we can use a trigram language

model if we can estimate from the trigram, otherwise we use the bigram, otherwise the uni-

gram. On the other hand, in interpolation we use the mixture of unigram, bigram, and tri-

gram estimators. Currently, modified Kneser-ney smoothing method [17] has been shown

to be high performance for n-grammodeling.

2.2.2 Cache Models

Cache models store the counts of recently used n-grams. In the most common case of a

cache, we use an n-gram of size one. Since it is an n-gram of size one, it is referred to as un-

igram. The unigram probability distribution together with a background language model

can be used to improve the quality of the next word predictions. A unigram cache could be

of two types. The simplest one maintains a sliding window of words and can be stretched

back to a certain window size or it uses all of user’s previous data. The count of the words

are updated as new user data comes in. The probability of a word wi in a unigram cache can

16

be expressed as:

Pcache(wi|w1...wi−1) =
C(wi)

n
(2.7)

where C represents count and n is the size of the cache.

We can use linear interpolation to merge the probability distribution of the unigram

cache and a background language model (e. g. an n-grammodel). We can express this math-

ematically as follows [9]:

P(wi|w1...wi−1) = (1− λ)Pcache(wi|w1...wi−1) + λPbackground(wi|w1...wi−1) (2.8)

where 0 ≤ λ ≤ 1.

In Equation 2.8, λ represents howmuch weight of each model we should consider and it

is a tunable parameter.

The second type of unigram cache is an exponentially decaying cache [21]. In this type

of cache, the importance of a position decays exponentially with the distance from the cur-

rent word. Mathematically,

PexpCache(wi|w1...wi−1) = β
i−1∑
j=1

IA{wi = wj}e−α(i−j) (2.9)

where I is an indicator function such that IA = 1 if wi matches wj, and 0 otherwise, α

is the decay rate, and β is a normalizing constant. Similar to Equation 2.8, the background

language model and the exponential decaying cache can be combined by linear interpola-

17

tion:

P(wi|w1...wi−1) = (1− λ)PexpCache(wi|w1...wi−1) + λPbackground(wi|w1...wi−1) (2.10)

where 0 ≤ λ ≤ 1.

It has been shown that the cache models can be combined with neural network language

models as well. Grave et al. [42] stored past hidden activations as memory and accessed

them through a dot product with the current hidden activation. Merity et al. [78] intro-

duced an architecture called pointer sentinel mixture architecture for neural sequence mod-

els which had the ability to either reproduce a word from the recent context or produce a

word from a standard softmax classifier.

2.2.3 Prediction by Partial Matching (PPM)

Prediction by Partial Matching or PPM is a method to predict the next symbol given n pre-

vious symbols. Whereas an n-gram language model looks at previous n-1 symbols, a PPM

with order n looks at n previous symbols. It is actually a text compression algorithm and

it was first described by Cleary andWitten [22]. The main advantage of PPM compared

to an n-gram is that it is easy to adapt on the fly. PPM uses a statistical context model to

keep track of the symbols it has seen. It considers a context consisting of symbols of vary-

ing lengths. As each symbol is encoded, it generates a probability distribution over the next

probable symbols. For example, a context occurring in a text may be ever. PPM algorithm

counts the characters which appear after the context ever. If the context reappears in the

text, then PPM uses the counts to predict the next probable character. In cases where PPM

18

can not estimate the probability distribution from the current context, it can back-off or

escape to a shorter context. For example, if a probability distribution cannot be estimated

from the context ever, PPM tries to estimate using eve, then ev, and so on.

2.2.4 Recurrent Neural Network Language Model (RNNLM)

N-grammodels are simple yet effective language models to use in any kind of text entry

system. They are fast, require no more than one iteration over training corpus, can build

models on billions of words, and can use larger n with more data. But there are a couple of

issues with n-gram.

First, n-gram language models cannot model long range dependencies. One would argue

that a large n could be used to resolve this issue. But with a large n it would require a lot of

space. Also, most of the larger n-grams being too infrequent would end up having prob-

abilities close to zero. In real life, adjacent sentences tend to be on same topic. Even if the

value of n is large, n-gram language models fail to use contextual clues from the previous

words or across sentences. For example, when referring to the same entity across sentences,

an n-grammodel may not correctly predict the pronoun of the entity.

Second, n-grammodels suffer from sparsity issues. N-grams cannot model words or in-

stances it has not seen in the training examples. For example, if a n-grammodel is asked to

find the probability of a word jumps after the context the quick gray fox and if the con-

text was not present in the training data, it will return a probability of zero.

PPM also suffers from both the issues. To overcome the shortcomings of an n-gram lan-

guage model or PPM, a recurrent neural network language model (RNNLM) can be used.

Bengio et al. [10] first proposed the idea of using artificial neural network for statistical lan-

19

T

xt-2

ht-2

T

xt-1

ht-1

T

xt

ht

T

xt+1

ht+1

0.15
0.12

0.18

0.11
0.12

0.01

0.70
0.36

0.40

0.10
0.28

0.07

Figure 2.5: Standard recurrent neural network architecture. xt denotes a vector representation of a
character or a word at time step t. ht denotes hidden state at time step t. T denotes an activation
function.

guage modeling. They used a feed-forward neural network with fixed length context. Later

Schwenk et al. [104] showed that neural network based models provide better performance

than other existing systems. However, with Bengio’s approach the context size was fixed

and needed to be specified before training. This meant that the neural network could see

a fixed number of words (5-10) from the past when predicting the next word. Mikolov et

al. [83] proposed a recurrent neural network language model (RNNLM) which did not

limit the context length. In this type of network, information can cycle for an arbitrarily

long period of time.

A standard recurrent neural network architecture is shown in Figure 2.5. A recurrent

neural network can be expressed by the following mathematical equation:

ht = φ(Wxt + Uht−1) (2.11)

where,

20

ht : hidden states at timestamp t

ht−1 : hidden states at timestamp t-1

W : weight matrix for input to hidden layer

U : weight matrix for hidden layer

φ : activation function

xt : input vector at timestamp t.

In Equation 2.11 and Figure 2.5, xt is an input vector at time t. When we deal with a re-

current neural network language model, we do not provide raw text as input to the RNN.

Instead we convert the words or characters to a vector format. This representation is called

a word/character embedding. Word embeddings allow words with similar meaning to have

a similar representation. Word or character embeddings can be learned by the network like

in Bengio et al. [10], but are often initialized using other algorithms like Word2Vec [80] or

GloVe [92].

Recurrent neural networks are also not perfect. They suffer frommajor drawbacks such

as vanishing or exploding gradients [47]. During training a recurrent neural network gener-

ally backpropagates to the previous hidden states and updates the model weights using gra-

dient descent. As the context length increases the gradients become smaller and smaller if

the initial gradient is less than 1.0. Consequently, the weights down the furthest context do

not get updated much. This is called the vanishing gradient problem. On the other hand, if

the initial gradient is larger than 1.0, then the gradients become larger and larger and result

in an unstable network. This is called the exploding gradient problem. To solve these prob-

lems many variations of recurrent neural network has been proposed so far. These include

using different activation functions (e. g. ReLU [3]), batch normalization [51], bidirec-

21

xt-2

ht-2

x +

x x

T

TS S S

xt-1

ht-1

x +

x x

T

TS S S

xt

ht

x +

x x

T

TS S S

xt+1

ht+1

x +

x x

T

TS S S

x + S TPointwise multiplication Pointwise addition Sigmoid activation Tangent activation

Figure 2.6: Recurrent neural network with LSTM units. LSTM units use different type of gates such
as input gate, forget gate, cell state, and output gate and can keep track of the context in the hidden
states through time.

tional RNNs [103], long short termmemory (LSTM) network [48], and gated recurrent

units (GRU) networks [20].

2.2.5 BERT

Even with LSTM or GRU units, the output of a recurrent neural network at a certain

timestamp depends on the output of its previous states. A recurrent neural network works

with sequential data. As a result, recurrent neural networks can only be trained from left-

to-right or right-to-left and this slows down training. To allow parallel computation and

to reduce training time, transformer models with a self-attention mechanism have been in-

troduced [116]. Initially the idea of attention [6] and transformers were introduced in the

context of machine translation. A machine translation architecture has two main compo-

nents. One part of the system takes a sentence in a particular language as input (encoder)

and the second part provides the translation of that sentence in another language as output

(decoder). The attention mechanismmaps different words in the output sentence to differ-

22

ent words in the input sentence and assigns higher weights to the words that are more im-

portant and relevant. On the other hand, self-attention quantifies the relative importance

of each word compared to the other words in the input sentence.

Bidirectional Encoder Representations from Transformers or BERT [29] is a language

model that introduced the idea of training a transformer bidirectionally. Whereas previous

efforts looked at a text sequence from left-to-right or right-to-left [24, 49, 94], BERT first

showed that language models can be trained from both directions at once and it can achieve

a deeper sense of the language context. BERT introduced a technique called masked lan-

guage modeling during training. The idea behind masked language modeling is hiding

(masking) a word of a sentence and then telling the model to guess what word has been

masked based on the surrounding words of the masked word.

2.3 How Text Entry Interfaces Use Language Models

So far we have discovered what is a language model and what are the different types of lan-

guage models. Now we will discuss how different language models are integrated in a text

entry interface and how the word predictions above a keyboard are generated.

The simplest approach to providing word predictions above a keyboard is to use the key

labels from a user’s input. Once the prefix of a word is inserted by a user, we can generate

all the words starting with that prefix from a given dictionary of words. Then we can ask a

character language model or a word language model to rank that list of words and suggest

the top few results as predictions to the user.

The above approach works if the user does not make any mistakes while entering a pre-

fix. But text entry interfaces are of different shapes and sizes and users make typing mis-

23

b 0.11
c 0.12
d 0.15

z 0.05

aa 0.02

ac 0.11
ad 0.15

az 0.01

da 0.03
db 0.01
dc 0.02
dd 0.01

dz 0.00

aba 0.01
abb 0.00
abc 0.01
abd 0.15

abz 0.05

ada 0.14
adb 0.02
adc 0.01
add 0.20

adz 0.00

[]

a 0.30

a

d

ab

ad

abd

add

ab 0.18

…...

…...

Step 1 Step 2 Step 3

a, d ab, ad abd, addCandidate tokens

Figure 2.7: A decoder can generate a list of tokens using a beam search. In this figure a beam width
of 2 is considered. For each token, the probability of the token according to a language model is
shown. In each step of the beam search candidate tokens are pruned using a probability threshold
and the beam width.

takes. For example, triggering a wrong key is very common in small form factor interfaces

like smartwatches and smartphones. On such devices, we often press, touch, or tap a key

that is not our intended key but might be adjacent to our target key. Therefore, a noise-

tolerant system to handle such typing mistakes in the form of auto-correction is desirable.

We used the VelociTap decoder [126] to handle noisy input and for auto-correction. In-

stead of taking the key labels as input, VelociTap takes the noisy touch locations as input

and searches (Figure 2.7) for the most likely word based on a probabilistic keyboard model,

a character language model, and a word language model. We assume that the touch loca-

tions follow a two-dimensional Gaussian distribution centered at each key. Each key is as-

sumed to have the same distribution. The distribution’s variance in the horizontal and ver-

24

tical axes are independently controlled by two decoder parameters. For each tap, VelociTap

calculates the likelihood of each key under the keyboard model. This likelihood is added

to the probabilities from the decoder’s character and word language models. The contri-

bution of each language model is controlled by two additional parameters. The decoder

also has two penalties allowing taps to be deleted, and characters to be inserted without a

tap. For additional language models such as a unigram cache or a recurrent neural network

language model we can introduce further tunable parameters to control howmuch each

contributes to the total probabilities. Avid readers can see Vertanen [119] for a detailed

overview of the decoding process.

2.4 Evaluation

Evaluation of a language model can be done extrinsically or intrinsically. In extrinsic evalu-

ation, the language model is incorporated into an application and we measure how well the

application works. For example, suppose we have two language models computed with two

different approaches. We can incorporate these two language models in an end-system such

as an AAC device and compare the language models by investigating how fast someone can

communicate using each of the models.

Since performing an extrinsic evaluation in an end-system can be expensive, language

models are often evaluated intrinsically. For an intrinsic evaluation of a language model we

need a test set. Normally, the probabilities of a language model come from the corpus it is

trained on. This is called a training corpus. We can measure the quality of a language model

on some unseen test corpus. If we are given a corpus of text and we want to compare two

different language models, we first divide the corpus into training and test sets. We then

25

train the parameters of both language models on the training set. After that, we compare

the language models on the test set by observing how well the trained models model the test

set.

2.4.1 Perplexity

When a model is predicting a character or a word for a given context, perplexity defines

the degree of confusion of the model. Perplexity is one of the most important metrics in

language modeling. When evaluating language models, instead of using raw probabilities

we use perplexity. Perplexity measures the average number of choices a model has when

predicting the next word. For example, perplexity of a phone number where all digits are

equally probable is 10.

Mathematically, the perplexity of a language model on a test set is the inverse probability

of the test set, normalized by the number of words:

PP(W) = P(w1w2...wn)
− 1

N (2.12)

= N
√

1
P(w1w2...wn)

(2.13)

= N

√√√√ N∏
i=1

1
P(wi|w1...wi−1)

(using the chain rule). (2.14)

The higher the probability of a model on a test set, the lower the perplexity. In language

modeling, our goal is to maximize the probability of the test set, in other words, we want to

minimize the perplexity.

26

Figure 2.8: Text input progression with suggestion slots. A green bounding rectangle around a key
or a slot represents that the user has tapped this key or slot. In the second image, a list of most
probable words was offered based on the previous word this. For the phrase this is anticipated,
there is a total of 10 taps.

2.4.2 Keystroke Savings

Another metric for evaluating a language model is keystroke savings. Perplexity does a good

job indicating whether a language model is best suited to test data. A good language model

would show a reduction in the perplexity on the test data and a bad language model will

show an increase on the test data. However, in practice, perplexity gains may not necessar-

ily represent if a language model will perform better in a text entry interface. In this case,

keystroke savings metric is closer to measuring useful changes to a word prediction based

text entry interface.

Keystroke savings measures the percentage reduction in keys pressed compared to letter-

by-letter text entry. It can be expressed by the following formula:

KS =
keysnormal − keyswith prediction

keysnormal
× 100%. (2.15)

Figure 2.8 shows an example where it took 10 taps to enter the phrase this is anticipated.

There are a total of 19 characters in the phrase including the spaces. We can use the equa-

27

Time (s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t h e _ q u i c k _ b r o w n _ f o x

15s

Figure 2.9: Input progress of a phrase with time. ‘_’ represents a space.

tion 2.15 to calculate the keystroke savings. In this case, the keystroke savings is 47.4%.

2.4.3 Entry Rate

In text entry research, an interface is normally evaluated by examining how quickly and

accurately a user can enter text using that interface. The metric that is used to measure

how fast a user can type is entry rate. Entry rate is typically expressed by words-per-minute

(WPM). WPM denotes the number of words a user can type in a minute using a text entry

application. Here, a word is defined as consisting of five characters including spaces.

As for example, if a user takes 15 seconds to enter the phrase the quick brown fox (Figure

2.9) containing 19 characters, then the calculation of WPMwill be:

WPM =
19− 1

15 seconds
× 60 seconds

1minute
× 1 word

5 characters
= 14.4. (2.16)

In the above equation, we subtract one from the total number of characters since timing

starts after the first character is entered and ends after the final character is entered.

28

2.4.4 Error Rates

The metric that is used to measure how accurate a user can enter text is error rate. Usually

the user performs the text entry task by copying a stimuli phrase. An error rate is calculated

by comparing the stimuli and the text the user enters. We will use three types of error rates:

(i) Character Error Rate (CER):Character error rate or CER is the number of inser-

tions, substitutions, and deletions required to transform user text into the reference text.

More formally, CER is the ratio of total edit distance to convert user text to reference text

and the number of characters in the original text. We typically multiply CER by 100 to

show it as a percentage. But it is not actually a percentage, it is a rate that can be over 100%

in the case of really broken input with many inserted characters in the user text.

CER =
EditDistance (user text, reference text)
number of characters in the reference text

× 100% (2.17)

Reference: t h e q u i c k b r o w n f o x

User text: t h e w u i c k b r w n f a u x

Figure 2.10: A reference text versus a user text aligned to view character mismatch.

For example, let’s assume, for the reference text the quick brown fox, a user typed the

wuick brwn faux. In this case, if we align the two texts like in Figure 2.10, we can see that

it requires two substitutions (in wuick, w→q and in faux, a→o), one insertion (o in brwn),

and one deletion (u from faux) making a total of 4 edits to change the user text to the origi-

nal text. The number of characters in the reference phrase including space between words is

19. Therefore, in this case the CER is (4/19)× 100.0 or 21.05%.

(ii) Word Error Rate (WER):Word error rate or WER is similar to CER but instead

29

of characters we calculate the number of incorrect words in the user text. For example, if

we compare the reference text and user text discussed in CER, out of four words in the user

text only one word matches the reference phrase. So, the WER in this case is (3/4)× 100.0

or 75.0%.

(iii) Sentence Error Rate (SER): Sentence error rate or SER is the percentage of sen-

tences that are not completely correct.

In the next few chapters, we will use the evaluation metrics described above to determine

how good a language model is and how users perform on a text entry task when the lan-

guage models are used in a system. We will use perplexity as a primary metric to determine

the quality of a language model. We will use keystroke savings metric to further validate if

different language models can reduce user keystrokes when they are used in an end-system

or in a simulated end-system. Lastly, we will use the entry rate and error metrics to evaluate

user performance when a user is given the task to copy a phrase using a text entry interface

with optimized language models.

30

3
Investigating Speech Recognition for

Improving Predictive AAC

3.1 Introduction

Predictive AAC devices normally use a language model to try and make suggestions of

likely upcoming text. These predictions are usually made based solely on the text entered

31

by the AAC user. They typically ignore the two-way nature of conversation which can of-

fer many contextual clues.

In this chapter, first we investigate how to record and recognize the speech of a partner

communicating with the AAC user. Then we investigate if speech recognition on partner

speech improves two-sided conversational language modeling.

3.2 Related Work

Predictive AAC devices typically use an n-gram language model. The performance of this

model largely depends on the training data being closely matched to a user’s text. But for

practical, ethical, and privacy issues, there is a scarcity of text written by AAC users. Re-

searchers have resorted to training LMs on data from news articles [114] or phone tran-

scripts [128]. Another option is the large amounts of text that can be mined from the in-

ternet, e.g. tweets, blog posts, or Wikipedia articles. While such web data may be informal

or have other artifacts such as abbreviations, researchers have used filtering methods such

as cross entropy difference selection [85] to select training data for AAC language models

[123].

Recently, recurrent neural network language models (RNNLMs) have achieved state-

of-the-art performance over traditional n-gram language models. RNNLMs have been

shown to better model long range dependencies when combined with techniques such as

long short-termmemory [48] or gated units [20]. Further gains have also been achieved by

interpolating n-grammodels [82] and other techniques [81, 84].

In addition to using textual context, previous AACwork has also investigated using face

detection [52], vision [53], and location [28] as context for AAC predictions. But lim-

32

ited work has been done to predict AAC user’s response based on the speech of the AAC

user’s communication partner. Wisenburn [136, 137] created a program called Converser

and used speech recognition to identify the speaking partner’s words. This input was then

parsed by a noun phrase identification system. Identified noun phrases, along with relevant

static messages, were displayed to the user. This provided users with a faster communica-

tion rate compared to a system that did not use partner speech. In our work, we also per-

form speech recognition on the partner’s speech. However, we will use recognition results

as context to our language models in hopes of better predicting an AAC user’s upcoming

text.

3.3 Speech Data Collection

Our first step was to obtain text and audio data reasonably representative of everyday person-

to-person conversations. In this section, we detail how we collected this data. Further, we

designed our collection to answer the practical question of how and where a microphone

might be located for recording a partner’s speech.

As a starting point for our spoken dialogue collection, we used the text dialogues col-

lected by Vertanen [117]. These dialogues were invented by workers on AmazonMechani-

cal Turk. The dialogue started with a question invented by one of the workers. Subsequent

workers then extended the dialogue by another turn until a total of six turns were com-

pleted. Table 3.1 shows an example dialogue. The original collection had 1,419 dialogues.

We removed 265 dialogues we deemed potentially offensive, resulting in a set of 1,154 dia-

logues.

33

A: Did you call the theater?
B: So sorry, I forgot to call the theater.
A: You can just go online.
B: That’s true, I’ll do that now.
A: What movie is it that you want to see?
B: The lord of the rings.

Table 3.1: A dialogue created by Amazon Turk workers.

Figure 3.1: The application used to record dialogues.

3.3.1 Audio Data Collection

The dialogue data from [117] consisted only of text. We wanted to investigate whether a

partner’s speech could improve an AAC device’s predictions. We designed a desktop appli-

cation to record audio data of participants speaking turns in the text dialogues. The appli-

cation highlighted the current turn we wanted the participant to speak. Any previous turns

of the dialogue were also shown as context. The application recorded from three micro-

phones simultaneously:

34

• Headset—A Logitech H390 USB noise cancelling headset microphone.

• Laptop—The built-in microphone of a 13” 2015MacBook Pro laptop.

• Conference—AMXLAC404 USB conference microphone. This microphone

was positioned behind the laptop at a distance of approximately 0.9m from the par-

ticipant.

The application allowed the participant to re-record any utterances in which they mis-

spoke. We analyzed just the last recording for each dialogue turn. Audio was recorded at

44.1 kHz. We recruited 14 participants via convenience sampling. Four self-reported as

male, ten as female. The average age was 36. Participant 5 reported having a foreign accent.

Each participant took part in an approximately half-hour session and was paid $10. Partic-

ipants sat at a desk with a laptop in quiet office. They were allowed to adjust their chair so

they could comfortably operate the laptop.

Participants first recorded three practice dialogues. We did not analyze the practice di-

alogues. Each participant then completed half the turns in 28 additional dialogues. The

subsequent participant completed the other half of the turns of the same 28 dialogues. In

total, we collected 1,176 utterances constituting both sides of 196 dialogues. We have made

our filtered text dialogues, audio recordings, recognition results, and Java audio collection

application available to other researchers*.

3.3.2 Speech Recognition Experiments

We performed speech recognition using two commercially available speech recognizers,

Google Cloud Speech-to-Text and IBMWatson Speech-to-Text. We performed speech

*https://digitalcommons.mtu.edu/data-files/1

35

https://digitalcommons.mtu.edu/data-files/1

recognition on audio from each of the three different microphones. We computed the

Word Error Rate (WER) of each recognition result against its reference transcript.

The reference transcripts included various numeric characters representing times or

amounts. We found the recognition results on such turns were variable. Sometimes the

recognizer returned numeric transcriptions and sometimes numbers were spelled out as

words. Since our language models were not trained on text with numbers or use a number

pseudo word, we dropped all dialogues if any of its reference turns had a number in it. This

reduced the number of dialogues from 196 to 160.

As shown in Table 3.2, the meanWER on the three different microphones using the

Google recognizer was Laptop 7.3%, Headset 7.0%, and Conference 8.9%. IBM’s

recognizer had higher error rates with Laptop at 10.5%, Headset at 10.7%, and Confer-

ence at 16.0%.

Figure 3.2 shows theWER for each participant using the Google speech recognizer

and audio from the Headset microphone. 9 of the 14 participants had a lower mean

WER of 5.5%. This was driven by the fact that 84.0% of their utterance turns were rec-

ognized with no errors.

We recorded our audio in a quiet office. We also wanted to explore how our methods

might work in noisier locations. To do this, we injected a recording of street noise into our

clean audio data. We used the SoX Sound eXchange utility to add in the street noise at

three different volume levels: 0.1, 0.2, and 0.3. Figure 3.3 shows the mean word error rates

on recordings with no noise and at the three noise levels. Even at noise volume level 0.3,

both recognizers’ mean word error rates using the Headset and Laptop microphones

stayed below 40%. However, the mean word error rates using the Conference micro-

36

Microphone
Laptop Headset Conf.

Google 7.3±1.0 7.0±1.0 8.9±1.2
Watson 10.5± 1.2 10.7±1.2 16.0±1.6

Table 3.2: Word Error Rate (WER %) using different microphones and speech recognizers. Results
are formatted as mean± 95% bootstrap confidence intervals.

Participants
0

20

40

60

80

100

W
or

d
E

rr
or

R
at

e
(W

E
R

%
)

Figure 3.2: Participants’ per utterance WER using the Google recognizer and audio from a headset
microphone.

phone started deteriorating more sharply with increasing noise.

3.4 Language Modeling Experiments

We now investigate how to use language models to better predict turns in our dialogue

collection. Recall we recorded both sides of 196 of the dialogues from our set of 1,154 di-

alogues. After dropping dialogues with numbers, we arrived at a test set of 160 dialogues

with audio data. We created text-only training and development sets from the remaining

958 dialogues. From these dialogues, we dropped 128 that contained numbers. We ran-

domly selected 160 from the remaining dialogues as a development set and 670 as a training

37

0.0 0.1 0.2 0.3
Volume level of noise

0

20

40

60

80

M
ea

n
W

or
d

E
rr

or
R

at
e

(W
E

R
%

) google-headset
google-laptop
google-conference
watson-headset
watson-laptop
watson-conference

Figure 3.3: WER on audio dialogue turns without noise and with three different injected noise lev‐
els.

set.

Our language modeling experiments used a vocabulary of 35K words. The vocabulary

consisted of the most frequent known English words occurring in 50Mwords of sentences

parsed from Twitter. Any words not in this vocabulary were mapped to an unknown word

token. We converted text to lowercase and removed punctuation aside from apostrophe.

Throughout, we report the per-word perplexity of our test set (160 dialogues, 960 turns,

7.1 K words). We excluded the sentence end pseudo-word from our calculations.

3.4.1 N-gram Language Models

We took each turn in the training set as an independent training example (4,020 turns,

30K words). We trained a 4-gram interpolated modified Kneser-Ney model using SRILM

[108, 109]. As shown in Table 3.3, the perplexity on the test set was 211.8. For comparison,

38

Training data Words Perplexity

Twitter, small amount of data 30K 417.3
Crowd dialogues 30K 211.8
Twitter, large amount of data 50M 96.0
+ CE diff. 25% dialogues 50M 91.0
+ CE diff. 50% dialogues 50M 86.8
+ CE diff. 75% dialogues 50M 83.5
+ CE diff. 100% dialogues 50M 83.5
+ Optimized CE threshold 50M 77.4

Table 3.3: N‐gram perplexity varying training data.

we trained a 4-grammodel on 30K words of random Twitter data collected via Twitter’s

streaming API between 2009–2015. The Twitter model had a much higher perplexity of

417.3.

An approach to filtering an out-of-domain training data is cross-entropy difference se-

lection [85]. This approach calculates the cross-entropy of individual sentences under an

in-domain and an out-of-domain model trained on similar amounts of data. We trained

our in-domain model on between 25–100% of the text in our Turk dialogue training set.

We selected 50Mwords of Twitter data below a certain cross-entropy difference thresh-

old. We used an initial threshold of -0.3. The more negative the threshold, the more sen-

tences had to resemble in-domain text in order to be selected. As shown in Table 3.3, using

more in-domain data reduced perplexity though gains eventually flattened. Finally, we used

all the in-domain data to search for the optimal cross-entropy difference threshold on the

development set. The optimal threshold of -0.06 further lowered perplexity to 77.

39

Model PPL PPL
Sentence Dialogue

Twitter RNNLM 179.0 129.3
+ GRUs 167.8 122.8
+ NCE 172.2 111.9
+ maximum entropy 123.7 84.1
+ Twitter 4-gram LM 75.2 71.5
+ unigram cache 75.2 68.5

Table 3.4: Perplexities with added features. We reset the RNNLM between each sentence or after
each dialogue.

3.4.2 RNN Language Models

Next, we investigated training Recurrent Neural Network Language Models (RNNLMs)

on the cross-entropy difference selected Twitter data. We trained our models using the

Faster RNNLM toolkit†. For each model type, we trained 10 RNNLMs with different

random initialization seeds. We report the perplexity on the test set of the model that had

the lowest perplexity on the development set. Unless otherwise noted, we used the default

hyperparameters of Faster RNNLM.

During evaluation we reinitialized the RNNLM after every sentence or after every six-

turn dialogue. This allowed us to observe howmuch the model was adapting to a particular

dialogue while avoiding allowing the model to adapt to the general style of our Turk dia-

logues.

As shown in Table 3.4, a model trained with 250 sigmoid units had a perplexity of 129.3

on each dialogue. Switching to 250 Gated Recurrent Units (GRUs) [20] reduced perplex-

ity to 122.8. Switching to Noise Contrastive Estimation (NCE) [18] further reduced per-
†https://github.com/yandex/faster-rnnlm

40

https://github.com/yandex/faster-rnnlm

plexity to 111.9. Training a maximum entropy language model of size 1000 and order 4 in

the RNN reduced perplexity substantially to 84.1.

We interpolated our best RNNLMwith our best previous n-grammodel. We optimized

the mixture weights with respect to our development set. This further reduced perplexity

to 71.5. We also investigated a unigram cache [41]. Similar to the RNNLM, we reset the

cache after each sentence or after each dialogue. The cache model provided a small reduc-

tion in perplexity to 68.5. The mixture weights were: n-gram 0.55, RNNLM 0.42, and

unigram cache 0.04.

Comparing the result columns in Table 3.4, we see consistently higher perplexities when

the RNNLMwas evaluated on sentences instead of on entire dialogues. In particular, the

RNNLMwas substantially worse with a perplexity of 123.7 on sentences versus 84.1 on

dialogues. This demonstrates the ability of the RNNLM to adapt to aspects of the text

over a longer time horizon.

3.4.3 Two-sided Dialogue Language Models

We now turn to training language models on two-sided dialogues. Since our Amazon Turk

dialogue collection is relatively small, we instead used dialogues frommovies [25]. We cre-

ated a training set of 83K dialogues consisting of 305K turns and 3.2Mwords. We intro-

duced a pseudo-word to denote speaker changes. We excluded this speaker change word

from our perplexity calculations. We treated the set of turns making up a dialogue as a sin-

gle “sentence” during training and testing. We evaluated models on each dialogue in our

Turk test set (the same set used previously). In the case of RNNLMs, we reset the model

after each dialogue.

41

Model PPL

Movie dialogue 7-gram 138.5
Movie dialogue RNNLM 129.1
Turk dialogue RNNLM 185.5
Mixture, dialogue models 104.3
Mixture, Twitter + dialogue + cache 66.3

Table 3.5: Perplexity of models trained on two‐sided dialogues and mixtures of dialogue and twitter
models.

We first tested 4-gram through 8-gram n-grammodels. The 4-gram had the highest per-

plexity of 139.2 The 7-grammodel had the best perplexity of 138.5 (Table 3.5). Next we

trained a RNNLM on the movie dialogues using 300 GRU units, NCE, and with a maxi-

mum entropy model of size 1000, order 4. The RNNLM had a lower perplexity of 129.1.

This again highlights the ability of the RNNLM to better model long-range dependencies

and/or topics compared to the n-grammodel.

We also trained an RNNLM on just the Turk dialogues. We used 100 GRU units, NCE,

and a maximum entropy model with 100 units and an order of 4. This model had a per-

plexity of 185.5. We think this model’s worse performance reflects the substantially smaller

amount of training data. By interpolating these three dialogue models, we obtained an even

lower perplexity of 104.3. The mixture weights were: Movie 7-gram 0.24, Movie RNNLM

0.40, and Turk RNNLM 0.37.

Our two-sided models were trained on modest amounts of data. To see if they still of-

fered gains in combination with models trained on substantially more Twitter data, we in-

terpolated all our models. The mixture weights were: Twitter n-gram 0.43, Twitter RNNLM

0.32, movie dialogue n-gram 0.05, movie dialogue RNNLM 0.10, Turk dialogue RNNLM

0.06, and unigram cache 0.04. The mixture model’s perplexity was 66.3, a modest gain

42

compared to the 68.5 obtained using a mixture of the Twitter models and unigram cache.

It does however represent a more substantial gain compared to the 77.4 of the best n-gram

only model. This shows that having access to both sides of a dialogue combined with the

adaptive nature of RNNLMs may offer improved predictive AAC.

3.4.4 Impact of Speech Recognition Errors

In real-time person-to-person conversations, we cannot expect to have a perfect transcript

of the other side of the conversation. We now investigate the impact of speech recognition

errors on the performance of our language models. We did this by measuring the perplexity

on two copies of the test set. In the first copy, we replaced the transcript of the even num-

ber dialogue turns with the speech recognition result of one of our participants speaking

that turn. In the second copy, we replaced the odd number turns. We report the perplexity

calculated from the odd turns from the first copy and the even turns from the second copy.

The entire six turns were provided to the language models for both copies to allow the

model to condition on prior turns (including any speech errors). We reset the RNNLMs

and unigram cache model between each dialogue. We used the previous best ensemble

of six models which had a perplexity on the test dialogues of 66.3. We tested injecting the

speech recognition results from the three microphones, two recognition engines, and four

noise levels (none, 0.1, 0.2, and 0.3).

As shown in Figure 3.4, the perplexity of our ensemble of models only increased slightly

when we replaced the reference transcripts with speech recognition results based on noise-

free audio. For example, the far-field conference microphone had aWER of 8.9%. How-

ever, the errors introduced by recognition only slightly increased the perplexity of the di-

43

0.0 0.1 0.2 0.3
Volume level of noise

66

67

68

69

70

Pe
rp

le
xi

ti
es

google-headset
google-laptop
google-conference
watson-headset
watson-laptop
watson-conference
reference transcripts

Figure 3.4: Perplexities using speech recognition on partner turns rather than reference transcripts.
Results for no added noise, and for three levels of injected noise.

alogues from 66.3 to 66.6. Similar to WER in Figure 3.3, as the level of injected noise in-

creased, perplexities also increased.

3.5 Discussion and Limitations

In this work, we conducted an initial investigation into the feasibility of performing speech

recognition on an AAC user’s speaking partner. We found that whether audio was cap-

tured from a wired headset or from a far-field microphone, we could recognize conversational-

style utterances with error rates between 7–16%. We found Google’s speech engine pro-

vided more accurate recognition than the IBMWatson recognizer. However, IBM’s engine

offers other benefits such as exposing probabilistic information about recognition results

(e.g. a word confusion network). Such information might be leveraged to help avoid condi-

tioning a predictive AAC interface on erroneous regions of a partner’s speech recognition

44

result.

Our participants were given the verbatim text for each of their dialogue turns. As such,

we can expect they spoke more fluently than one could expect in a spontaneous conver-

sation. Further, we only collected audio in a quiet environment. While our results seem

robust to artificially added noise, it remains to be seen if this holds for real-world noisy en-

vironments. As such, our error rates probably represent a lower-bound of what could be

expected. Nonetheless, it is reassuring that our language models predict the non-speaking

side’s text with only minimal perplexity loses despite relying on text obtained via speech

recognition.

Thus far we have focused on ascertaining whether there is a potential advantage to con-

ditioning on recognition of the speaking side. Whether the perplexity gains we showed will

result in actual practical improvements in the auspices of a predictive AAC interface remain

to be seen. Further work is needed to understand whether these language model gains will

result in, for example, better word predictions that actually save a user keystrokes. Even

more work is needed to validate if end-user performance improves.

The use of speech recognition by an AAC device also has obvious privacy implications.

This may require the AAC device or user to allow partners to opt-in to having their voice

recognized. Further, our current work used cloud-based speech recognition. Users may

prefer to have their speech recognized locally on device. Local recognition may also be nec-

essary to avoid network latency or to allow use without network connectivity.

Our goal here was to demonstrate some of the building blocks necessary for modeling

everyday conversational-style text. While we made some effort to optimize our models

(e.g. tuning mixture weights on development data), further improvements are certainly

45

possible. For example, we did not conduct an extensive search for the best hyperparameters

used during RNNLM training. Further, we need to investigate whether our methods and

results scale to substantially more training data.

Our results show the benefits of language models based on recurrent neural networks.

In particular, we found even when trained on non-dialogue data, RNNLMs adapted to the

content of our short dialogues, providing good gains compared to an n-grammodel. Fur-

ther, we showed how a small in-domain corpus can be used to optimize models for every-

day conversations. Despite our relatively small amount of two-sided dialogues data (3.2M

words of movie dialogues), we obtained improvements compared to using models trained

only on much more non-dialogue data (50Mwords of Twitter). In the end, we found an

ensemble of n-gram and RNNLMs trained on sentence and dialogues combined with a

unigram cache model provided the best performance.

3.6 Conclusions

AAC users often face challenges in taking part in everyday conversations due to their typi-

cally slow text entry rates. Predictions can provide an opportunity to accelerate their com-

munication rate, but it is crucial these predictions be as accurate as possible. Leveraging

real-world contextual clues offers one route to improving these predictions. In this work,

we found speech can be accurately recognized with a variety of microphone configurations

that might be deployed on an AAC device. Further, we found the error rates of current

state-of-the-art recognizers allowed predictions nearly as good as having the verbatim text

of the partner’s turn. We think this work provides promising results showing a partner’s

speech can provide context to improve an AAC device’s predictions. In the next chapter we

46

will see if it is also true for a real-world like use scenario.

47

4
Dwell-based Text Entry and Partner Speech

Context

4.1 Introduction

One important design decision in a text interface is howmany prediction slots we should

provide in the interface. The intuitive decision might be that the number of prediction

48

slots in an interface should be as many as the interface can fit. But previous work [26, 37,

113, 121, 128] has shown increasing number of prediction slots does not necessarily im-

prove performance. With large number of slots, there is an associated cognitive cost while

looking for the right suggestion text. Also with increasing number of slots we have smaller

slot targets which make selecting a slot difficult.

In this chapter, we examine howmany slots we should use in a desktop dwell keyboard.

In the previous chapter, we showed language models can achieve perplexity gains with part-

ner speech as context. But perplexity gain is not always a good indicator of the performance

during actual interactions on a device. For example, previous work [16] in the speech recog-

nition domain has shown that the performance with perplexity measure did not correlate

the performance with word error rate. In this chapter, we will re-examine if using partner

speech as context improves performance but instead of measuring performance improve-

ment using perplexity, we will use keystroke savings.

4.2 Related Work

In this chapter, we present two experiments. Our first experiment is a crowdsourced dwell

keyboard experiment with multiple slot choices. In this experiment we used a desktop key-

board application running in a web browser. We had users dwell over a key for 1000ms

using the mouse pointer in order to click it. Although not exactly similar, our intention

was to have a keyboard that works like a dwell keyboard with eye-gaze input. Our choice

of 1000ms dwell-time was based on previous work [75]. Past work has examined different

choices of dwell time. Some work has used a static dwell time while some other approached

with a dynamic dwell time. Majaranta et al. [75] has shown 1000ms is a long enough dwell

49

time to prevent accidental activation. Mott et al. [86] investigated cascading dwell times

(dynamic dwell times based on next likely key and its location) for eye gaze typing on aMi-

crosoft Surface Pro 3. They conducted a longitudinal study with people without physical

disabilities and found cascading dwell times significantly improved performance than a

static dwell time. In their study participants started with a 600ms dwell time and maxi-

mum dwell time was 1000ms. The average cascading dwell time at the end of first session

was 395ms and at the end of the eight session was 334ms. Other work [74, 98, 99] also

investigated adjustable dwell times with longitudinal studies with able-bodied users. The

dwell time found after the last session varied between 200ms to 300ms. We did not choose

a adjustable dwell time because we ran a single session with each user and we were more in-

terested in finding the appropriate number of slots for a text entry interface than the dwell

time.

4.3 Experiment 1: Crowdsourced Dwell Keyboard Study

To examine howmany slots are appropriate for a text entry interface designed for AAC

users we conducted a user study using a desktop web application.

4.3.1 Design

We designed a keyboard application and ran the application in a browser. The keyboard

interface was similar to a touchscreen mobile keyboard but we could control the number

of suggestion slots above the keyboard. The keyboard contained all the characters from a

to z, a spacebar, a backspace button, and a done button to move to the next phrase. There

were 2–9 suggestion slots above the keyboard and a user saw only the same number of slots

50

Figure 4.1: The dwell keyboard interface. In this example, the user is entering the text ‘i have a great
idea’. The user has entered ‘i have a’ so far and currently dwelling on the fifth suggestion slot con‐
taining the word ‘great’. The red rectangle indicates that the mouse pointer is currently hovering on
this key and the blue shade fills the entire key after 1000ms (one second) has passed.

assigned to them throughout their session. If at any particular time there were word pre-

dictions less than the number of slots for that participant, it would show only the number

of slots that were required to show the word predictions. Among the suggestion slots, one

slot was always dedicated to show the literal text i. e. the series of letters nearest to each tap

that the user entered before accepting a suggestion or clicking on the spacebar. The sugges-

tions were shown above the keyboard in real-time. We used the VelociTap [126] decoder to

provide the word suggestions. We hosted VelociTap on a server. The dwell keyboard appli-

cation running on the user’s web browser communicated with the decoder after each key

press and updated the suggestion slots accordingly.

51

A user needed to dwell on a key or a suggestion slot using the mouse pointer for one sec-

ond (1000ms) in order to click it. When a user hovered on a key, a red rectangle around the

key highlighted it and and a green shade started filling the key. If the user kept the mouse

pointer more than one second on the key, the green shade filled the whole area of the key

and a click sound was played. Then the character representing the key or the word repre-

senting the suggestion slot was added to the text field above the keyboard. Sometimes, dur-

ing the input process, a suggestion slot was highlighted purple. This indicated that the text

in that suggestion slot is the best suggestion based on what series of letters the user had en-

tered and according to the language model we used. In this situation, if the user entered the

spacebar, it would select the text from the highlighted suggestion slot. We did this to imi-

tate the iPhone keyboard. In other cases, clicking the spacebar would select the text from

the literal slot. Figure 4.1 shows the dwell keyboard interface with five suggestion slots.

Using the dwell keyboard, we ran a between subject user study with the number of sug-

gestion slots as the independent variable. There were eight conditions: two slots through

nine slots.

4.3.2 Procedure

We recruited 219 AmazonMechanical Turk * workers and the workers were assigned the

task of copying a series of phrases using our dwell keyboard. We instructed each worker to

enter text as quickly and as accurately as possible. Workers wrote phrases written by people

with ALS for voice banking purposes [23]. Each participant was assigned a number from

2–9 and they saw that particular number of suggestion slots above their keyboard through-

*https://www.mturk.com/

52

https://www.mturk.com/

out their session. After entering each phrase, the participants saw the error rate and entry

rate on that phrase. After completing all the phrases, they saw the average entry and error

rate. We paid each worker $3.50 and it took approximately 20 minutes for each worker to

complete their tasks. Each participant entered 32 phrases in total with the first two being

practice phrases. During evaluation we did not consider the participants’ performance on

the practice phrases. A participant did not see the same phrase twice.

We logged each participant’s interaction with the dwell keyboard. For example, what

key they were hovering on, which suggestion slot they used, howmany times they used

backspaces, and howmuch time it took to get a response from the server. For each partic-

ipant, we measured the average response time from their corresponding log file. We also

calculated the percentage of response times that were more than 1000ms. If that percent-

age was more than five, we replaced that participant with a new worker. These participants

were likely to be experiencing networking delays. Due to networking delays a participant

might not have had the best predictions available during typing. We replaced those partici-

pants so that their performance did not affect the overall input performance.

By analyzing the log files we also found some participants were experiencing issues due

to a bug. The bug automatically selected a second word prediction immediately after a

user selected a prediction and moved the mouse pointer to an area above the keyboard. To

identify a phrase where this issue occurred, we saw if there were two consecutive taps on

two suggestion slots within less than one second. Since participants dwelled on a key for at

least one second, the time between two valid taps must be more than one second. We deter-

mined the number of phrases where a participant had the issue. If a worker had the issue in

more than five phrases, we replaced that worker. Otherwise, we removed the problematic

53

Slots Entry rate (WPM) Error rate (CER%) Backspaces-per-char Keystroke Savings

2 9.1± 0.7 0.75± 0.40 0.04± 0.02 32.0± 5.4
3 10.2± 0.9 1.56± 0.80 0.02± 0.02 45.2± 4.1
4 9.7± 1.0 2.10± 1.11 0.04± 0.02 44.0± 6.4
5 10.7± 0.7 0.56± 0.34 0.03± 0.02 47.5± 4.9
6 10.8± 1.1 0.83± 0.32 0.02± 0.02 51.0± 4.8
7 11.0± 1.0 1.27± 0.98 0.03± 0.02 50.5± 4.8
8 10.3± 1.0 1.21± 1.18 0.03± 0.01 47.9± 6.1
9 10.5± 1.0 1.18± 0.74 0.03± 0.01 50.0± 6.4

Table 4.1: Entry rate, character error rate, backspaces‐per‐character, and keystroke savings result
from dwell keyboard Amazon Mechanical Turk study. ± values denote 95% user‐wise bootstrap
confidence intervals.

phrases from the corresponding worker’s data. After removing 59 problematic workers and

80 problematic phrases, we ended up having 160 users and 4720 clean phrases where the

bug did not occur. For each number of slots from two to nine, we had 20 participants in

the final set.

4.3.3 Results

Table 4.1 and Figure 4.2 shows the input performance of 160 participants using eight dif-

ferent conditions. We calculated entry rate using words-per-minute or WPM (equation

2.16). Participants entered about 9–11 words-per-minute using different number of slots.

A one-way ANOVA revealed that there was not a statistically significant difference in entry

rate between at least two slots (F7,152 = 1.151, p = 0.334). Users entering text with 2-slots

had the minimum entry rate with 9.1WPM and users with 7-slots had the maximum entry

rate with 11.0WPM.

We calculated error rate using character error rate or CER (equation 2.17). CERs were

54

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

8

12

16

0.0 2.5 5.0 7.5 10.0
CER(%)

W
P
M

2 slots 3 slots 4 slots 5 slots

6 slots 7 slots 8 slots 9 slots

Figure 4.2: WPM versus CER plot for each slot. Each dot represents a participant.

low and ranged between 0.56%-2.10%. A one-way ANOVA test was not significant (F7,152

= 1.014, p = 0.424).

We can see an upward trend with the entry rate but it plateaued after 7-slots. We can also

see that the entry rate with 4-slots did not follow the trend. 4-slot users also had the highest

error rate. We investigated to see why this happened. We plotted participants’ average entry

rate versus average error rate using different slots and found eight 4-slot users had an average

entry rate lower than 8WPM (Figure 4.2). Among these users, five had a CER of more

55

than 2.5%. We think the slow entry rate using 4-slots was due to human error.

We calculated the backspaces-per-character with all slots. Since it took participants at

least one second to click a key, participants could stop dwelling on a key if it was less than a

second and they were dwelling on a wrong key. Still participants made mistakes and some-

times selected a wrong key or a wrong word suggestion. We wanted to see how frequent

participants were using backspaces to make corrections. Average backspaces-per-character

was low during all slots. It was roughly four backspaces per 100 characters.

We calculated the keystroke savings on each phrase for each of the number of slots.

Keystroke savings was maximumwith 6-slots at 51% but after that it flattened with increas-

ing number of slots.

4.3.4 Approximate Time Spent per Tap

Given our text entry interface and the dwell time, we were interested to know howmuch

time the participants spent on each key. For each phrase, we calculated the elapsed time

between the time the participant started dwelling on the first letter of the phrase and the

time the participant dwelled on the done button. We divided the elapsed time by the to-

tal number of taps including tapping the done button to calculate the spent time per tap.

Then we calculated the average time spent per tap for each participant. The average time

spent per tap was 2298ms, with a minimum of 1609ms, and a maximum of 5273ms. We

can use this average time spent per tap to approximate the entry rate for a given keystroke

savings. If the average time spent per tap is Ttap ms and the keystroke savings isKS%, then

56

the approximated entry rate in words-per-minute can be found by the following formula:

Approximate entry rate =
100

(100− KS)× Ttap
1000 ×

1
60 minute

× 1
5
words (4.1)

For example, for a keystroke savings of 55% and a 2298ms time spent per tap, it would

translate to an entry rate of 11.6 words-per-minute.

4.4 Experiment 2: Using Partner Speech Context in a Simulated Keyboard

In Chapter 3, we performed speech recognition on the partner speech and used the speech

recognition results as context to a language model. We evaluated the language models with

and without partner speech context and perplexity results suggest that the language mod-

els performed better in predicting the AAC user’s next word when they were informed

by the partner speech context. However, perplexity is an intrinsic evaluation metric and

it does not always correlate with the performance of an extrinsic evaluation metric [16].

Therefore, we wanted to further examine the performance of various language models by

deploying them in a downstream task, such as, in a simulated text entry application.

In this experiment, we will use the language models in the simulated text entry applica-

tion and ask the language models to predict the next word given a context. We will also pro-

vide additional context to the language models in the form of partner speech context. We

will then evaluate the language models based on the top three to five word predictions they

make and if any of the predictions matches a target word and if thus reduces the number

of keystrokes. In this case, we will consider a simulated keyboard where an ideal user enters

each character of a given sentence progressively. We will assume the ideal user is always true

to their intent, does not make any typing mistake, and always picks a word from the list of

57

A: What are we having for breakfast?
B: Pancakes and bacon.
A: Sorry, I’m allergic to bacon.
B: Should I make sausage instead?
A: No, I don’t like it.
B: Well, what do you want?

Table 4.2: An example of a dialogue between an AAC user and a communicating partner. During
training and evaluation we removed punctuation and converted the cases to lower case.

word predictions if it matches their intended word.

4.4.1 Data

From Chapter 3, we had the recorded audio clips and speech recognition transcripts of 196

dialogues. We converted the transcripts to lower case, removed punctuation, and filtered

out dialogues which contained characters not in a-z and apostrophe. We ended up with 151

dialogues.

4.4.2 Language Models

We used a 12-gram character language model trained by Vertanen [118] as our baseline

model. This model was trained from text collected from different sources including Sub-

title †, Reddit, Common Crawl, and Twitter. Due to the large size of the final 12-gram

model, we used a medium sized (213MB compressed) pruned version.

We used the Reddit dialogue dataset [79] to train our RNNLMs. This dataset contained

text data from 1000 sub-reddits with over 75,000 subscribers in each. In this dataset, up to

two dialogues were sampled per post and each dialogue had at least four turns. We chose
†http://opus.nlpl.eu/OpenSubtitles.php

58

http://opus.nlpl.eu/OpenSubtitles.php

this dataset because we thought it would be good for modeling two way conversations such

as ours. We trained two recurrent neural network language models on this dataset. One

RNNLMwas trained on text containing the text of one side of the dialogues. The other

RNNLMwas trained on text containing the text of both sides of the dialogues. We added a

<ns> delimiter in each dialogue to indicate the change of speaker.

Consider the dialogue shown in Table 4.2. It has two sides (A and B) and six turns.

When training the one-sided RNNLMwe took the turns from only side A or side B. In

this case, an example training instance was: what are we having for breakfast <ns>

sorry i’m allergic to bacon <ns> no i don’t like it. On the other hand, for train-

ing the two-sided RNNLMwe considered each turn of the dialogue. In this case, a training

instance was a text containing all the turns separated by the <ns> delimiter. Before training

the RNNLMs, we removed punctuation and converted case to lower case.

4.4.3 Experimental Setup

In this experiment, we will examine the following cases:

(i) We will use only the n-gram language model. We will treat each turn in a dialogue as

an independent input and calculate keystroke savings on them.

(ii) We will examine if rescoring with an RNNLM trained on one-sided dialogue data

and conditioning on previous turns of the AAC user improves entry rate com-

pared to (i). For example, in Table 4.2, if we want to calculate the keystroke savings

on the 6th turn, we will provide turn two and turn four as context to the one-sided

RNNLM.

59

(iii) We will test if rescoring with an RNNLM trained on two-sided dialogue data and

conditioning on previous turns from both sides (speech recognition for partner’s

turns) further improves entry rate compared to (ii). In this case, we will test using

noisy speech recognition results versus with reference transcripts. For example, in

Table 4.2, let us assume side A is the AAC user and side B is the communicating

partner. Side A is using an AAC device and side B is speaking. To calculate keystroke

savings on the 5th turn, we will run speech recognition on the 2nd and 4th turn. Then

we will provide turn one, speech recognition result from turn two, turn three, and

speech recognition result from turn four as context to the two-sided RNNLM. In

another case, we will provide the reference text from all the previous turns as context.

For experiment (iii) we used the speech recognition results from Google Cloud Speech-

to-Text described in Section 3.3.2. In this case, speech recognition was performed on the

audio collected using the headset microphone. The word error rate on the speech recogni-

tion results was 7.0%.

4.4.4 Procedure

We used a program to simulate a user entering text on a keyboard. The program used the

VelociTap decoder [126] to handle the simulated user input. We assume the simulated user

enters text progressively character-by-character and makes use of the word predictions of-

fered by VelociTap. We also assume that the simulated user does not make any error during

writing. For each character input, VelociTap generates a list of the most probable words

based on a touch model, a character language model, and a given list of words. There were

100K words in the list.

60

To test our two hypotheses, we used the one-sided RNNLM and the two-sided RNNLM

with the base 12-gram character language model. For uncommon words or proper nouns,

VelociTap might not offer a good list of word predictions. In such cases, we assume that the

simulated user enters all the characters of that uncommon word. To facilitate this, there is a

slot with literally what they have typed thus far. We call this a literal slot. We tested three to

five suggestion slots including the literal slot. For each sentence in the test set, the simulated

user provided progressive input and selected a target word as soon as it was offered. Our

simulation program automatically entered a space after a word upon selection of a word

prediction. We trimmed the space after the final word. We calculated the number of taps

it required to complete the sentence and the number of actual characters including spaces

in the sentence. From these numbers then we calculated the keystroke savings (KS) using

Equation 2.15.

To determine howmuch of the one-sided RNNLM and the two-sided RNNLM con-

tribute we created a development set using the DailyDialog dataset [67]. Then we calcu-

lated the scale factors by simulating on one-sided text and on text from the both sides of the

dialogues in the development set.

Since using different number of slots participants’ performance was similar in section

4.3.3, we decided to simulate the experiments with three, four, and five slots. In all these

three cases, one slot was always a literal slot. For each number of slots, we ran four tests.

First, we considered each turn of the dialogues in our evaluation set as independent turns

and calculated keystroke savings (KS) using only the 12-gram character language model.

Second, we only considered the turns of one side of the dialogues and conditioned on the

previous turns of that very same side. For example, to calculate KS on the 3rd turn of a di-

61

alogue, we used the 1st turn as context. To calculate the KS on the 4th turn, we used the

2nd turn as context. In this case, we used the one-sided RNNLM (Section 4.4.2) with the

12-gram character language model. Third, we used the turns from the both sides of the di-

alogues. However, when calculating the results on turns of one side, we used the speech

recognition results from the opposite side. For example, to calculate keystroke savings on

turn four of a dialogue, we provided speech recognition results from the 1st turn, refer-

ence text from the 2nd turn, and speech recognition results from the 3rd turn. In this case,

we used the two-sided RNNLMwith the 12-gram character language model. Fourth, we

used the reference texts from the both sides of the dialogues. In this case also the two-sided

RNNLMwas used.

For each test described above, we took the approximate time spent per tap (2298ms)

from section 4.3.4 and estimated the entry rate in words-per-minute from the calculated

keystroke savings.

4.4.5 Results

Table 4.3 shows the results from our experiment. Using three slots and considering each

turn independently the baseline 12-gram language model had a keystroke savings of 51.2%.

Considering previous turn of the same side as context and using the one-sided RNNLM it

increases to 52.0%. Using the two-sided RNNLM and partner speech recognition results

as context, the keystroke savings further increases but only slightly to 52.5%. Noticeably,

this keystroke savings is on par with the keystroke savings when a two-sided RNNLM and

two-sided dialogue transcript is used. We can see similar trend in the keystroke savings re-

sults when four and five slots were used. Partner speech context helps improve performance

62

Model Slots KS (%) Est. entry rate (WPM)

12-gram 3 51.2±0.6 10.7
+RNNLM (1-sided) 3 52.0±0.6 10.9
+RNNLM (2-sided, partner speech) 3 52.5±0.6 11.0
+RNNLM (2-sided, ref transcript) 3 52.4±0.6 11.0

12-gram 4 54.8±0.6 11.6
+RNNLM (1-sided) 4 55.4±0.6 11.7
+RNNLM (2-sided, partner speech) 4 55.9±0.6 11.8
+RNNLM (2-sided, ref transcript) 4 55.9±0.6 11.8

12-gram 5 57.5±0.5 12.3
+RNNLM (1-sided) 5 57.8±0.6 12.4
+RNNLM (2-sided, partner speech) 5 58.2±0.5 12.5
+RNNLM (2-sided, ref transcript) 5 58.3±0.5 12.5

Table 4.3: Keystroke savings and estimated entry rate results from the simulated keyboard experi‐
ments. ± values denote sentence‐wise 95% bootstrap confidence intervals [11].

in comparison to using only the context from the same side but the performance gain is

small.

If we look at the approximated entry rates for each slot and different experimental se-

tups, the improvement in entry rate is also small.

To examine if the performance gain is more pronounced when the context is larger, we

conducted the four simulation experiments described in Section 4.4.4 again but only on

the last turn of the dialogues. Table 4.4 shows the results. From the results we can see that

for each slot keystroke savings and entry rate improves with different experimental setups.

When 3-slots are used the baseline model had a keystroke savings of 49.9% and an esti-

mated entry rate of 10.4WPM. Using the one-sided RNNLM and text from the one side

of a dialogue increased keystroke savings to 51.2% and estimated entry rate to 10.7WPM.

With two-sided RNNLM and partner speech context keystroke savings further increased

63

Model Slots KS (%) Est. entry rate (WPM)

12-gram 3 49.9±1.4 10.4
+RNNLM (1-sided) 3 51.2±1.4 10.7
+RNNLM (2-sided, partner speech) 3 52.1±1.8 11.0
+RNNLM (2-sided, ref transcript) 3 52.8±1.5 11.1

12-gram 4 53.6±1.3 11.3
+RNNLM (1-sided) 4 55.2±1.4 11.7
+RNNLM (2-sided, partner speech) 4 55.9±1.3 11.8
+RNNLM (2-sided, ref transcript) 4 56.5±1.3 12.0

12-gram 5 56.9±1.3 12.1
+RNNLM (1-sided) 5 57.4±1.3 12.3
+RNNLM (2-sided, partner speech) 5 58.1±1.3 12.5
+RNNLM (2-sided, ref transcript) 5 58.7±1.3 12.6

Table 4.4: Keystroke savings and estimated entry rate results on the last turn of each dialogue from
the simulated keyboard experiments. ± values denote sentence‐wise 95% bootstrap confidence
intervals [11].

to 52.1% and estimated entry rate increased to 11WPM. In comparison to the baseline

model it was about 2.6% increase in the keystroke savings. When compared to the one-sided

RNNLM, it was about 1.8% increase in keystroke savings. For 4-slots and 5-slots we can see

similar trends.

4.5 Discussion

In this work we first conducted a crowdsourced user study with able-bodied rate limited

user to determine the optimal number of slots in a text entry interface. We used a variety of

slot choices ranging from two to nine but did not find any choice that provides a significant

performance improvement. Except with only two slots, participants entered text at 10-11

words-per-minute and had keystroke savings of 44–51%. With increasing number of slots,

64

the performance seemed to flatten after 5 slots. This is similar to the finding in Vertanen et

al. [121].

From the dwell keyboard user study, we also calculated the average time a user took to

actuate a tap. This helped us estimate in an ideal input method, howmuch overhead is

associated with checking and selecting slots. Using this measure then we were able to calcu-

late estimated entry rates in Section 4.4 using only the keystroke savings metric.

We used a static dwell-time of 1000ms for the crowdsourced user study. As we discussed

past work has also investigated dynamic dwell time with eye-gaze input. But since we used

the mouse pointer to have the participants dwell on the key we did not use a dynamic dwell

time. Future direction of this experiment would be to use different dwell times for exam-

ple, 500ms or 750ms and see the performance. Our technique of dwelling using a mouse

pointer was different from a traditional eye-gaze and dwell technique. Traditional eye-gaze

would involve an actual eye or head tracker. Also able-bodied participants may differ from

actual AAC users. Therefore, our slot study needs further validation with eye-gaze key-

board and with rate-limited users.

We conducted a simulation experiment examining whether conditioning on partner

speech context improves language model performance. From the results, we found speech

context improves performance but we did not find any substantial gains. This could be due

to the RNNLM training set. We trained our one-sided and two-sided RNNLM on Reddit

text. The text we trained on are not dialogues per se, but are user comments sampled from

different Reddit topics. Sometimes these comments have longer form of text. Therefore,

they might not be a good representative of text similar to the colloquial conversational text.

We think better gains are possible if the two-sided conversational language models were

65

trained on data that more resembles everyday conversations.

4.6 Conclusion

In this chapter, we first conducted a user study with AmazonMechanical Turk workers

asking them to enter text on a web keyboard by dwelling on a key for one second using

a mouse pointer. We offered different number of suggestion slots to the workers and ex-

amined with what number of slots the workers could enter text faster. We did not find an

optimal number and we suggest choosing any of 3, 4, or 5 slots. However, we believe more

work is still needed to justify these choices. For example, conducting user studies with an

eye-gaze keyboard and directly involving rate-limited users.

We also investigated adding partner speech context to neural language models to improv-

ing next word predictions. Our simulation results yielded small performance gain when

evaluated against the number of keystrokes that can be saved during the input process. But

we think this is promising. We believe better gains are possible with better language models

trained on large and more suitable text dataset.

66

5
Accelerating Text Communication via

Abbreviated Sentence Input

5.1 Introduction

Experienced desktop and touchscreen typists can often achieve fast and accurate text in-

put by simply typing all the characters in their desired text. For AAC users, such quick and

67

precise input is difficult due to their motor ability. They may use a virtual touchscreen

keyboard, but their touch locations may be slow and inaccurate, e.g. people with Cerebral

palsy. Other users may need to click keys by pointing at them with a head- or eye-tracker

and dwelling for a fixed time, e.g. people with amyotrophic lateral sclerosis (ALS).

When a person’s typing is slow or inaccurate, word completions may provide more ef-

ficient input. Word completions predict the most probable words based on the current

typed prefix. However, monitoring predictions carries a cognitive cost and may not always

improve performance [114]. Further, monitoring predictions can be difficult without vi-

sual feedback. Eyes-free text input can be slow for users who are visually-impaired [88], and

even slower for users who are motor- and visually-impaired [87]. Finally, eyes-free text in-

put may be needed in future augmented reality (AR) interfaces where visual feedback is

limited or non-existent (e.g. due to lighting or device limitations). In audio-only AR, it is

still possible to type on an invisible virtual keyboard [127, 142].

All these cases motivate our interest in exploring alternatives to conventional word com-

pletion. In this chapter, we investigate accelerating input by allowing users to skip typing

spaces and mid-word vowels. We decided to abbreviate in this manner based on past results

on touchscreen text input without spaces [120, 126], and a study we present here in which

200 people abbreviated email messages. Our interaction approach of abbreviation is sim-

ilar to features in commercial assistive interfaces (e.g. Grid 3, NuVoice, Lightwriter). Our

whole utterance prediction approach is similar to features in touchscreen phone keyboards

and in commercial assistive interfaces (e.g. dwell-free sentence input in Tobii Communica-

tor 5).

We modified a probabilistic recognizer to accurately expand abbreviated input by 1) im-

68

proving our language models by selecting well-matched training data via a neural network,

2) modifying the search to model the insertion of mid-word vowels, and 3) adding a neural

language model to the search. We validate our method in computational experiments on

over six thousand sentences typed on touchscreen devices. We found that even when 28%

of letters were omitted, we recognized sentences with no errors 70% of the time. Selecting

from the top three sentences, user could obtain their intended sentence 80% of the time.

Finally, we compare word completion and abbreviated sentence input in a user study. In

this study, users had to dwell for one second to trigger a tap. We found sentence input was

slightly slower than using word completions, but still saved substantial time compared to

typing all the characters. Users obtained their desired sentence 68% of the time.

5.2 Related Work

Abbreviated input. Demasco &McCoy [27] investigated expanding uninflected words

(e.g. “apple eat john”) into syntactic sentences (e.g. “the apple is eaten by john”). Gregory

et al. [43] created abbreviation codes (e.g. “rmb” = “remember”). Users selected words

from a menu or by typing a code’s letters. Typing codes was the most efficient. Pini et al.

[95] detected abbreviated phrases using a Support Vector Machine and expanded them via

a HiddenMarkovModel (HMM). Their detector and expander were 90% and 95% accu-

rate respectively. Users decreased keystrokes and input time by 32% and 26% respectively.

Shieber &Nelken [106] allowed users to drop non-initial vowels and repeated conso-

nants. This deleted 26% of the total characters. Using an n-gram word language model and

a spelling transducer for each word, they expanded abbreviated text at an error rate of 3.3%.

Our work differs in that we: 1) removed spaces between words, 2) did not remove consecu-

69

tive consonants, 3) used a character language model with no fixed vocabulary.

Tanaka-Ishii et al. [111] explored Japanese text input with digits. They used an HMM

to expand a sequence of digits into characters. Users saved 35% of keystrokes typing on a

mobile phone. Han et al. [44] also used an HMM to expand abbreviations learned from a

corpus of Java code. Their approach did not require memorizing abbreviations and pro-

vided incremental feedback while typing.

In two studies with 31 users, Willis et al. [133, 134] identified common abbreviation be-

haviors such as vowel deletion, phonetic replacement, and word truncation. They did not

release their data and it was on a relatively small number of people. Based on their work, we

conducted an abbreviation study with 200 users and also share our data.

Data selection. Mismatch between the training and target text domains can lead to sub-

optimal language models. A variety of methods have been developed to address this prob-

lem. Lin et al. [68], Gao et al. [36], and Yasuda et al. [138] used language modeling and in-

domain perplexity to select training data. In this approach, a language model is trained on

a small in-domain dataset. Training instances from an out-of-domain dataset are selected if

they are below some perplexity threshold.

Other work has investigated data selection using cross-entropy or cross-entry difference

between in- and out-of-domain datasets [5, 76, 85, 101, 105, 123]. In this approach, an in-

domain and out-of-domain language models are first trained. Sentences are selected based

on a cross-entropy threshold or cross entropy difference calculated from the two language

models.

Hildebrand et al. [46] and Lü et al. [70] applied information retrieval based techniques

to select data. Other method include selecting based on infrequent n-gram occurrences

70

[38, 90], or Levenshtein distance and word vectors [19].

Duh et al. [33] employed the data selection method of Axelrod et al. [5], which builds

uponMoore & Lewis [85]’s approach. The main distinction is that they used neural lan-

guage models for selection rather than n-grammodels. Chen &Huang [13], Peris et al.

[93], and Chen et al. [14] selected based on convolutional and bidirectional long short-

termmemory neural networks.

Bidirectional neural models like BERT [29] has proven effective in many natural lan-

guage tasks. Ma et al. [71] used BERT for domain-discriminative data selection. Hur et al.

[50] used BERT for domain adaptation and instance selection for disease classification.

Our selection method is similar to these methods but focuses on selecting conversational-

style sentences.

Decoding noisy input. Text entry interfaces often use a probabilistic decoder to infer

a user’s text from time sequence data [61, 126, 140, 141]. Typically, a keyboard likelihood

model and a language model prior are used to infer a user’s text from input with incorrect,

missing, or extra characters. To date, these approaches have mostly used n-gram language

models.

Ghosh & Kristensson [39] corrected typos in tweets to a low character error rate of

2.4% by using a character convolutional neural network, an encoder with gated recurrent

units, and a decoder with attention. The twitter typo data contained sequences with a sim-

ilar number of characters to the target. In our work, we show acceptable character error

rate can be achieved on input not only with typos, but also with missing spaces and mid-

word vowels. We show the advantage of using a recurrent neural network language model

(RNNLM) directly in the decoder’s search or to rescore hypotheses.

71

5.3 Free-form Abbreviation Study

To better understand how people do free-form abbreviation, we conducted a study on

AmazonMechanical Turk. As a pilot, we had 26 workers abbreviate an email from the En-

ron mobile data set [122]. We designed our instructions based onWillis et al. [133]. Work-

ers abbreviated the same email three times. Each time the worker was asked to abbreviate in

three ways: heavily, as little as possible, or as they saw fit.

In our pilot, we found workers abbreviated similarly regardless of instructions. Thus,

we designed a single set of instructions for our main study that asked workers to imagine

they were using artificially intelligent (AI) software that was good at guessing their intended

text from an abbreviated form. They were told to shorten words by removing or changing

letters, but they should avoid shortening words that might be hard for the system to guess

and that they should not omit words entirely. See appendix A.1 for our instructions. Our

supplementary data* contains all the data from the study.

We recruited 200 workers who each abbreviated ten emails. In our analysis, we used

1,308 of the 2,000 emails. We filtered out emails that did not have the same number of

words as their original emails. This filtering helped us to align the sentences by word. Punc-

tuation was removed except apostrophes and at signs. We lowercased the text.

5.3.1 Abbreviation Behavior

We found 90% of abbreviated words were an in-order subsets of their full spelling. On av-

erage, 21% of a word’s letters were deleted. Of these, 16% were consonants and 42% were

vowels. In the set of six common letters in English, etoain, consonants were less likely

*https://aclanthology.org/attachments/2021.acl-long.514.OptionalSupplementaryMaterial.zip

72

https://aclanthology.org/attachments/2021.acl-long.514.OptionalSupplementaryMaterial.zip

to be deleted than vowels. Surprisingly, the six least common letters, zqxjvkwere often

deleted. Considering letter position in words, 14% of first letters, 35% of last letters, and

90% of middle letters were deleted.

Our study confirmed some of our initial beliefs about how people would do free-form

abbreviation. We found people deleted vowels more frequently than consonants and peo-

ple usually retained the first letter of words. Other aspects we found surprising such as the

frequent deletion of uncommon letters. The percentage of middle letters deleted was high.

One reason for this was some workers persistently only used the first letter of each word.

5.3.2 Initial Automatic Expansion Experiment

We selected 564 passages where each word was an in-order subset of the full word. We im-

plemented a search that proposed inserting all characters at all positions in words in work-

ers’ input. The search was guided by the language models described in Vertanen et al. [126].

We used beam search to keep the search tractable. See table A.2 in the appendix for example

input and the expanded output.

We measured accuracy using character error rate (CER). As shown in Figure 5.1, the

expansion had a CER of less than 5% for compression of up to 30%. Beyond that, much of

the input was only the first letter of each word and our algorithm simply imagined probable

text consistent with the provided letters. We think these results are promising given our

search simply proposed the insertion of all characters at all positions.

73

●●

●●●●

●

●●●
●●●●

●●●●●

●●●●●

●●

●

●●●●●●

●●●●

●●●●

●●

●●

●

●
●

●●●

●●

●●●

●●●●

●

●●●●

●●●
●●●●●

●●●●

●

●

●
●●●●

●

●●●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●● ●●●

●

●

●

●●

●
●

●●●

●

●●●●

●●

●●

●

●●●

●

●●

●●●●

●

●

●

●

● ●●

●●●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●●● ●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●●●

●●

●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●●

●●●●●●

●

●

●

●

●●

●

●

●

●●●●●●

●●●

●

●●

●

●

●

●●

●●

●

●

●●●●●

●●

●●●●●●

●

●●●

●

●

●

●
●

●

●●●

●

●●●●●●●●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●●
●●●●●●●●●●●●

●

●

●

●●

●●

●●●●●●●●●●

●

●

●●●

●

●●●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●0

20

40

60

80

0 20 40 60

Compression of input (%)

E
rr

o
r

ra
te

 o
f

e
x
p

a
n

s
io

n
 (

C
E

R
 %

)

Figure 5.1: Error rate of automatic expansion with increasing abbreviation of the input.

5.4 Conversational Language Modeling

We think abbreviated input may most benefit users with slow input. From this point on,

we focus on optimizing our system for use by AAC users. AAC users may not be able to

speak due to a condition such as ALS. AAC users’ slow input rate make taking part in con-

versations difficult [4]. Sentence abbreviation may be particularly useful for short phrases

with predictable language.

Our search-based approach to abbreviation expansion relies crucially on a well-trained

language model. For a language model to work well it needs to be trained on data that is

suited to the target domain. Ideally we would train our language models on large amounts

of conversational communications written by AAC users. For privacy and ethical reasons,

it is difficult to find large amounts of such data. Therefore, in this section, we explore se-

lecting training data from an out-of-domain dataset using a small amount of in-domain

AAC-like data.

74

5.4.1 Selecting Training Data

As our in-domain set, we used 29K words of AAC-like crowdsourced messages [123]. For

our out-of-domain training set, we used one billion words of web text from Common

Crawl†. We only kept sentences consisting of A–Z, apostrophes, spaces, commas, peri-

ods, question marks, and exclamation point. We compared three ways to select training

sentences:

Random selection. We randomly selected sentences until we reached 100 million char-

acters.

Cross entropy difference selection. FollowingMoore & Lewis [85], we trained an in-

domain 4-gram word language model on our AAC-like data, and an out-of-domain 4-gram

model on a random subset of web text (disjoint from the training set). We calculated the

cross-entropy difference of training sentences using the in- and out-of-domain models. We

selected the highest scoring sentences until we reached 100 million characters.

BERT selection. BERT is a language representation model built using self-attentive

transformers [29]. We took the in- and out-of-domain data from the previous step and la-

beled each sentence based on its set. We then trained a binary classifier using bert-base-uncased‡.

We ran our classifier on each sentence in the training set yielding the probability of a sen-

tence belonging to the in-domain set. We selected the top sentences until we reached 100

million characters.
†https://commoncrawl.org/
‡https://github.com/google-research/bert/

75

https://commoncrawl.org/
https://github.com/google-research/bert/

Method Words OOV Enron Daily Enron
sent. (%) ppl ppl CER

Random 29.8 1.21 4.81 3.31 7.04
CE diff. 14.3 0.32 4.57 3.11 6.00
BERT 11.1 0.39 4.53 3.05 5.75

Table 5.1: Impact of selection method on training sentences and performance of letter language
models.

5.4.2 Comparison of Selection Methods

As shown in Table 5.1, random sentences from Common Crawl averaged 30 words. The

cross-entropy difference and BERTmethods selected shorter sentences of 14 and 11 words

respectively. This is likely good given our goal of supporting short, conversational messages.

For comparison, sentences averaged 13 words in the in-domain AAC set and 10 words in

DailyDialog [67]. DailyDialog consists of two-sided everyday dialogues.

We calculated the out-of-vocabulary (OOV) rate with respect to a vocabulary of 100K

words. Our randomly selected sentences had a much higher 1.2% OOV rate compared to

cross-entropy and BERT selected data at 0.3% and 0.4% respectively (Table 5.1). Again

this suits our purpose as we suspect abbreviated input is best suited for sentences without

uncommon words. For comparison, the OOV rates of DailyDialog and our AAC-like set

were both low at 0.2%. See the appendix for samples of sentences selected by each method.

We trained 12-gram character language models withWitten-Bell smoothing on each

100 million character training set. We trained without count cutoffs and did not prune

the models. The binary BerkeleyLM [91] size of the random, cross-entropy difference, and

BERTmodels were 1.7GB, 1.3GB, and 1.2GB respectively.

We evaluated these character language models on the Enron mobile [122] and DailyDi-

76

alog [67] datasets. Before evaluation, we split each dialog turn in DailyDialog into single

sentences and randomized their order. We calculated the average per-character perplexity

of these two datasets. As shown in Table 5.1, the cross-entropy and BERTmodels had per-

plexities around 6% lower than the randommodel with the BERTmodel having the lowest

perplexity.

We also compared the recognition accuracy of the three language models using the rec-

ognizer and data to be described in the next section. As shown in Table 5.1 (right column),

these perplexities reductions did translate into improvements in recognition accuracy on

touchscreen input where spaces and 50% of mid-word vowels were removed.

5.5 Recognizing Noisy Abbreviated Input

We now describe how we used our optimized language models to recognize noisy abbrevi-

ated input.

5.5.1 Decoder Details and Improvements

We extended the VelociTap touchscreen keyboard decoder [126]. VelociTap searches for

the most likely text given a sequence of 2D taps. Each tap has a likelihood under a 2D

Gaussians centered at each key. Taps can be deleted without generating a character by in-

curring a deletion penalty. Adding characters to a hypothesis incur penalties based on a

character language model.

The decoder can insert characters without consuming a tap. A general insertion penalty

allows all possibles characters to be inserted. The decoder also has separate space and apos-

trophe insertion penalties. We extend this further by adding a vowel insertion penalty for

77

inserting the vowels: a, e, i, o, u. However, this penalty is only used if the prior character is

not a space. This models that vowels should not be skipped at the start of words.

The search is performed in parallel, with different threads extending partial hypothe-

ses. When a hypothesis consumes all taps, it is added to an n-best list. To keep the search

tractable, a configurable beam controls whether partial hypotheses are pruned. A wider

beam searches more thoroughly, but at the cost of more time and memory.

To date, VelociTap has only used n-gram language models. We extend the decoder to

use a recurrent neural network language model (RNNLM) either as a replacement for the

character n-gram during search, or to rescore the n-best list. When used for rescoring, we

compute the log probability of each sentence under the RNNLM.Wemultiply this proba-

bility by anRNNLM scale factor and add the result to a hypothesis’ log probability.

We trained an RNNLM on the BERT-selected training data. After a hyperparameter

search, we settled on 512 LSTM [48] units, a character embedding size of 64, two hid-

den layers, a learning rate of 0.001, and a dropout probability of 0.5. We trained using the

Adam optimizer [57]. On the EnronMobile and DailyDialog test sets, our RNNLM had a

perplexity of 4.50 and 2.64 respectively.

To allow efficient hypothesis extension during RNNLM-based search, we augmented

our partial hypotheses to track the state of the neural network. However, as we will see,

RNNLM search required substantial memory and computation time. While we experi-

mented with using a GPU for RNNLM queries, we found parallel CPU search was faster.

78

5.5.2 Touchscreen Data and Simulation Details

We tested our improvements on noisy, abbreviated, touchscreen keyboard input. We wanted

noisy input to ensure our system was robust to mistakes AAC users may make when typing

(e.g. when using a mouth stick or an eye-tracker). We created a test and development set

using data collected on touchscreen phones [126, 127] and watches [120, 121]. We limited

our data to sentences from the EnronMobile set. We concatenated taps to create single sen-

tence sequences without spaces. We removed sentences where the number of taps did not

match the length of its reference. This resulted in a test and development set of 6,631 and

731 sentences respectively.

We played back taps to our decoder, deleting mid-word vowels with a given vowel drop

probability. We tested drop probabilities of 0.5 and 1.0. In our test set, 17.7% of charac-

ters were spaces. With a drop probability of 0.5, 27.9% of characters (including spaces)

were deleted. If all mid-word vowels were dropped, 38.2% of characters were saved. For

the n-gram search and RNNLM rescoring setups and two drop probabilities, we tuned de-

coder parameters to minimize CER on the development set. Tuning used a random restart

hill-climbing approach. We tuned each of the four setups for 600 CPU hours. Due to the

computational costs, we used the parameters found for the n-gram search for the RNNLM

search.

We report the character error rate (CER), as well as word error rate (WER), and sentence

error rate (SER) on our test set. We also report the Top-5 SER which is the lowest SER of

the top five hypotheses. We searched in parallel using 24 threads on a dual Xeon E5-2697

v2 server. This large number of threads mainly sped up the RNNLM search.

79

Decoder Drop CER WER SER Top-5 Decode Mem
search prob. (%) (%) (%) SER(%) time (s) (GB)

n-gram search 0.5 5.7± 0.3 12.4± 0.5 35.1± 1.1 22.0 0.21 40.7
+ RNNLM rescore 0.5 4.4± 0.2 9.5± 0.5 27.7± 1.1 16.5 0.34 52.1
RNNLM search 0.5 4.3± 0.2 9.3± 0.5 27.6± 1.1 15.4 24.05 353.2

n-gram search 1.0 9.5± 0.4 19.0± 0.7 45.5± 1.2 30.3 0.03 41.4
+ RNNLM rescore 1.0 8.0± 0.3 15.5± 0.6 38.5± 1.2 24.2 0.09 52.9
RNNLM search 1.0 8.2± 0.3 15.8± 0.6 41.5± 1.2 26.3 1.09 52.4

Table 5.2: Error rates and decoder performance using different search methods and vowel drop
probabilities. ± values denote sentence‐wise 95% bootstrap confidence intervals [11].

5.5.3 Recognition Results

As shown in Table 5.2, using the RNNLM in the search instead of the n-grammodel re-

duced error rates by 23% and 12% relative for a vowel drop probability of 0.5 and 1.0 re-

spectively. This however came at a much higher cost with decoding taking much longer

and requiring more memory. Using the n-grammodel for search and rescoring with the

RNNLM resulted in similar error rates to searching with the RNNLM, but only caused

modest increases in decode time and memory.

Dropping half of vowels, we recognized the correct sentence 72% of the time using

RNNLM rescoring. If we assume an interface allowing selection from the top five results,

this increased to 85%. Dropping all vowels was harder; we recognized the correct sentence

only 59% of the time. Providing the top five sentences increased this to 74%.

Interestingly, our vowel drop probability 1.0 setups were faster. We investigated this by

varying the tuned beams, measuring CER on the development set. We found for drop 0.5,

a narrower beam increased CER while a wider beam provided no gain. For drop 1.0, a nar-

rower beam also increased CER, but even a modestly wider beam increased CER slightly

80

Figure 5.2: The word (left) and sentence (right) keyboard modes from our user study. The circle is
centered on the user’s touch location with a green arc showing progress towards the one second
dwell time.

(3% relative). The tuned penalty for vowel insertion was small (0.8 probability). We ob-

served in sentences with errors at a narrow beam, a wider beam sometimes resulted in more

inserted vowels. This may have allowed more probable text, but ultimately a higher CER.

This suggests we may need a more nuanced model of how users abbreviate, e.g. by penaliz-

ing contiguous vowel insertions.

5.6 User Study

Thus far, we tested abbreviated sentence input only in offline experiments. To see if our

method offers competitive performance in practice, we conducted a user study using a

touchscreen web application.

81

Metric Entry rate (WPM) Error rate (CER %)
Word 9.9± 1.5 [6.6, 12.4] 0.3± 0.5 [0.0, 2.5]
Sentence 9.0± 1.5 [5.7, 11.5] 7.2± 5.4 [1.0, 23.6]
Statistical test t(27) = -3.92, r = 0.60, p< 0.001 t(27) = 6.72, r = 0.79, p< 0.001

Table 5.3: User performance in each condition in our user study. Results formatted as: mean± SD
[min, max].

5.6.1 Design

We designed a touchscreen keyboard that runs in a mobile web browser. The keyboard has

two modes:

Word—This mode has the keys A–Z, apostrophe, spacebar, and backspace (Figure

5.2, left). The keyboard has three prediction slots above the keyboard. The left slot shows

the exact letters typed. The center and the right slots show predictions based on a user’s

taps and any previous text. Predictions and recognition occur after each key press. Pressing

the spacebar normally selects the left slot. Similar to the iPhone keyboard, if a user’s in-

put is noisy and we predict an auto-correction with high probability, we highlight this slot

instead. In this case, pressing spacebar selects the auto-correction. A done button signals

completion of a sentence.

Sentence—This mode is similar but has no spacebar or suggestion slots (Figure 5.2,

right). Input is recognized only after the done button is pressed.

To simulate users with a slow input rate, users had to dwell on a key for one second

to click it. We chose one second because this is a common default setting in dwell-based

eye typing, for example, 1.2 seconds in Tobii Communicator. We display a progress circle

around a user’s finger location showing the dwell time. After a click, the keyboard border

flashes and the nearest key is added to the text area above the keyboard.

82

Due to memory and computation requirements, we ran our decoder on a server at our

university. The keyboard client makes requests to the server to recognize input. In word

mode, at the start of each key press, we request predictions for the keyboard slots. In sen-

tence mode, we request sentence recognition at the start of pressing the done button. By

making the server request at the start of a key press, we effectively eliminated the need to

wait for predictions. The average round trip time for requests in our user study was 0.41 s

(sd 0.21) in the word mode and 0.58 s (sd 0.29) in sentence mode.

5.6.2 Procedure

We recruited 28 AmazonMechanical Turk workers. The study took 30–40 minutes. Work-

ers were paid $10. We also offered a $5 bonus for the fastest 10% of workers in each condi-

tion subject to having a CER below 5%. This was a within-subject experiment with two

counterbalanced conditions: Word and Sentence. The conditions used the word and

sentence mode of the keyboard respectively.

Workers typed 26 phrases in each condition. The first two were practice phrases which

we did not analyze. Workers wrote phrases written by people with ALS for voice banking

purposes [23]. We used phrases with 3–6 words (1,182 total phrases). Workers received a

random set of phrases and never wrote the same phrase twice.

5.6.3 Results

Table 5.3 and Figure 5.3 show results and statistical tests. We calculated entry rate in words-

per-minute (WPM). We considered a word to be five characters including space. We mea-

sured the entry time from a worker’s first tap until they finished dwelling on the done but-

83

●●

0

3

6

9

12

15

Word Sentence

E
n
tr

y
 r

a
te

 (
w

p
m

)

●

●

●

0

2

4

6

8

10

12

Word Sentence

E
rr

o
r

ra
te

 (
C

E
R

 %
)

Figure 5.3: Entry and error rate in our user study.

ton. The entry rate in Word was faster at 9.9 WPM versus Sentence at 9.0 WPM. This

difference was significant (Table 5.3).

As shown in Figure 5.4, participants started out slower in Sentence compared toWord,

but the entry rate gap closed as they wrote more phrases. We averaged performance in the

first eight and last eight phrases. InWord, the entry rate was 9.7WPM in the first set and

9.9WPM in the last set. In Sentence, the entry rate was 8.6WPM in the first set and

9.6WPM in the last set. This is promising, as perhaps with more practice, sentence ab-

breviation might achieve comparable speed but without requiring monitoring of word

predictions.

Participants were less accurate in Sentence with a CER of 7.2% versus 0.3% inWord.

This difference was significant (Table 5.3). Participants obtained a completely correct

phrase 97% of the time inWord, but only 68% in Sentence. We think the lower accu-

racy in Sentence was mostly due to some users abbreviating phrases too aggressively. In

phrases recognized completely correctly, the compression rate was 35%. In phrases with

84

●
● ●

● ●

●

● ●

●

●
● ●

0

2

4

6

8

10

1 2 3 4 5 6
Phrase block

E
n

tr
y
 r

a
te

 (
w

p
m

)

Sentence

Word

Figure 5.4: Entry rates for each block of four phrases.

recognition errors, the compression rate was 43%.

We classified phrases in Sentence according to their input length versus the reference

length minus spaces and mid-word vowels. 252 phrases had the correct length, 162 were

longer, and 258 were shorter. These sets correspond to phrases that were likely correctly ab-

breviated, under-abbreviated, and over-abbreviated. The error rates of these sets were 3.2%,

2.1%, and 14.0% respectively. We found five workers over-abbreviated 20 or more phrases.

Removing these workers lowered the overall CER to 5.7%. While not as accurate as word

input, sentence input did have acceptable accuracy when users abbreviated as instructed.

Individual user performance was variable (Figure 5.5). 16 participants achieved 0%

CER inWord and all but two had a CER below 1%. While in Sentence, no participant

achieved 0% CER and five participants had a high CER of over 10%.

Using backspace, participants could fix incorrect letters or misrecognized words. The

number of backspaces per final output character was low at 0.02 in both conditions. Thus,

it appears participants precisely targeted keys, likely as a result of the slow input induced by

the dwell time.

85

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

7

9

11

0 5 10 15 20
Error rate (CER %)

E
n

tr
y
 r

a
te

 (
w

p
m

)

●

Sentence

Word

Figure 5.5: Participants’ entry and error rate in each condition of the user study.

5.7 Discussion

We set out to show we could accelerate the writing of short and reasonably predictable

phrases by combining sentence-at-a-time recognition with aggressive abbreviation. In our

final user study, we found our method did not quite beat a conventional keyboard with

word predictions. However, users in our study likely had substantial experience doing

word-at-a-time input on their phones. It appears users got faster at abbreviated sentence

input even during the brief study session. By the last eight phrases, users were only 3% rela-

tive slower using sentence abbreviated input compared to word-at-a-time input with word

completions. When users provided abbreviated input consisting of all the correct letters

except mid-word vowels, 90% of these phrases were expanded correctly.

We observed the abbreviation behaviour of a large number of non-AAC users and de-

signed a system supporting the most common behaviours. While we could have tried to

learn abbreviation behaviors from actual AAC user data, this presents a number of is-

sues. First, actual text from AAC users is difficult to obtain for ethical and privacy rea-

86

sons. While it may be possible to obtain such text via donations from AAC users and from

online sources, such sources lack visibility into how the user actually produced the text

(e.g. did they use word completions?). Further, the propensity to abbreviate may be influ-

enced by the particular AAC interface used. Second, even if we could source AAC abbre-

viated text, we would have no reliable way to determine the unabbreviated text. We could

have asked AAC users to complete our abbreviation study, but this would have introduced

more noise (incorrect key presses) that would have complicated our first study’s goal of dis-

covering natural abbreviation behaviors. It would have also limited the number of people

we learned behaviors from. In this phase our goal was to discover what letters humans think

are the most information carrying in a passage of text. While we suspect abbreviation strate-

gies of AAC users would be similar, this would benefit from validation with AAC users.

We tested our method on touchscreen data recorded in previous studies on phones and

watches, and in a web-based crowdsourced user study. We think our method mainly would

benefit users who have a slow input rate; fast typists may only be slowed by the cognitive

overheads of deciding what letters to omit or by disrupting their muscle memory for typing

familiar words. This led us to limiting the input rate in our study by requiring users dwell

for one second. While this study allowed us to confirm our abbreviation method is compet-

itive with a conventional keyboard with word predictions, this needs validation with users

with actual input rate limits. AAC user interaction may feature more imprecise key presses,

more accidental key presses, and may introduce complications related to attending to word

predictions (e.g. the “midas touch” problem in eye tracking). Further, we only tested one

input rate, it is possible our method may be better or worse at different input speeds. We

think our approach may also offer advantages for eyes-free text input, but this also needs

87

comparison against conventional eyes-free input approaches (e.g. iPhone’s VoiceOver fea-

ture).

We investigated abbreviation by omitting mid-word vowels. We did not investigate other

forms of abbreviation such as phonetic replacement (e.g. “you”→ “u”) or removal of con-

sonants. Our model may benefit frommore sophisticated modeling on how and when

vowels are inserted (e.g. penalizing repeated vowel insertions). Ideally improved models

would be based on data collected by users engaged in actual abbreviated input. As our

results show, correctly inferring the intended sentences was challenging even when we

asked users to obey a few simple behaviours, namely removing spaces and mid-word vow-

els. While an ideal system would support a wide-range of abbreviation behaviors and even

adapt to individuals, we suspect this may be challenging given our current lack of training

data on this task.

In our initial study, participants abbreviated email text that was displayed visually. An

alternative approach would be to play audio of the text. While this might be a more realistic

abbreviation task, it also presents practical challenges to participants such as remembering

the text and spelling any difficult words. Perhaps an even more externally valid approach

would be to have workers compose novel abbreviated sentences. This would require an-

other step to obtain the unabbreviated compositions [35, 124]. Given we now have a com-

petent initial system, it would be interesting to undertake such a data collection effort.

Our results suggest a simple correction interface based on selecting from the top sen-

tences would often, but not always work. Designing an efficient and easy-to-use interface

for correcting a few words within such sentence results would be interesting future work.

This might be especially challenging to design for users with diverse motor abilities.

88

We used language models trained on only 100M characters of text. While this allowed

us to compare the efficacy of the language model types and decoder configurations, sub-

stantially more training data is available along with neural architectures that scale to large

training sets, e.g. GPT-2 [97]. We suspect further recognition accuracy gains are possible

for abbreviated, noisy input by incorporating such models. Further, we could likely obtain

additional improvements from the n-grammodel by training on more data and then prun-

ing the model to reduce its size. We avoided doing this in this work to fairly compare the

n-gram and RNN language models when trained on the same amount of text.

Our language model training data was drawn from Common Crawl. We used a corpus

of AAC-like crowdsourced messages to select training sentences from Common Crawl.

Other sources of training data such as Twitter or Reddit are likely more conversational in

style. It would be interesting to investigate whether data selecting from a more targeted

large-scale training source provides additional improvements in language modeling.

We did not specifically investigate how our method would support text containing dif-

ficult words such as acronyms or proper names. Users can often anticipate and alter their

input behavior to avoid auto-correct errors, e.g. by force [131], by long pressing a key [121],

or by switching to a precise input mode [32]. Similarly, our abbreviated input method

needs a way to specify words that should not be expanded or auto-corrected.

At the onset, we did not know that our proposed abbreviation technique would be com-

petitive to conventional word completion. The results from our user study tell us we need

to make further improvements to our recognition, better train users to abbreviate in sup-

ported ways, and conduct a longitudinal evaluation. Further, testing an abbreviated input

prototype with AAC users will undoubtedly lead to new insights. This paper is a first step

89

in producing a viable prototype for testing with users with rate-limited input abilities.

5.8 Conclusion

We explored accelerating text communication by abbreviated sentence input. We con-

ducted a user study to learn how users abbreviate. We showed the efficacy of a neural clas-

sifier to select conversational-style training instances from a large text corpus. We found

that dropping spaces and mid-word vowels can provide compression of sentences from 28%

to 38%. Such abbreviated and noisy input can often be expanded correctly 59% to 72% of

the time. We also showed how the accuracy of a statistical virtual keyboard decoder can

be improved by using a neural language model to re-rank the top recognition results. Fi-

nally, after practice, users wrote only slightly slower using sentence abbreviated input at

9.6 words-per-minute compared to a conventional keyboard with word predictions at 9.9

words-per-minute. If a phrase was abbreviated by removing spaces and mid-word vowels,

our system expanded the abbreviated input to the intended phrase 90% of the time.

90

6
Language Model Personalization

6.1 Introduction

In the previous chapters, to accelerate the input of a rate-limited user we have worked on

finding a good dataset for training language models, investigated incorporating different

statistical and neural language models, and made use of contextual data such as partner

speech. We have also examined the number of prediction slots on the interface and explored

91

what number of suggestion slots is suitable for an AAC interface. We explored different

systems that benefit from a set of generalized language models which work for every user.

These models were also static and once we selected a model for a certain interface, it did

not change with time. However, every person is different and has a unique style of writing.

Moreover, while writing, people tend to repeat the same word or even the same phrase over

the course of time. Therefore, it is desirable to have a model that can change and adapt to a

user’s writing behaviour with time.

In this chapter, we investigate adapting language models to a person’s writing history for

improved text entry performance. We conduct offline simulation experiments on a publicly

available and chronological text dataset. We assume an ideal user entering text on a text

entry interface and we make improvements to an error-tolerant decoder. We adapt various

language models according to the user’s past written text and show performance gains using

keystroke savings.

6.2 Related work

Fowler et al. [34] explored the effects of language modeling with and without personal-

ization on touchscreen keyboards. In order to explore the impact of language model per-

sonalization in touchscreen keyboard applications, they simulated a large group of indi-

viduals (taken from the Enron Corpus [58]) typing their messages in chronological order.

The simulated user was made to provide sloppy input, but could take advantage of a word

completion model. They showed a background language model can reduce typing word-

error-rate from 38.4% to 5.7%. A personalized language model using a cache or exponential

decaying cache further reduced this error rate to 4.6%.

92

Tanaka-ishii [110] compared four adaptive language models. These models are based on

concepts originally proposed by Bell et al. [8] in the text compression domain and are sim-

ilar to cache models originally proposed by Kuhn and DeMori [63] in the speech domain.

The models are: 1) unigram cache, 2) move to front (MTF), 3) adaptive co-occurrence, and

4) adaptive n-gram: prediction by partial match (PPM). Among these four adaptive models

they found PPM to be the best.

Clarkson et al. [21] provided two techniques for language model adaptation: mixture

based language models and cache based models. Both models reduced perplexity signifi-

cantly over a trigrammodel. For the mixture model, the training data was partitioned into

several components and a trigram language model was constructed for each component.

The final model was a linear combination of the component language models. For the

cache model, a unigram cache and an exponentially decaying cache [21] were investigated.

Grave et al. [42] proposed a neural network adaptation method which is similar to the

cache model [62]. It involved storing the recent hidden activations in memory and using

them as representation for the context to retrieve their corresponding word. The model

required no training, could be used on any pre-trained neural network, and could be scaled

to thousands of memory cells.

Lee et al. [139] Focused on personalizing recurrent neural network language models

(RNNLMs) using text collected from social network via crowdsourcing. In this approach,

a crawler collected data from a user’s social network. The data included the social network

posts of the user, the posts of their friends, and the posts authored by many other different

users. The personalized language model was based on these data.

Smart Compose [15] by Gmail provides real-time suggestions that helps users compose

93

emails quickly. Smart Compose was tested in different language modeling architectures.

For example, encoding context via an encoder and then providing it to a language model,

merging available context and then providing it to a language model, and sequence-to-

sequence prediction. It was also tested with different neural models such as RNNs and

transformers [116]. Personalization was achieved by training a light-weight n-gram lan-

guage model with Katz-backoff [54] on each user’s personal email data.

Li et al. [66] explored recurrent neural network model adaptation for conversational

speech recognition. They proposed two adaptation models. The first model is a conversa-

tional cache model estimated by counting words in a conversation and further interpolated

with a background unigram distribution estimated from a training text set. In the second

model they trained a deep neural network on conversational transcripts to predict word

frequencies given word frequencies from first pass decoded word lattices.

Li et al. [65] investigated two ways to adapt transformer based language models for auto-

matic speech recognition. The first approach is fine tuning. In this approach, a transformer

language model is trained on a large corpus of text. Then the model is adapted to a small

target domain via fine-tuning. The second approach is a mixture of dynamically weighted

models. In this approach, first a number of language models are trained on source and

target domains. Then the models are fused together by linear interpolation and dynamic

weighting.

King and Cook [56] trained a background language model on data from blog posts.

Then they evaluated three personalization techniques: i) continue training the background

language model on a user’s text, ii) train a personalized model on a user’s data and inter-

polate with the background model, and iii) prime the state of the background model with

94

text from the user. They trained both n-gram and LSTM based RNNLMs for background

and user specific models. Perplexity results showed improved performance with all three

techniques over the background model.

While the common practice in language model adaptation is to use two different models

trained on one in-domain (the adaptation corpus) and one out-of-domain (background

language model corpus) dataset, Wen et al. [132] proposed a RNNLM personalization

paradigm involving a third dataset. This dataset was built from a user’s social network data

crawled from a crowdsourcing platform and was used to fine-tune a model. They showed

that personalized RNNLMs trained using user oriented features reduced perplexity on the

test set compared to the models trained on the previous two corpora.

From the past work it is clear that language model personalization is not new. But except

from Fowler et al. [34], to our knowledge, no work has applied language model personal-

ization on finger-touch based virtual keyboards. Most approaches also evaluated the per-

sonalized models based on perplexity which is an intrinsic evaluation metric. But intrinsic

evaluations sometimes do not correlate with the downstream evaluation metrics, for ex-

ample, with word error rate [16]. Our work, in this chapter, mostly resembles the work in

Fowler et al. and we have improved upon their work by adding more adaptive models such

as prediction by partial matching (PPM) and recurrent neural network language models

(RNNLMs).

Fowler et al. evaluated their models on large scale human like input on touch keyboards

using keystroke savings (KS) and word error rate (WER) metric. In this work, we used char-

acter error rate (CER) beside those two metrics. There are a couple of key differences be-

tween our work and theirs. The most pronounced difference is that we have used three

95

adaptive models and combinations of these models in comparison to their unigram cache

only model. Whereas Fowler et al. only showedWER results with noisy input, we provided

KS, WER, and CER results.

6.3 Language Model Personalization

6.3.1 Development and Test Sets

We used the recently released Enron email dataset [40] that Fowler et al. [34] curated. The

released dataset contains text files arranged in two subsets: a development set and a test test.

Each file in each subset represents text written by an Enron employee in a chronological or-

der. Originally Fowler et al. used data from 90 users with 45 users in each of the dev set and

test set. But they could not release data from one user due to a permission issue. For our

simulation experiments, we stripped all non-alphabetical characters except the apostrophe

and converted the text to lower case. We did not remove apostrophes like Fowler et al. since

we thought using contractions in chat or email messages is very common.

We also divided the dataset into development set and evaluation set. We had the same

45 users’ data in the development set and the same 44 users’ data in the evaluation set. We

used the development set for finding appropriate scale factors of the language models. Dur-

ing evaluation, Fowler et al. used each of the test users’ entire text data. But we did not

use a user’s entire text during evaluation. One reason for doing so was that the test users

had disproportional amount of text ranging from 3K words to 140K words. We thought

evaluating on the disproportional amount of data might not reflect the true effect on the

performance. We wanted to accurately measure the variability in performance among the

different users with respect to the different adaptation models. This would have been a lot

96

more variable if each user had vastly different amounts of test data.

Hence, we found the user who had the minimum number of words in their text and

selected the same amount of text for other users. We ended up with having 3040 words

in each of the test users’ text. We further divided each user’s text into two parts. In the re-

maining part of this chapter, we would refer the first half of a user’s text as seed text and the

second half as the test text. During evaluation, we always evaluated on the second half of

the users’ text. However, sometimes we fed the seed text to the adaptive models, updated

their states, and then used the updated models to evaluate on the test text. We would refer

these models as primed models. When the models did not use the seed text, we would refer

those models as models with a flat start.

6.3.2 Background Language Model

We used a 12-gram character language model that was trained on data collected from blog

posts, forum, and twitter [125]. We chose the large 12-gram character language model*.

We chose this language model because it was trained on texts that are similar to the texts we

write in email communication and were similar to the Enron data. The 12-grammodel had

40.9M character n-grams and the training set contained 504Mwords. Fowler et al. used a

bigram word language model as the background model. The model contained 8.5Mword

n-grams. We also used a 6-gram character language model from the above source to com-

pare the performance against the bigram word language model. The 6-gram character lan-

guage model had 3.6M character n-grams.

*https://keithv.com/software/mobiletext/

97

https://keithv.com/software/mobiletext/

6.4 Experiments

In this section, we simulate touch input on a smartphone keyboard where an ideal user

provides the touch input and selects a word prediction from the list of suggestions above

the keyboard. We assume the ideal user only enters lower case characters and behaves in two

ways. In the first case, the ideal user enters all the words of a sentence one-by-one. The user

starts by entering a character of a word and observes the text in the suggestion slots. The

user does not provide any incorrect input and is always assumed to choose a word from the

offered list of word predictions if it matches with the user’s intended word.

In the second case, we assume the ideal user is prone to making errors and might not hit

a key correctly every time. But similar to the first case, even with spatial noise we assume the

user selects the target word as soon as it is shown in one of the suggestion slots. Before we

jump into the simulation experiments, let us first have a look at the various components of

the simulation process.

Decoder. We used the VelociTap decoder [126] for simulating touch typing with En-

ron data. We had a program that used the decoder and the decoder handled the simulated

touch input. For an input sentence, the program first mapped each letter of the sentence

to the 2D coordinates of its corresponding key in a keyboard and considered it as a touch

location. Touch locations could be noisy or without any noise. When touch locations were

not noisy, the coordinates of a letter were deterministic and we told the decoder not to sub-

stitute this letter with any other character during the decoder’s search. For noisy cases, we

randomly sampled the touch coordinates of a letter from a 2DGaussian distribution. To

sample the touch coordinates we used a similar QWERTY keyboard Fowler et al. used ex-

98

cept we had the apostrophe key in the second row right beside the l key. The width of a

single key was 6.16mm and the height was 9.42mm. The standard deviations of the 2D

Gaussian distribution centered at each key were set to 1.97mm in the x axis and 1.88mm

in the y axis.

Then touch locations were given as input to the VelociTap decoder. For each touch lo-

cation, VelociTap would generate an n-best list of word hypotheses according to a touch

model, the 12-gram character language model, and a dictionary of words. We used a dictio-

nary containing 168K words. We choose this to match the size of the vocab used by Fowler

et al. We used the parameters tuned on thousands of smartphone touch data described in

Vertanen [119]. We used a n-best size of 100. Depending on the adaptation models we

used, we further rescored the n-best list with only one or with an ensemble of the adapta-

tion models. We set n-best size high so that we could have a list containing less probable

words also. Having a less probable word in the n-best list is useful since if it is not in the n-

best list it will not be rescored even if it is more probable according to the rescoring models.

We also did not use the adaptation language models directly in the decoder’s search like the

12-gram character language model. As we have seen in Chapter 1.2, using language mod-

els for example, a recurrent neural network language model during search would have been

expensive.

The decoder would offer three word suggestions after each progressive touch input.

When the touch input corresponded to the prefix of a word, one suggestion always pro-

vided the literal text mapped by the touch locations to the keys in the keyboard. The other

two suggestions were populated from the n-best list. When there were no pending touch

input, the decoder would offer the next most likely words given the previous words.

99

Adaptive language models. We considered several language models for personalization:

i) Neural Language Model. We trained a recurrent neural network language model

(RNNLM) [10] with LSTM [48] units on the same training data that was used

to train the n-gram background language model. We did a hyperparameter search

on small amount of data to find the optimal parameters of the RNNLM. The fi-

nal RNNLM had a character embedding size of 64, 512 LSTM units, one hidden

layer, and a dropout rate of 0.55. We used the Adam optimizer [57] with a learning

rate of 0.001. Although we used the RNNLM as an adaptive model, but since we

did not backpropagate through the previous hidden states and update the states, the

RNNLMwas about ensembling a static model with weak adaptation via maintain

the hidden states.

ii) Unigram cache. Since the number of words in our test files was only about 1.5K

words, we did not limit the size of the cache. We also did not use an exponentially

decaying cache since it performed similar to a unigram cache with infinite size in

Fowler et al. [34]. For each of the simulation experiments in section 6.4.1 and 6.4.2,

we considered two situations. First, the unigram cache had a flat start. We started

from an empty cache and evaluated on the test files. Second, we primed the cache

with the seed files and evaluated on the test files.

iii) Prediction by partial matching (PPM).We adapted the PPM implementation

fromGoogle † which was implemented following the algorithm used in Dasher

[129]. We used a PPM order of six and a order of 12. Similar to the unigram cache,
†https://github.com/google-research/google-research/tree/master/jslm

100

we had the PPMmodels adapt on the test files and also adapt on the seed files.

Given a series of touch locations, VelociTap first searched for the probable word hy-

potheses and generated a list of 100 best word hypotheses. During search we only used

the background language model. After we had the 100 best word hypotheses, we further

asked the adaptive models to calculate the probability of each word in the list. Then we in-

terpolated the probability scores from the background language model and the adaptive

language models. We used only one adaptive model or a combination of adaptive mod-

els during this process. When we used the adaptive models, it re-ranked the 100 best word

hypotheses. To determine the contribution of each adaptive models to the adaptation pro-

cess, we required to know the mixture weights or scale factors of the different models. We

used the text of six users from the development set (Section 6.3.1) to determine these scale

factors.

Evaluation metrics. After a final list of 100 best word hypotheses were generated, the

top three words were offered to the simulated user. During our simulation experiment,

the simulated user made optimal use of any available suggestion slots to try and obtain the

intended text. We further assumed that the simulated user did not use any backspace. If

the simulated user did not get the desired word during input, we used the most likely word.

Since the simulated user did not use backspaces, this left uncorrected words during the

input process especially when touch locations had spatial noise. We used three metrics to

evaluate the simulated user’s performance. The first is character error rate (CER) of the

final text. The second is word error rate (WER) of the final text. The third is keystroke

savings. We calculated keystroke savings using the formula described in Equation 2.15. We

assumed selection of a suggestion slot requires one keystroke and adds any following space.

101

Flat start Primed

Model KS (%) KS (%)

Background (6-gram) 39.3± 0.3 39.3± 0.3
Background (12-gram) 45.6± 0.3 45.6± 0.3
+ Unigram 46.3± 0.3 46.7± 0.3
+ RNNLM 46.8± 0.3 46.9± 0.3
+ PPM-6 47.4± 0.3 48.2± 0.3
+ PPM-12 47.7± 0.3 48.6± 0.3
+ Unigram + PPM-12 + RNNLM 48.7± 0.3 49.4± 0.3

Table 6.1: Keystroke savings (KS) on the Enron test data when all the adaptive models had a flat
start versus when the models were primed. No spatial noise was applied to the simulated touches.
± values denote 95% user‐wise bootstrap confidence intervals.

6.4.1 Simulating Smart Touch Keyboard Typing

In the first experiment, we simulated touch typing of an ideal user without any spatial

noise. In this case, we assumed the user always touched their intended keys.

Results. Table 6.1 shows simulation results with no spatial noise and with three sugges-

tion slots. We evaluated the noiseless test input with keystroke savings (KS). In this case,

character error rate (CER) and word error rate (WER) is zero since there is no noise. Col-

umn 2 shows the results on the test data when all the adaptive models started without any

adaptation. From the results, we can see that using a 12-gram background character lan-

guage model we gained a maximum of 45.6% keystroke savings. If a lower order 6-gram

background character language model was used, the keystroke savings deteriorated to

39.3%. We calculated the results with the 6-gram character language model since it was

roughly equivalent to the bigram language model Fowler et al. used.

We used the adaptive models with the 12-gram character language model. When adap-

102

tive models had a flat start, a unigram cache and a recurrent neural network language model

improved keystroke savings to 46.3% and 46.8%. When the unigram cache and the RNNLM

were primed with a user’s previous text, it improved the keystroke savings slightly to 46.7%

and 46.9% respectively. But using PPM as the adaptation model, we had a substantial

gain in the keystroke savings. A PPMwith order six had a keystroke savings of 47.4% and

with order 12 had a keystroke savings of 47.7% when started flat. The keystroke savings

improved further to 48.2% and 48.6% when the models were primed with users’ previ-

ous written text. An ensemble of unigram, RNNLM, and PPM order 12 had the highest

keystroke savings at 48.7% with flat start and 49.4% with priming. For both these cases, the

mixture weights were: 12-gram character language model 0.30, unigram cache 0.25, PPM-

12 0.15, and RNNLM 0.30.

6.4.2 Simulating Noisy Smart Touch Keyboard Typing

In this simulation experiment, we simulated touch typing of an ideal user susceptible to

making errors when selecting a target key.

Results. Table 6.2 shows the simulation results on the noisy touch input with three sug-

gestion slots. The middle section of the table shows results when the adaptive models had a

flat start and the bottom section shows results when the models were primed. We evaluated

the noisy test input with keystroke savings (KS), character error rate (CER), and word error

rate (WER) metrics. If we compare the results with the results from Table 6.1, we can see

that keystroke savings dropped around 2% when spatial noise was introduced in the touch

input. But similar to noiseless input, keystroke savings improved when an adaptive model

or an ensemble of adaptive models were used. Again, improvement on keystroke savings

103

Spatial noise

Model KS (%) CER (%) WER (%)

Background (6-gram) 37.3± 0.3 0.97± 0.04 2.02± 0.08
Background (12-gram) 43.6± 0.3 1.15± 0.06 2.17± 0.09

Background (12-gram) and flat start
+ Unigram 45.1± 0.5 1.10± 0.05 2.01± 0.08
+ RNNLM 45.1± 0.3 1.12± 0.05 2.07± 0.09
+ PPM-6 45.6± 0.3 0.74± 0.04 1.51± 0.06
+ PPM-12 45.8± 0.3 0.75± 0.04 1.52± 0.06
+ Unigram + PPM-12 + RNNLM 46.9± 0.3 0.77± 0.04 1.53± 0.07

Background (12-gram) and primed
+ Unigram 45.3± 0.5 0.89± 0.04 1.66± 0.06
+ RNNLM 45.2± 0.3 1.04± 0.05 1.91± 0.08
+ PPM-6 46.5± 0.3 0.68± 0.03 1.37± 0.06
+ PPM-12 46.9± 0.3 0.68± 0.03 1.36± 0.06
+ Unigram + PPM-12 + RNNLM 47.8± 0.3 0.69± 0.03 1.40± 0.06

Table 6.2: Keystroke savings (KS), character error rate (CER), and word error rate (WER) on the En‐
ron test data when all the adaptive models had a flat start (middle section) versus when the models
were primed (bottom section). Spatial noise applied to simulated touches. ± values denote 95%
user‐wise bootstrap confidence intervals.

with unigram and RNNLMwere minimal when the models were primed (KS of 45.3%

and 45.2%) versus when they had a flat start (KS of 45.1% and 45.1%). When the models

were not primed, a six order PPM had a KS of 45.6%, a 12 order PPM had a KS of 45.8%,

and an ensemble of a unigram, a RNNLM, and a 12 order PPM had a KS of 47.8%. The

models had KS of 46.5%, 46.9%, and 47.8% respectively when they were primed with users’

previous text. For the ensemble of models, the mixture weights were: 12-gram character

language model 0.30, unigram cache 0.25, PPM-12 0.15, and RNNLM 0.30 during flat

start and when the models were primed.

Figure 6.1 shows the graph on keystroke savings with noisy input comparing the back-

104

● ● ●
● ●

●

0

5

10

15

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

User

K
e

y
s
tr

o
k
e

 s
a

v
in

g
s
 (

K
S

%
)

● Background LM

Ensemble (flat)

Ensemble (primed)

Figure 6.1: Graph showing keystrokes savings for each user in three different settings and with noisy
touch data. Ensemble (flat) represents the combination of background language model, unigram
cache, RNNLM, and PPM‐12 with a flat start. Ensemble (primed) represents when the models were
primed with the seed text. Users are sorted according to the keystroke savings using the 12‐gram
background language model.

ground language model versus the ensemble model with and without priming. It is clear

from the graph that the ensemble model without priming beats the background only model

and the ensemble model with priming beats the ensemble model without priming.

Recall how some uncorrected words were left in the entered text when spatial noise was

introduced in the input. The uncorrected words contributed to character and word errors

in the final text. When adaptive models were used, the character error rates and word error

rates were low compared to the background only model. When adaptive models were used,

the character error rates with and without priming were less than 1.12%. On the other

hand, word error rates were less than 2.07%. We also calculated the literal character error

rate and literal word error rate. Literal character error rate and literal word error rate repre-

sent the error rates if we used only the mapping of touch locations to keys in the keyboard

105

without any auto correction. The literal character error rate with the noisy touch input was

9.46% with a 95% CI of 0.02% and the literal word rate rate was 39.3% with a 95% CI of

0.27%. The literal word error rate is consistent with 38.4% that Fowler et al. reported. They

did not report the literal character error rate. Our best adaptive model with primed data

reduced the character error rate to only 0.69% and the word error rate to 1.40%. These are

about 92.7% reduction from the literal character error rate and 96.4% reduction from the

literal word error rate. As opposed to the character error rate and word error rate with the

background 12-gram character language model, the reductions are about 40% and 35.5%

respectively.

In our experiment, similar to Fowler et al. , we used three suggestion slots to offer word

prediction to the ideal user. But in Chapter 4 we saw that we can increase the number of

suggestion slots without affecting the text entry performance for able-bodied users with a

slow input rate. We thought if we increase the number of suggestion slots, then how would

that affect the performance in our noisy touch input simulation experiment. Therefore, we

increased the number of slots to four and five and ran experiments with the best ensemble

model we found during our evaluation. We also primed the ensemble model with seed text.

With noisy input and with four suggestion slots, the ensemble model had a keystroke sav-

ings of 51.4% and with five suggestion slots the ensemble model had a keystroke savings of

53.7%.

6.5 Discussion

In this work, we tested various language model adaptation techniques on historical text

data and simulated the behaviour of an ideal user entering text on a touchscreen keyboard.

106

We found that a simulated touch user can enter text accurately even if the user makes mis-

takes by not hitting the target key all the time. We also saw that using a model that adapts

to the user’s progressive text improves next word prediction. For best results, an ensemble

of different adaptive language models such as a background language model, a unigram

cache, an RNNLM, and a PPMmodel is desirable. But in case the RNNLM is costly to

use in a system, acceptable performance can be achieved by accompanying PPMwith vary-

ing orders with the background language model.

We also found that our best setting, an ensemble of different language models, had a

keystroke savings of 49.4% with no noise and 47.8% with noise. These are about 8.3% and

9.6% increase respectively from using only the best background language model. Fowler

et al. had a similar 8.6% relative gain using a cache model and with no noise. They did not

report the relative gain on the keystroke savings with noisy input. Although we tested on

different amount of text data compared to Fowler et al. , our small 6-gram background

character language model was not on par with the background bigrammodel they used.

But our large background model, a 12-gram character language model, as evidenced by the

keystroke savings result was better than the bigrammodel. Our adaptive models further

improved performance over this large and long-span background language model.

We found that the recurrent neural network language model when used as an adaptive

model did not perform better than PPM. Even a lower order PPMwhich modeled only

six previous characters performed better than the RNNLM. It could be for a couple of

reasons. First, the RNNLMwas trained on the same data the background 12-gram char-

acter language model was trained on. As such the effect of RNNLM as an adaptive model

was more like a unigram cache and it showed similar performance to a unigram cache. Per-

107

haps training a RNNLM onmore diverse and a different data set than the background

model would improve performance further. Second, while using the RNNLMwe did

not reset the hidden states and carried on providing the previous hidden states as input

to the next states. However, we did not backpropagate through the hidden states and up-

date the weights. In our opinion, updating the hidden states and fine-tuning the RNNLM

frequently with the user’s written text might improve performance.

6.6 Conclusion

In this work, we conducted simulation experiments on touchscreen keyboards with noisy

input. We showed the effects of various adaptive language models on correcting an ideal

user’s noisy input and personalizing the models based on the user’s past writing pattern.

Our results suggest that personalizing language models with the user’s previous written

text can improve performance. With noiseless touch input the best personalized model can

achieve a 8.3% increase in keystrokes savings and with sloppy input can achieve a 9.6% in-

crease in keystroke savings in comparison to using only a n-gram character language model.

Also personalized models can reduce the character error rate and the word error rate by

36-40% as opposed to the background only model. In a real user interface, high keystroke

savings and low error rates will be helpful to help users write fast without using backspaces

or other corrective features too frequently.

108

7
Conclusion

7.1 Discussion

This dissertation presented a set of techniques to accelerate the input of a rate-limited AAC

user. At first we looked at performing speech recognition on an AAC user’s speaking part-

ner. We tested three microphone deployment options and performed speech recognition

on the recorded audio clips with two commercial speech recognizers namely Google and

109

IBMWatson. Then we investigated whether performing speech recognition on the partner

speech and using the speech recognition results as context improves two-sided conversa-

tional language modeling. We found using partner speech context improves performance

even with recognition word error rates of 7 − 16%. This improvement was nearly as good

as when reference transcripts were used as context.

While using partner speech context provided promising results, there were no word pre-

diction results. We evaluated the language models with partner speech context based on

perplexity metric. It was not clear if it would work in the same way in an actual text entry

application. To examine this we conducted experiments using a simulated user entering

text on a keyboard. Before the simulation experiment we conducted a crowdsourced user

study to determine the number of suggestion slots we should use. We had the users enter

text on a web keyboard by dwelling on a key using a mouse pointer for one second. We of-

fered different number of suggestion slots to the users. We found user performance was

similar when 3–9 slots were used. From the study, we also estimated the average time the

users spent tapping a key. Then we had a hypothetical user enter text on a keyboard. The

hypothetical user was assumed to be taking part in a two-way conversation. To provide

word predictions to the user we used several options: 1) a background language model and

context from the already written text in that turn, 2) the background language model, a

RNNLM trained on one-sided text from a dialogue, and context from the user’s previous

turns, and 3) the background language model, a RNNLM trained on both side’s text from

a dialogue, and context from the user’s previous turns plus context from the other side’s

speech recognition results. We found partner speech context improved the user keystroke

savings but the gain was small.

110

Next, we examined if we could reduce an AAC user’s burden of entering all the letters

in a sentence by allowing them to occasionally skip letters from the words. We conducted

a crowdsourced user study to know how people abbreviate. Then inspired from past work

and by analyzing the user behaviour in a crowdsourced study we decided to have user enter

text by skipping mid-word vowels and space between words. We conducted simulation ex-

periments to confirm that a sentence can be recovered even if we drop some or all mid-word

vowels and spaces between words. We also proposed a deep neural based data selection

technique to sample training data for a low resource target domain from Twitter. Finally,

we conducted a crowdsourced study where able-bodied user entered text by dwelling over

a key for a second to click it. They entered text by the standard word-by-word approach

with suggestions and our abbreviation approach. After practice, users wrote only slightly

slower using sentence abbreviated input at 9.6 words-per-minute compared to a conven-

tional keyboard with word predictions at 9.9 words-per-minute in the last eight phrases. If

a phrase was abbreviated by removing spaces and mid-word vowels, our system expanded

the abbreviated input to the intended phrase 90% of the time.

Finally, we examined language model personalization. We collected a publicly available

text dataset which contained a set of users’ chronological written text. We simulated a hy-

pothetical user who went through each of the test user’s chronological written text and

entered them progressively using a touchscreen keyboard. We further assumed the hypo-

thetical user entering text with and without any error. We used a language model or an

ensemble of language models to provide word predictions to the simulated user. We al-

lowed language models to adapt to a test user’s previous text. We found allowing language

models to adapt to a test user’s previous text improved the simulated user’s keystroke sav-

111

ings rate. With noiseless touch input our best personalized model achieved a 8.3% increase

in keystrokes savings and with noisy input achieved a 9.6% increase in keystroke savings in

comparison to using only a n-gram character language model.

7.2 Future Work and Limitations

The series of work presented in this dissertation provides a few insights on accelerating

text input for users who have speech- or motor-impairments. The ultimate goal of the se-

ries of research discussed here is to design an interface so that rate-limited users can input

text faster and with ease. But there are limitations and the future work can focus resolving

these limitations. Although at the end of each chapter we have already discussed about the

limitations and scope of future work for each technique, below we discuss a few points in

general:

The first and foremost limitation of our work is we did not involve rate-limited users

in any of our user study. From a usability perspective it is desirable to test a system by the

set of target users. However, directly involving rate-limited users in a study is difficult be-

cause it is hard to find such users and there are ethical and privacy concerns. In this disser-

tation, we tested ideas which are still in the primary phase. Before testing the ideas we did

not know if the ideas would work or not. Therefore, we were hesitant to involve actual rate-

limited users. Our results from different simulation experiments and user studies tell us

that there is still room for improvement. Still we can develop a viable prototype based on

what we have learnt so far. We can have this prototype tested by rate-limited AAC users.

Second, to simulate dwell we had able-bodied users hover on a key using a mouse pointer

or press a key for one second. But a rate-limited AAC user typically uses eye-gaze or row-

112

column scanning with a switch to actuate a key. Therefore, our approaches need further

validation. For example, instead of using a mouse pointer or a long finger press, it needs to

be seen whether our interfaces work similarly with eye-gaze and dwell.

Third, we relied on remote servers. In Chapter 3, we relied on cloud based services such

as Google Cloud Speech-to-Text and IBMWatson Speech-to-Text for speech recognition.

Our text entry interfaces used in the user studies in Chapter 4 and chapter 5 relied on a

decoder and we hosted this decoder in a remote server. Networking delays or service inter-

ruptions are very common and can negatively affect the users interacting with a text entry

interface. For example, we had to replace participants in Chapter 4 who experienced net-

working delays. Since our text entry interfaces work with real-time input, it is expected that

we provide real-time word predictions to the users. In some cases, a user might also want to

use the device without network connectivity. For such cases, hosting a speech recognizer or

the decoder in the user device will be more beneficial.

Fourth, we lacked appropriate data. The quality of word predictions specific to a target

domain largely depends on data the predictive model was trained on. Since our text entry

interfaces are mainly focused on accelerating input for AAC users, we expect our models

to provide word predictions relevant to AAC users’ text. But for making such word pre-

dictions the models need to be trained on text similar to the text the AAC users normally

use. We did not have a good dataset representative of AAC users’ text. We used text from

different sources such as Common Crawl, Twitter, and Reddit. We even came up with a

data selection technique in Chapter 5 to find AAC user-like text. Still these text data were

not from actual rate-limited users. Future work can focus more on collecting AAC users’

text. One way to obtain such text could be via donations from AAC users and stakeholders

113

(family members, speech and language pathologists, teachers, or physicians).

7.3 Final Remarks

In this dissertation, we examined different techniques for accelerating everyday text com-

munication for people using alternative and augmentative communication (AAC) devices.

Based on different user studies, simulation experiments, and empirical evidence we have

shared different insights on designing AAC text entry interfaces. We believe these will be

helpful to modify existing AAC text entry interfaces and will also work as a guide to future

research directions.

114

A
Appendix

A.1 Abbreviation Study Instructions

In our first crowdsourced study in Chapter 5, we had 200 workers abbreviate a series of ten

email messages. Figure A.1 shows the complete instructions we gave to workers.

115

Figure A.1: Instructions given to workers in our free‐from abbreviation crowdsourced study in
Chapter 5.

A.2 Error Rate to Compression

In our final crowdsourced study in Chapter 5, we plotted participants’ character error rate

against increasing abbreviation in the Sentence condition. With increasing compression,

the error rate also increased (Figure A.2).

A.3 Selecting Training Data

Table A.1 shows a list of example sentences selected using three ways described in Chapter

5: random selection, cross-entropy difference selection, and BERT selection.

A.4 Recognizing Noisy Abbreviated Input

Table A.2 shows some examples from our recognition experiments using the RNNLM

rescoring configuration in Chapter 5.

116

●● ● ●

●

●

● ●

●

● ●● ● ●

●

●

●

●

●

●

●●● ●● ●● ●● ●●●●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

● ●●● ●

●

● ●●●

●

●● ●● ● ●●● ●●●● ●

●

●● ●●●

●

● ● ●● ●

●

●

●

●

●● ● ●●

●

●●

●

●

● ●●

●

●●●

●

●

●

● ●● ●● ●● ●● ●●● ●●● ●● ●

●

●●

●

●

● ●

●

● ●

●

●● ●●●● ●● ●●●● ● ●●

●

●

●●●● ●●

●

●

●●● ● ●●

●

●

●

● ●

●

●

● ●

●

●

●●● ●●

●

●

●

●●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●●●●

●

●● ●

●

●● ●

●

●● ●● ●●● ●●

●

● ●●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●

●

●

●

● ●● ● ●●●●

●

●●●

●

●

●● ●●● ●

●

●●● ●●● ●●

●

●●● ●●

●

●●●●● ●● ●

●

●● ● ●

●

●●● ● ● ●● ●●

●

●

●

●●

●

●

●

●

●
●

● ●● ●●

●

●

●

● ●●●● ●● ● ●●

●

●●●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

● ●● ●

●

●

●

●●●

●

● ●

●
●

●● ●● ●● ●● ●

●

●

●

●

●● ●

●

●

● ●●●● ● ●●

●

●

●●

●

●

●

●

●●

●

●● ●●● ●●● ● ●● ●

●

●

●●●

●

●

●

●

●

●

● ●

●

● ●●● ●●●

●

● ● ●● ● ●● ●

●

●

●

●● ● ●● ●

●

● ●● ●● ●●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ● ●● ● ● ●● ● ●●

●

● ●● ●

●

●

● ●●

●

●

● ●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●● ●● ●●

●

●

●

● ●● ● ●

●

●●● ●● ● ●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●

●

●●

●

● ● ● ●● ●●

●

● ●●

●

●●

●

●

● ●● ●● ●

●

●

●
●

●

●

●

●

0

25

50

75

100

20 40 60 80

Compression of input (%)

E
rr

o
r

ra
te

 o
f
e
x
p
a
n
s
io

n
 (

C
E

R
 %

)

Figure A.2: Error rate of automatic expansion with increasing abbreviation of the input in the final
study in Chapter 5.

Random selection
Random 1: i’m a huge fan of your work it’s really well done.
Random 2: the main challenge is to integrate more and more qubits to silicon chips.

Cross-entropy difference selection
Top 1: what’s for dinner? what’s for lunch?
Top 2: how’s things going?
Mid 1: want to know what happened during fish robert ed fish’s life?
Mid 2: do you want to work at a job or do you want to play at a passion.
Bottom 1: think super mario bros.
Bottom 2: is there a form applicants should submit, or should they just send an email with their resume?

BERT selection
Top 1: you don’t like doing homework?
Top 2: you need money?
Mid 1: i am very proud of you for what you are doing with your life right now.
Mid 2: imagine my terrible position!
Bottom 1: she has a bachelor’s degree in political science from lincoln university in oxford, pennsylvania.
Bottom 2: good relations are answers. bad relations are disasters.

Table A.1: Examples of selected text data using three different approaches described in Chapter
5. For BERT and cross‐entropy difference selection Top, Mid, and Bottom represent the absolute
positions in the ordered list according to their scores.

117

Vowel drop probability Example

0.5 Reference: hopefully this can wait until monday
0.5 Input: hopeflltthisvamwwtujrlmndy
0.5 Recognition: hopefully this can wait until monday

0.5 Reference: let it rip
0.5 Input: ltutrp
0.5 Recognition: let it rip

0.5 Reference: should systems manage the migration
0.5 Input: shldsystensmnferhemgratin
0.5 Recognition: she’d systems manager he migration

1.0 Reference: could you see where this stands
1.0 Input: cldyusewhtwrgsstnda
1.0 Recognition: could you see where the stands

1.0 Reference: florida is great
1.0 Input: flrdaushrt
1.0 Recognition: florida is great

1.0 Reference: they are more efficiently pooled
1.0 Input: yhyare’rrefgvmyluplf
1.0 Recognition: they are more egg vinyl hold

Table A.2: Abbreviated and noisy input and the resulting recognition results from Chapter 5. The
input text represents the closest key to each tap observation in our data. Recognition errors are
underlined.

118

References

[1] (2018). Augmentative and Alternative Communication (AAC). https://www.
asha.org/public/speech/disorders/aac/. Accessed: 2018-11-23.

[2] (2022). The Eyegaze Edge. https://eyegaze.com/products/eyegaze-edge/.
Accessed April 10, 2022.

[3] Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (ReLU). arXiv
preprint arXiv:1803.08375.

[4] Arnott, J. L., Newell, A. F., & Alm, N. (1992). Prediction and Conversational Mo-
mentum in an Augmentative Communication System. Communications of the
ACM, 35(5), 46–57.

[5] Axelrod, A., He, X., & Gao, J. (2011). Domain Adaptation via Pseudo In-Domain
Data Selection. In Proceedings of the 2011 Conference on EmpiricalMethods in Nat-
ural Language Processing (pp. 355–362). Edinburgh, Scotland, UK.: Association for
Computational Linguistics.

[6] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint arXiv:1409.0473.

[7] Baljko, M. & Tam, A. (2006). Indirect Text Entry Using One or Two Keys. In
Proceedings of the 8th international ACM SIGACCESS conference on Computers and
accessibility (pp. 18–25).

[8] Bell, T. C., Witten, I. H., & Cleary, J. G. (1990). Text Compression. Englewood
Cliffs, NJ, USA: Prentice Hall.

[9] Bellegarda, J. R. (2004). Statistical Language Model Adaptation: Review and Per-
spectives. Speech communication, 42(1), 93–108.

[10] Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A Neural Probabilistic
Language Model. Journal ofMachine Learning Research, 3(Feb), 1137–1155.

119

https://www.asha.org/public/speech/disorders/aac/
https://www.asha.org/public/speech/disorders/aac/
https://eyegaze.com/products/eyegaze-edge/

[11] Bisani, M. &Ney, H. (2004). Bootstrap Estimates for Confidence Intervals in ASR
Performance Evaluation. Proceedings of the IEEE Conference on Acoustics, Speech, and
Signal Processing, (pp. 409–411).

[12] Brants, T., Popat, A. C., Xu, P., Och, F. J., & Dean, J. (2007). Large Language Mod-
els in Machine Translation. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL).

[13] Chen, B. &Huang, F. (2016). Semi-supervised Convolutional Networks for Trans-
lation Adaptation with Tiny Amount of In-domain Data. In Proceedings of The
20th SIGNLL Conference on Computational Natural Language Learning (pp. 314–
323). Berlin, Germany: Association for Computational Linguistics.

[14] Chen, B., Kuhn, R., Foster, G., Cherry, C., &Huang, F. (2016). Bilingual Methods
for Adaptive Training Data Selection for Machine Translation. In Proceedings of the
Association forMachine Translation in the Americas (pp. 93–103).

[15] Chen, M. X., Lee, B. N., Bansal, G., Cao, Y., Zhang, S., Lu, J., Tsay, J., Wang, Y.,
Dai, A. M., Chen, Z., Sohn, T., &Wu, Y. (2019). Gmail Smart Compose: Real-Time
AssistedWriting, (pp. 2287–2295). Association for ComputingMachinery: New
York, NY, USA.

[16] Chen, S. F., Beeferman, D., & Rosenfeld, R. (1998). EvaluationMetrics for Lan-
guage Models.

[17] Chen, S. F. & Goodman, J. (1999). An Empirical Study of Smoothing Techniques
for Language Modeling. Computer Speech & Language, 13(4), 359–394.

[18] Chen, X., Liu, X., Gales, M. J., &Woodland, P. C. (2015). Recurrent Neural Net-
work Language Model Training with Noise Contrastive Estimation for Speech
Recognition. In IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP ’15 (pp. 5411–5415).

[19] Chinea-Rios, M., Sanchis-Trilles, G., & Casacuberta, F. (2018). Creating the Best
Development Corpus for Statistical Machine Translation Systems. In Proceedings of
the 21st Annual Conference of the European Association forMachine Translation (pp.
99–108).: European Association for Machine Translation.

[20] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint
arXiv:1412.3555.

120

[21] Clarkson, P. R. & Robinson, A. J. (1997). Language Model Adaptation UsingMix-
tures and an Exponentially Decaying Cache. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 2 (pp. 799–802).

[22] Cleary, J. &Witten, I. (1984). Data Compression Using Adaptive Coding and Par-
tial String Matching. IEEE Transactions on Communications, 32(4), 396–402.

[23] Costello, J. M. (2014). Message Banking, Voice Banking and LegacyMessages.
Boston Children’s Hospital, Boston, MA.

[24] Dai, A. M. & Le, Q. V. (2015). Semi-supervised Sequence Learning.

[25] Danescu-Niculescu-Mizil, C. & Lee, L. (2011). Chameleons in Imagined Conver-
sations: A New Approach to Understanding Coordination of Linguistic Style in
Dialogs. In Proceedings of the 2ndWorkshop on CognitiveModeling and Computa-
tional Linguistics (pp. 76–87).: Association for Computational Linguistics.

[26] Darragh, J. J., Witten, I. H., & James, M. L. (1990). The Reactive Keyboard: A
Predictive Typing Aid. Computer, 23(11), 41–49.

[27] Demasco, P. W. &McCoy, K. F. (1992). Generating Text from Compressed Input:
An Intelligent Interface for People with Severe Motor Impairments. Communica-
tions of the ACM, 35(5), 68–78.

[28] Demmans Epp, C., Djordjevic, J., Wu, S., Moffatt, K., & Baecker, R. M. (2012).
Towards Providing just-in-time Vocabulary Support for Assistive and Augmentative
Communication. In Proceedings of the 2012 ACM International Conference on
Intelligent User Interfaces (pp. 33–36).: ACM.

[29] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (pp.
4171–4186). Minneapolis, Minnesota: Association for Computational Linguistics.

[30] Diaz-Tula, A. &Morimoto, C. H. (2016). Augkey: Increasing Foveal Throughput
in Eye Typing with Augmented Keys. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (pp. 3533–3544).

[31] Dolic, J., Pibernik, J., & Bota, J. (2012). Evaluation of Mainstream Tablet De-
vices for Symbol based AACCommunication. InKES International Symposium

121

on Agent andMulti-Agent Systems: Technologies and Applications (pp. 251–260).:
Springer.

[32] Dudley, J. J., Vertanen, K., & Kristensson, P. O. (2018). Fast and Precise Touch-
Based Text Entry for Head-Mounted Augmented Reality with Variable Occlusion.
ACMTransactions on Computer-Human Interaction (TOCHI), 25(6).

[33] Duh, K., Neubig, G., Sudoh, K., & Tsukada, H. (2013). Adaptation Data Selection
using Neural Language Models: Experiments in Machine Translation. In Proceed-
ings of the 51st AnnualMeeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers) (pp. 678–683). Sofia, Bulgaria: Association for Computational
Linguistics.

[34] Fowler, A., Partridge, K., Chelba, C., Bi, X., Ouyang, T., & Zhai, S. (2015). Effects
of Language Modeling and Its Personalization on Touchscreen Typing Performance.
In Proceedings of the 33rd Annual ACMConference on Human Factors in Comput-
ing Systems (pp. 649–658). New York, NY, USA: Association for ComputingMa-
chinery.

[35] Gaines, D., Kristensson, P. O., & Vertanen, K. (2021). Enhancing the Composition
Task in Text Entry Studies: Eliciting Difficult Text and Improving Error Rate Cal-
culation. In Proceedings of the 2021 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’21 New York, NY, USA: Association for ComputingMachinery.

[36] Gao, J., Goodman, J., Li, M., & Lee, K.-F. (2002). Toward a Unified Approach to
Statistical Language Modeling for Chinese. ACMTransactions on Asian Language
Information Processing, 1(1), 3–33.

[37] Garcia, L., de Oliveira, L., & deMatos, D. (2014). Word and Sentence Prediction:
Using the Best of the TwoWorlds to Assist AACUsers. Technology and Disability,
26(2-3), 79–91.

[38] Gascó, G., Rocha, M.-A., Sanchis-Trilles, G., Andrés-Ferrer, J., & Casacuberta, F.
(2012). Does More Data Always Yield Better Translations? In Proceedings of the
13th Conference of the European Chapter of the Association for Computational Lin-
guistics, EACL ’12 (pp. 152–161). USA: Association for Computational Linguis-
tics.

[39] Ghosh, S. & Kristensson, P. O. (2017). Neural Networks for Text Correction and
Completion in Keyboard Decoding. arXiv preprint arXiv:1709.06429.

122

[40] Google (2021). Enron Personalization Validation Set. https://github.com/
google-research-datasets/EnronPersonalizationValidation. Accessed April
10, 2022.

[41] Grave, E., Joulin, A., & Usunier, N. (2016). Improving Neural Language Models
with a Continuous Cache. arXiv preprint arXiv:1612.04426.

[42] Grave, E., Joulin, A., & Usunier, N. (2017). Improving Neural Language Models
with a Continuous Cache. In 5th International Conference on Learning Representa-
tions, ICLR 2017, April 24-26, 2017: OpenReview.net.

[43] Gregory, E., Soderman, M., Ward, C., Beukelman, D. R., &Hux, K. (2006).
AACMenu Interface: Effectiveness of Active versus Passive Learning toMaster
Abbreviation-Expansion Codes. Augmentative and Alternative Communication,
22(2), 77–84.

[44] Han, S., Wallace, D. R., &Miller, R. C. (2009). Code Completion from Abbre-
viated Input. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09 (pp. 332–343). USA: IEEE Computer
Society.

[45] Higginbotham, D. J., Shane, H., Russell, S., & Caves, K. (2007). Access to AAC:
Present, Past, and Future. Augmentative and alternative communication, 23(3),
243–257.

[46] Hildebrand, A. S., Eck, M., Vogel, S., &Waibel, A. (2005). Adaptation of the Trans-
lationModel for Statistical Machine Translation Based on Information Retrieval.
In Proceedings of the 10th EAMTConference: Practical Applications ofMachine
Translation (pp. 133–142). Budapest, Hungary: European Association for Machine
Translation.

[47] Hochreiter, S. (1998). The Vanishing Gradient Problem during Learning Recurrent
Neural Nets and Problem Solutions. International Journal of Uncertain, Fuzziness
and Knowledge-Based Systems, 6(2), 107–116.

[48] Hochreiter, S. & Schmidhuber, J. (1997). Long short-termmemory. Neural Com-
putation, 9(8), 1735–1780.

[49] Howard, J. & Ruder, S. (2018). Universal Language Model Fine-tuning for Text
Classification. In ACL: Association for Computational Linguistics.

123

https://github.com/google-research-datasets/EnronPersonalizationValidation
https://github.com/google-research-datasets/EnronPersonalizationValidation

[50] Hur, B., Baldwin, T., Verspoor, K., Hardefeldt, L., & Gilkerson, J. (2020). Domain
Adaptation and Instance Selection for Disease Syndrome Classification over Veteri-
nary Clinical Notes. In Proceedings of the 19th SIGBioMedWorkshop on Biomedical
Language Processing (pp. 156–166). Online: Association for Computational Lin-
guistics.

[51] Ioffe, S. & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In International Conference on
Machine Learning (pp. 448–456).: PMLR.

[52] Kane, S. K., Linam-Church, B., Althoff, K., &McCall, D. (2012). What We Talk
About: Designing a Context-aware Communication Tool for People with Aphasia.
In Proceedings of the 14th international ACM SIGACCESS conference on Computers
and accessibility (pp. 49–56).: ACM.

[53] Kane, S. K. &Morris, M. R. (2017). Let’s Talk About X: Combining Image Recog-
nition and Eye Gaze to Support Conversation for People with ALS. In Proceedings
of the 2017 Conference on Designing Interactive Systems (pp. 129–134).: ACM.

[54] Katz, S. (1987). Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recognizer. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 35(3), 400–401.

[55] Kaufmann, T., Völker, S., Gunesch, L., & Kübler, A. (2012). Spelling is Just a Click
Away–a User-centered Brain-computer Interface Including Auto-calibration and
Predictive Text Entry. Frontiers in Neuroscience, 6, 72.

[56] King, M. & Cook, P. (2020). Evaluating Approaches to Personalizing Language
Models. In Proceedings of the 12th Language Resources and Evaluation Conference
(pp. 2461–2469). Marseille, France: European Language Resources Association.

[57] Kingma, D. P. & Ba, J. (2015). Adam: AMethod for Stochastic Optimization. In
3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA,May 7-9, 2015, Conference Track Proceedings.

[58] Klimt, B. & Yang, Y. (2004). The Enron Corpus: A NewDataset for Email Clas-
sification Research. In Proceedings of the 15th European Conference onMachine
Learning, ECML’04 (pp. 217–226). Berlin, Heidelberg: Springer-Verlag.

[59] Kneser, R. &Ney, H. (1995). Improved Backing-off for M-gram Language Model-
ing. In ICASSP, volume 1 (pp. 181e4).

124

[60] Koester, H. H. & Simpson, R. C. (2014). Method for Enhancing Text Entry Rate
with Single-switch Scanning. Journal of Rehabilitation Research and Development,
51(6), 995.

[61] Kristensson, P. O. & Zhai, S. (2004). SHARK2: A Large Vocabulary Shorthand
Writing System for Pen-based Computers. In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology, UIST ’04 (pp. 43–52). New
York, NY, USA: ACM.

[62] Kuhn, R. (1988). Speech Recognition and the Frequency of Recently UsedWords:
AModifiedMarkovModel for Natural Language. In Proceedings of the 12th Confer-
ence on Computational Linguistics - Volume 1, COLING ’88 (pp. 348–350). USA:
Association for Computational Linguistics.

[63] Kuhn, R. & DeMori, R. (1990). Cache-based natural language model for speech
recognition. IEEE Transactions on Pattern Analysis andMachine Intelligence, 12,
570–583.

[64] Levine, S., Gauger, J., Bowers, L., & Khan, K. (1986). A Comparison of Mouthstick
andMorse Code Text Inputs. Augmentative and Alternative Communication, 2(2),
51–55.

[65] Li, K., Liu, Z., He, T., Huang, H., Peng, F., Povey, D., & Khudanpur, S. (2020). An
Empirical Study of Transformer-Based Neural Language Model Adaptation. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2020) (pp. 7934–7938).

[66] Li, K., Xu, H., Wang, Y., Povey, D., & Khudanpur, S. (2018). Recurrent Neural
Network Language Model Adaptation for Conversational Speech Recognition. In
Proceedings of Interspeech 2018 (pp. 3373–3377).

[67] Li, Y., Su, H., Shen, X., Li, W., Cao, Z., & Niu, S. (2017). DailyDialog: AManually
Labelled Multi-turn Dialogue Dataset. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 986–
995). Taipei, Taiwan: Asian Federation of Natural Language Processing.

[68] Lin, S.-C., Tsai, C.-L., Chien, L.-F., Chen, K.-J., & Lee, L.-S. (1997). Chinese Lan-
guage Model Adaptation Based on Document Classification andMultiple Domain-
Specific Language Models. In Proceedings of European Conference on Speech Commu-
nication and Technology (pp. 1463–1466).

125

[69] Lin, Y.-L., Wu, T.-F., Chen, M.-C., Yeh, Y.-M., &Wang, H.-P. (2008). Designing a
scanning on-screen keyboard for people with severe motor disabilities. In K. Miesen-
berger, J. Klaus, W. Zagler, & A. Karshmer (Eds.), Computers Helping People with
Special Needs (pp. 1184–1187). Berlin, Heidelberg: Springer Berlin Heidelberg.

[70] Lü, Y., Huang, J., & Liu, Q. (2007). Improving Statistical Machine Translation
Performance by Training Data Selection and Optimization. In Proceedings of the
2007 Joint Conference on EmpiricalMethods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL) (pp. 343–350).
Prague, Czech Republic: Association for Computational Linguistics.

[71] Ma, X., Xu, P., Wang, Z., Nallapati, R., & Xiang, B. (2019). Domain Adaptation
with BERT-based Domain Classification and Data Selection. In Proceedings of the
2ndWorkshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)
(pp. 76–83). Hong Kong, China: Association for Computational Linguistics.

[72] MacKay, D. J., Ball, C. J., & Donegan, M. (2004). Efficient Communication with
One or Two Buttons. In AIP Conference Proceedings, volume 735 (pp. 207–218).:
American Institute of Physics.

[73] MacKenzie, I. S. (2012). Modeling Text Input for Single-Switch Scanning. In K.
Miesenberger, A. Karshmer, P. Penaz, &W. Zagler (Eds.), Computers Helping People
with Special Needs (pp. 423–430). Berlin, Heidelberg: Springer Berlin Heidelberg.

[74] Majaranta, P., Ahola, U.-K., & Špakov, O. (2009). Fast Gaze Typing with an Ad-
justable Dwell Time. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (pp. 357–360).

[75] Majaranta, P., MacKenzie, I. S., Aula, A., & Räihä, K.-J. (2006). Effects of Feed-
back and Dwell Time on Eye Typing Speed and Accuracy. Universal Access in the
Information Society, 5(2), 199–208.

[76] Mansour, S., Wuebker, J., & Ney, H. (2011). Combining Translation and Language
Model Scoring for Domain-Specific Data Filtering. In InternationalWorkshop on
Spoken Language Translation (IWSLT) 2011.

[77] McNaughton, D. & Light, J. (2013). The iPad andMobile Technology Revolution:
Benefits and Challenges for Individuals Who Require Augmentative and Alternative
Communication.

[78] Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2016). Pointer Sentinel Mixture
Models.

126

[79] Microsoft (2019). DSTC8 Reddit Corpus. https://github.com/microsoft/
dstc8-reddit-corpus. Accessed April 10, 2022.

[80] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.

[81] Mikolov, T., Deoras, A., Kombrink, S., Burget, L., & Cernockỳ, J. (2011a). Em-
pirical Evaluation and Combination of Advanced Language Modeling Techniques.
In Proceedings of the International Conference on Spoken Language Processing (pp.
605–608).

[82] Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., & Ranzato, M. (2014). Learning
Longer Memory in Recurrent Neural Networks. arXiv preprint arXiv:1412.7753.

[83] Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., & Khudanpur, S. (2010). Recur-
rent Neural Network based Language Model. In Eleventh Annual Conference of the
International Speech Communication Association.

[84] Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., & Khudanpur, S. (2011b). Ex-
tensions of Recurrent Neural Network Language Model. In IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP ’11 (pp. 5528–5531).

[85] Moore, R. C. & Lewis, W. (2010). Intelligent Selection of Language Model Train-
ing Data. In Proceedings of the ACL 2010 Conference Short Papers, ACLShort ’10
(pp. 220–224). Stroudsburg, PA, USA: Association for Computational Linguistics
Association for Computational Linguistics.

[86] Mott, M. E., Williams, S., Wobbrock, J. O., &Morris, M. R. (2017). Improving
Dwell-based Gaze Typing with Dynamic, Cascading Dwell Times. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems (pp. 2558–2570).

[87] Nel, E.-M., Kristensson, P. O., &MacKay, D. J. C. (2019). Ticker: An Adaptive
Single-Switch Text Entry Method for Visually Impaired Users. IEEE Transactions on
Pattern Analysis andMachine Intelligence, 41(11), 2756–2769.

[88] Nicolau, H., Rodrigues, A., Santos, A., Guerreiro, T., Montague, K., & Guerreiro,
J. a. (2019). The Design Space of Nonvisual Word Completion. In The 21st Inter-
national ACM SIGACCESS Conference on Computers and Accessibility, ASSETS ’19
(pp. 249–261). New York, NY, USA: Association for ComputingMachinery.

127

https://github.com/microsoft/dstc8-reddit-corpus
https://github.com/microsoft/dstc8-reddit-corpus

[89] Oken, B. S., Orhan, U., Roark, B., Erdogmus, D., Fowler, A., Mooney, A., Peters,
B., Miller, M., & Fried-Oken, M. B. (2014). Brain-Computer Interface with Lan-
guage Model–Electroencephalography Fusion for Locked-in Syndrome. Neuroreha-
bilitation and neural repair, 28(4), 387–394.

[90] Parcheta, Z., Sanchis-Trilles, G., & Casacuberta, F. (2018). Data Selection for NMT
using Infrequent n-gram Recovery. In Proceedings of the 21st Annual Conference of
the European Association forMachine Translation (pp. 219–227).: European Associ-
ation for Machine Translation.

[91] Pauls, A. & Klein, D. (2011). Faster and Smaller N-gram Language Models. In Pro-
ceedings of the 49th AnnualMeeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11 (pp. 258–267). Stroudsburg,
PA, USA: Association for Computational Linguistics.

[92] Pennington, J., Socher, R., &Manning, C. D. (2014). GloVe: Global Vectors for
Word Representation. In Proceedings of the 2014 Conference on EmpiricalMethods
in Natural Language Processing (EMNLP) (pp. 1532–1543).

[93] Peris, Á., Chinea-Ríos, M., & Casacuberta, F. (2017). Neural Networks Classifier
for Data Selection in Statistical Machine Translation. The Prague Bulletin ofMathe-
matical Linguistics, 108(1), 283–294.

[94] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettle-
moyer, L. (2018). Deep ContextualizedWord Representations. arXiv preprint
arXiv:1802.05365.

[95] Pini, S., Han, S., &Wallace, D. R. (2010). Text Entry for Mobile Devices Using
Ad-Hoc Abbreviation. In Proceedings of the International Conference on Advanced
Visual Interfaces, AVI ’10 (pp. 181–188). New York, NY, USA: Association for
ComputingMachinery.

[96] Polacek, O., Mikovec, Z., Sporka, A. J., & Slavík, P. (2011). Humsher: A Predictive
Keyboard Operated by Humming. In The Proceedings of the 13th International
ACM SIGACCESS Conference on Computers and Accessibility (pp. 75–82).: ACM.

[97] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Lan-
guage Models Are UnsupervisedMultitask Learners. OpenAI blog, 1(8), 9.

[98] Räihä, K.-J. (2015). Life in the Fast Lane: Effect of Language and Calibration Accu-
racy on the Speed of Text Entry by Gaze. In IFIP Conference on Human-Computer
Interaction (pp. 402–417).: Springer.

128

[99] Räihä, K.-J. & Ovaska, S. (2012). An Exploratory Study of Eye Typing Funda-
mentals: Dwell Time, Text Entry Rate, Errors, andWorkload. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (pp. 3001–3010).

[100] Roark, B., Beckley, R., Gibbons, C., & Fried-Oken, M. (2013). Huffman Scanning:
Using Language Models within Fixed-grid Keyboard Emulation. Computer speech &
language, 27(6), 1212–1234.

[101] Rousseau, A. (2013). XenC: An Open-Source Tool for Data Selection in Natural
Language Processing. The Prague Bulletin ofMathematical Linguistics, 100, 73–82.

[102] Sampath, H., Indurkhya, B., & Sivaswamy, J. (2012). A Communication System on
Smart Phones and Tablets for Non-verbal Children with Autism. In International
Conference on Computers for Handicapped Persons (pp. 323–330).: Springer.

[103] Schuster, M. & Paliwal, K. (1997). Bidirectional Recurrent Neural Networks. IEEE
Transactions on Signal Processing, 45(11), 2673–2681.

[104] Schwenk, H. & Gauvain, J.-L. (2005). Training Neural Network Language Mod-
els on Very Large Corpora. In Proceedings of the conference on Human Language
Technology and EmpiricalMethods in Natural Language Processing (pp. 201–208).:
Association for Computational Linguistics.

[105] Schwenk, H., Rousseau, A., & Attik, M. (2012). Large, Pruned or Continuous
Space Language Models on a GPU for Statistical Machine Translation. In Pro-
ceedings of the NAACL-HLT 2012Workshop: WillWe Ever Really Replace the N-
gramModel? On the Future of LanguageModeling for HLT (pp. 11–19). Montréal,
Canada: Association for Computational Linguistics.

[106] Shieber, S. M. &Nelken, R. (2007). Abbreviated Text Input using Language Mod-
eling. Natural Language Engineering, 13(2), 165–183.

[107] Simpson, R., Koester, H., & LoPresti, E. (2006). Evaluation Of An Adaptive
Row/Column Scanning System. Technology and disability, 18(3), 127–138.

[108] Stolcke, A. (2002). SRILM – An Extensible Language Modeling Toolkit. In Seventh
International Conference on Spoken Language Processing (pp. 901–904). Denver,
CO.

[109] Stolcke, A., Zheng, J., Wang, W., & Abrash, V. (2011). SRILM at Sixteen: Update
and Outlook. In Proceedings of IEEE Automatic Speech Recognition and Under-
standingWorkshop, volume 5 of ASRU ’11.

129

[110] Tanaka-ishii, K. (2007). Word-Based Predictive Text Entry Using Adaptive Lan-
guage Models. Natural Language Engineering, 13(1), 51–74.

[111] Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2001). Japanese Text Input System
With Digits. In Proceedings of the First International Conference on Human Lan-
guage Technology Research.

[112] Tanaka-Ishii, K., Inutsuka, Y., & Takeichi, M. (2002). Entering Text with a Four-
button Device. In COLING 2002: The 19th International Conference on Computa-
tional Linguistics.

[113] Trnka, K., McCaw, J., Yarrington, D., McCoy, K. F., & Pennington, C. (2008).
Word Prediction and Communication Rate in AAC. Telehealth and Assistive Tech-
nologies (Telehealth/AT), (pp. 19–24).

[114] Trnka, K., McCaw, J., Yarrington, D., McCoy, K. F., & Pennington, C. (2009). User
InteractionWithWord Prediction: The Effects Of Prediction Quality. ACMTrans-
actions on Accessible Computing (TACCESS), 1(3), 17.

[115] Tuisku, O., Majaranta, P., Isokoski, P., & Räihä, K.-J. (2008). NowDasher! Dash
Away! Longitudinal Study of Fast Text Entry by Eye Gaze. In Proceedings of the
2008 Symposium on Eye tracking Research & Applications (pp. 19–26).

[116] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., & Polosukhin, I. (2017). Attention is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998–6008).

[117] Vertanen, K. (2017). Towards Improving Predictive AAC using Crowdsourced Di-
alogues and Partner Context. In ASSETS ’17: Proceedings of the ACM SIGACCESS
Conference on Computers and Accessibility (poster) (pp. 347–348).

[118] Vertanen, K. (2019). Character Language Models, December 2019. https://
imagineville.org/software/lm/dec19_char/. Accessed April 10, 2022.

[119] Vertanen, K. (2021). Probabilistic Text Entry-Case Study 3, (pp. 277–320). Associa-
tion for ComputingMachinery: New York, NY, USA, 1 edition.

[120] Vertanen, K., Fletcher, C., Gaines, D., Gould, J., & Kristensson, P. O. (2018). The
Impact of Word, Multiple Word, and Sentence Input on Virtual Keyboard Decod-
ing Performance. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’18 (pp. 626:1–626:12). New York, NY, USA: ACM.

130

https://imagineville.org/software/lm/dec19_char/
https://imagineville.org/software/lm/dec19_char/

[121] Vertanen, K., Gaines, D., Fletcher, C., Stanage, A. M., Watling, R., & Kristensson,
P. O. (2019). VelociWatch: Designing and Evaluating a Virtual Keyboard for the
Input of Challenging Text. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI ’19 (pp. 1–14). New York, NY, USA: Associa-
tion for ComputingMachinery.

[122] Vertanen, K. & Kristensson, P. O. (2011a). A Versatile Dataset for Text Entry Eval-
uations Based on Genuine Mobile Emails. In Proceedings of the 13th International
Conference on Human Computer Interaction withMobile Devices & Services, Mobile-
HCI ’11 (pp. 295–298). New York, NY, USA: ACM.

[123] Vertanen, K. & Kristensson, P. O. (2011b). The Imagination of Crowds: Conversa-
tional AAC Language Modeling using Crowdsourcing and Large Data Sources. In
Proceedings of the Conference on EmpiricalMethods in Natural Language Processing,
EMNLP’11 (pp. 700–711). Edinburgh, Scotland, UK.: Association for Computa-
tional Linguistics.

[124] Vertanen, K. & Kristensson, P. O. (2014). Complementing Text Entry Evaluations
with a Composition Task. ACMTransactions of Computer Human Interaction,
21(2), 8:1–8:33.

[125] Vertanen, K. & Kristensson, P. O. (2021). Mining, Analyzing, andModeling Text
Written onMobile Devices. Natural Language Engineering, 27, 1–33.

[126] Vertanen, K., Memmi, H., Emge, J., Reyal, S., & Kristensson, P. O. (2015). Ve-
lociTap: Investigating Fast Mobile Text Entry Using Sentence-Based Decoding of
Touchscreen Keyboard Input. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’15 (pp. 659–668). New York, NY, USA: ACM.

[127] Vertanen, K., Memmi, H., & Kristensson, P. O. (2013). The Feasibility of Eyes-
free Touchscreen Keyboard Typing. In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility, ASSETS ’13 (pp. 69:1–
69:2). New York, NY, USA: ACM.

[128] Wandmacher, T., Antoine, J.-Y., Poirier, F., & Départe, J.-P. (2008). SIBYLLE, An
Assistive Communication System Adapting to the Context and Its User. ACM
Transactions on Accessible Computing, 1(1), 6:1–6:30.

[129] Ward, D. J., Blackwell, A. F., &MacKay, D. J. C. (2000). Dasher – a Data Entry
Interface Using Continuous Gestures and Language Models. In Proceedings of the

131

13th Annual ACM Symposium on User Interface Software and Technology, UIST ’00
(pp. 129–137). New York, NY, USA: Association for ComputingMachinery.

[130] Ward, D. J. &MacKay, D. J. C. (2002). Fast Hands-free Writing by Gaze Direction.
Nature, 418(6900), 838.

[131] Weir, D., Pohl, H., Rogers, S., Vertanen, K., & Kristensson, P. O. (2014). Uncertain
Text Entry onMobile Devices. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’14 (pp. 2307–2316). New York, NY, USA:
ACM.

[132] Wen, T.-H., Heidel, A., yi Lee, H., Tsao, Y., & shan Lee, L. (2013). Recurrent
Neural Network based Language Model Personalization by Social Network Crowd-
sourcing. In Proc. Interspeech 2013 (pp. 2703–2707).

[133] Willis, T., Pain, H., & Trewin, S. (2005). A Probabilistic Flexible Abbreviation Ex-
pansion System for Users with Motor Disabilities. In Proceedings of the 2005 Inter-
national Conference on Accessible Design in the DigitalWorld, Accessible Design’05
(pp.4̃). Swindon, GBR: BCS Learning &Development Ltd.

[134] Willis, T., Pain, H., Trewin, S., & Clark, S. (2002). Informing Flexible Abbreviation
Expansion for Users with Motor Disabilities. In Proceedings of the 8th International
Conference on Computers Helping People with Special Needs, ICCHP ’02 (pp. 251–
258). Berlin, Heidelberg: Springer-Verlag.

[135] Wills, S. &MacKay, D. (2006). DASHER – An Efficient Writing System for Brain-
Computer Interfaces? IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 14(2), 244–246.

[136] Wisenburn, B. &Higginbotham, D. J. (2008). An AACApplication using Speaking
Partner Speech Recognition to Automatically Produce Contextually Relevant Ut-
terances: Objective Results. Augmentative and Alternative Communication, 24(2),
100–109.

[137] Wisenburn, B. &Higginbotham, D. J. (2009). Participant Evaluations of Rate and
Communication Efficacy of an AACApplication using Natural Language Process-
ing. Augmentative and Alternative Communication, 25(2), 78–89.

[138] Yasuda, K., Zhang, R., Yamamoto, H., & Sumita, E. (2008). Method of Selecting
Training Data to Build a Compact and Efficient TranslationModel. In Proceedings
of the Third International Joint Conference on Natural Language Processing: Volume-
II.

132

[139] yi Lee, H., Tseng, B.-H., Wen, T.-H., & Tsao, Y. (2017). Personalizing Recurrent
Neural Network Based Language Model by Social Network. IEEE/ACMTransac-
tions on Audio, Speech, and Language Processing, 25(3), 519–530.

[140] Zhai, S. & Kristensson, P. O. (2008). Interlaced QWERTY: Accommodating Ease of
Visual Search and Input Flexibility in ShapeWriting. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08 (pp. 593–596). New
York, NY, USA: Association for ComputingMachinery.

[141] Zhai, S., Sue, A., & Accot, J. (2002). Movement Model, Hits Distribution and
Learning in Virtual Keyboarding. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’02 (pp. 17–24). New York, NY, USA:
Association for ComputingMachinery.

[142] Zhu, S., Luo, T., Bi, X., & Zhai, S. (2018). Typing on an Invisible Keyboard. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’18 (pp. 439:1–439:13). New York, NY, USA: ACM.

133

	Intelligent Techniques to Accelerate Everyday Text Communication
	Recommended Citation

	Abstract
	Introduction
	Motivation
	Overview and Contributions
	Relationship to Previous Publications

	Overview of Text Entry Interfaces and Language Modeling
	Text Entry Interfaces
	Language Modeling
	How Text Entry Interfaces Use Language Models
	Evaluation

	Investigating Speech Recognition for Improving Predictive AAC
	Introduction
	Related Work
	Speech Data Collection
	Language Modeling Experiments
	Discussion and Limitations
	Conclusions

	Dwell-based Text Entry and Partner Speech Context
	Introduction
	Related Work
	Experiment 1: Crowdsourced Dwell Keyboard Study
	Experiment 2: Using Partner Speech Context in a Simulated Keyboard
	Discussion
	Conclusion

	Accelerating Text Communication via Abbreviated Sentence Input
	Introduction
	Related Work
	Free-form Abbreviation Study
	Conversational Language Modeling
	Recognizing Noisy Abbreviated Input
	User Study
	Discussion
	Conclusion

	Language Model Personalization
	Introduction
	Related work
	Language Model Personalization
	Experiments
	Discussion
	Conclusion

	Conclusion
	Discussion
	Future Work and Limitations
	Final Remarks

	Appendix Appendix
	Abbreviation Study Instructions
	Error Rate to Compression
	Selecting Training Data
	Recognizing Noisy Abbreviated Input

	References

