219 research outputs found

    A survey on human performance capture and animation

    Get PDF
    With the rapid development of computing technology, three-dimensional (3D) human body models and their dynamic motions are widely used in the digital entertainment industry. Human perfor- mance mainly involves human body shapes and motions. Key research problems include how to capture and analyze static geometric appearance and dynamic movement of human bodies, and how to simulate human body motions with physical e�ects. In this survey, according to main research directions of human body performance capture and animation, we summarize recent advances in key research topics, namely human body surface reconstruction, motion capture and synthesis, as well as physics-based motion sim- ulation, and further discuss future research problems and directions. We hope this will be helpful for readers to have a comprehensive understanding of human performance capture and animatio

    Integrating body scanning solutions into virtual dressing rooms

    Get PDF
    The world is entering its 4th Industrial Revolution, a new era of manufacturing characterized by ubiquitous digitization and computing. One industry to benefit and grow from this revolution is the fashion industry, in which Europe (and Italy in particular) has long maintained a global lead. To evolve with the changes in technology, we developed the IT- SHIRT project. In the context of this project, a key challenge relies on developing a virtual dressing room in which the final users (customers) can virtually try different clothes on their bodies. In this paper, we tackle the aforementioned issue by providing a critical analysis of the existing body scanning solutions, identifying their strengths and weaknesses towards their integration within the pipeline of virtual dressing rooms

    Identify the Object’s Shape using Augmented Reality Marker-based Technique.

    Get PDF
    At present, new technology affects daily life in both direct and indirect ways. Internet technology can connect people around the world through social networks. It can facilitate online shopping or e-commerce, which is the popular culture of today business. Contents provided in the online shopping must be in the form that customer can interact with, i.e., it must be converted from analog data to digital information. For apparel or clothing business, only picture and information of the dresses, such as size, color, etc., may not be enough, since the customer did not know whether it will fit their bodies or not. To make sure that the dress they wanted to buy fit their body, the body size of the customers must be known. With the known body size, generating the 3D model of the customer to try on the 3D virtual model of the dress is possible, and the decision to buy is possible. There are many ways to find the exact body size and generate a 3D model of the customers i.e. using 3D scanner, using Photogrammetry technique (merging many photographs of the customers’ bodies to create the 3d model) or generating 3D model with known information using 3d computer graphic software such as Autodesk Maya, 3D max. The techniques mentioned above have some drawback because it required either an expensive device or expert to create a 3D model which may take a long time. Therefore in this research, we present the technique using marker-based Augmented Reality to acquire the shape of the objects. By wrapping the markers around the surface of the object that we want to measure, each marker’s position can be identified, and when combined, the shape and sizes of the object can be created. This technique takes a shorter time than other method and does not require any sophisticated device but still give good results. We separate the experiment into three groups, group one, testing the concept with five objects with different sizes and shapes with one row markers and group two, testing cylindrical objects with four row markers, and group three, testing with a mannequin to find the shape of human’s body. we have found that the shape and size of the objects that we have created are very close to the real one with the maximum error of less than 5%. It possible to generate the whole 3D object which can be adjusted to support virtual fitting room

    Global alignment of deformable objects captured by a single RGB-D camera

    Get PDF
    We present a novel global registration method for deformable objects captured using a single RGB-D camera. Our algorithm allows objects to undergo large non-rigid deformations, and achieves high quality results without constraining the actor's pose or camera motion. We compute the deformations of all the scans simultaneously by optimizing a global alignment problem to avoid the well-known loop closure problem, and use an as-rigid-as-possible constraint to eliminate the shrinkage problem of the deformed model. To attack large scale problems, we design a coarse-to-fine multi-resolution scheme, which also avoids the optimization being trapped into local minima. The proposed method is evaluated on public datasets and real datasets captured by an RGB-D sensor. Experimental results demonstrate that the proposed method obtains better results than the state-of-the-art methods

    Assessment of a Microsoft Kinect-based 3D scanning system for taking body segment girth measurements : a comparison to ISAK and ISO standards

    Get PDF
    Use of anthropometric data to infer sporting performance is increasing in popularity, particularly within elite sport programmes. Measurement typically follows standards set by the International Society for the Advancement of Kinanthropometry (ISAK). However, such techniques are time consuming, which reduces their practicality. Schranz et al. recently suggested 3D body scanners could replace current measurement techniques; however, current systems are costly. Recent interest in natural user interaction has led to a range of low-cost depth cameras capable of producing 3D body scans, from which anthropometrics can be calculated. A scanning system comprising 4 depth cameras was used to scan 4 cylinders, representative of the body segments. Girth measurements were calculated from the 3D scans and compared to gold standard measurements. Requirements of a Level 1 ISAK practitioner were met in all 4 cylinders, and ISO standards for scan-derived girth measurements were met in the 2 larger cylinders only. A fixed measurement bias was identified that could be corrected with a simple offset factor. Further work is required to determine comparable performance across a wider range of measurements performed upon living participants. Nevertheless, findings of the study suggest such a system offers many advantages over current techniques, having a range of potential application

    Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Get PDF
    This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation

    Color-aware surface registration

    Get PDF
    Shape registration is fundamental to 3D object acquisition; it is used to fuse scans from multiple views. Existing algorithms mainly utilize geometric information to determine alignment, but this typically results in noticeable misalignment of textures (i.e. surface colors) when using RGB-depth cameras. We address this problem using a novel approach to color-aware registration, which takes both color and geometry into consideration simultaneously. Color information is exploited throughout the pipeline to provide more effective sampling, correspondence and alignment, in particular for surfaces with detailed textures. Our method can furthermore tackle both rigid and non-rigid registration problems (arising, for example, due to small changes in the object during scanning, or camera distortions). We demonstrate that our approach produces significantly better results than previous methods
    • …
    corecore