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This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work
introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology
for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot
with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the
defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images
collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the
depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D
triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent
transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines,

and scan alignment and interpretation.

1. Introduction

Robot manipulation and navigation require efficient methods
for representing and interpreting the surrounding environ-
ment. Industrial robots, which work in controlled environ-
ments, are typically designed to perform only repetitive and
preprogrammed tasks. However, robots working in dynamic
environments demand reliable methods to interpret their sur-
roundings and are submitted to severe time constraints. Most
existing solutions for robotic environment representation and
interpretation make use of high-cost 3D profiling cameras,
scanners, sonars, or combinations of them, which often
result in lengthy acquisition and slow processing of massive
amounts of information. The extreme acquisition speed of the
Kinect’s technology meets requirements for rapidly acquiring
models over large volumes, such as that of automotive vehi-
cles. The performance, affordability, and the growing adop-
tion of the Kinect for robotic applications supported the
selection of the sensor to develop the robotic inspection
station operating under multisensory visual guidance. The
method presented in this work uses a set of Kinect depth sen-
sors properly calibrated to collect visual information as well as

3D points from different regions over vehicle bodyworks. A
dedicated calibration methodology is presented to achieve
accurate alignment between the respective point clouds and
textured images acquired by Kinect sensors distributed in a
collaborative network of imagers to provide coverage over
large surfaces. First, the sensing system uses computer vision
and machine learning techniques for determining the loca-
tion and category of a vehicle and some areas of interest over
the bodywork. Then, the 3D readings are aligned using the
extrinsic parameters between the Kinect units. Finally, a 3D
triangle mesh, modeling the lateral panels of the vehicle, is
built and serves as input to guide a manipulator robot that will
interact with the surface. The experiments reported in this
work are the result of processing images and point clouds of
side panels of automobiles. Nevertheless, the method can be
adapted easily to recognize other types of objects.

This work contributes to the robotic vision field by pro-
posing a simple and efficient methodology for automatic 3D
surface modeling of large vehicle parts via the coordinated
and integrated operation of several RGB-D sensor heads; a
dedicated methodology for extrinsic calibration of Kinect
sensors, as well as a rapid algorithm for triangle meshing



which takes advantage of the structure of the point clouds
provided by the Kinect sensors.

2. Related Work

In the recent years the Kinect device has been widely adopted
as an indoor sensor for robotics and human-computer inter-
action applications. The sensor is a multiview structured
lighting system, containing an RGB camera, an infrared (IR)
camera, and an infrared laser projector equipped with a
microgrid that artificially creates a predefined IR pattern over
the imaged surface. The sensor is capable of collecting depth
information for each pixel in a color image, which opens the
door to a great variety of applications. Lately, two dominant
streams of research have been pursued with Kinect technol-
ogy: (1) the investigation of the technology behind the device,
analysis of its properties, performance, and comparison with
other depth sensors; (2) the development of applications
of the Kinect technology in fields such as robotics, user
interfaces, and medicine among others. The present work
addresses both categories.

Among the numerous examples of applications for the
Kinect technology that rapidly appeared in the literature,
Zhou et al. [1] proposed a system capable of scanning human
bodies using multiple Kinect sensors arranged in a circular
ring. Maimone and Fuchs [2] presented a real-time telepres-
ence system with head tracking capabilities based on a set of
Kinect units. They also contributed an algorithm for merging
data and automatic color adjustment between multiple depth
data sources. An application of Kinect in the medical field for
position tracking in CT scans was proposed by Noonan et al.
[3]. They tracked the head of a phantom by registering Kinect
depth data to high resolution CT template of a head phantom.
Rakprayoon et al. [4] used a Kinect sensor for obstacle detec-
tion of a robotic manipulator. In [5], Berger et al. originally
used multiple Kinect sensors for aerodynamic studies of 3D
objects. They captured and visualized gas flow around objects
with different properties. Smisek et al. [6] and Park et al. [7]
conducted analyses regarding Kinect’s depth resolution,
accuracy with stereo resolution reconstruction, and camera
calibration as well as a comparison with a laser scanner.
For simultaneous calibration of the Kinect sensor, different
approaches have been proposed. Burrus [8] proposed to use
traditional techniques for calibrating the Kinect color camera
and manual selection of the corners of a checkerboard for
calibrating the depth sensor. Gaffney [9] described a tech-
nique to calibrate the depth sensor by using 3D printouts of
cuboids to generate different levels in depth images. The latter,
however, requires an elaborate process to construct the target.
Berger et al. [10] used a checkerboard where black boxes were
replaced with mirroring aluminium foil therefore avoiding
the necessity of blocking the projector when calibrating the
depth camera.

With regard to the depth data of the Kinect sensor, it
is known that it suffers from quantization noise [6, 11] that
increases as the distance to the object increases. The resolu-
tion also decreases with the distance [11]. The depth map may
also contain occluded and missing depth areas mainly due
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to the physical separation between the IR projector and the
IR camera and to the inability to collect sufficient IR signal
reflection over some types of surfaces. These missing values
can however be approximated by filtering or interpolation
(2, 12].

Concerning the automated detection of vehicle parts, a
variety of computer vision systems have been developed in
the past that aimed at detecting regions of interest in images of
vehicles. Among popular applications in this field, the inspec-
tion of products on assembly lines stands out. Some of these
systems used methods to simultaneously locate many refer-
ence points or many regions of interest [13, 14]. To manage the
semantic information in the problem domain, Kiryakov et al.
[15] used templates and similarity measures to evaluate the
correct position of a template over an image. For the visual
detection of features of interest in images some authors have
reported the successful use of a technique proposed by Viola
and Jones called cascade of boosted classifiers (CBC) [16].
This technique has proven to be useful in detecting faces,
wheels, back views of cars, and license plates among others
[17, 18]. While applications of previous research works are
mainly in the area of intelligent transportation systems (ITS),
these concepts can advantageously be transposed for applica-
tions in robotic guidance.

3. Proposed RGB-D Acquisition Framework

The work presented here aims at the integration of informa-
tion from multiple RGB-D sensors to achieve fully automated
and rapid 3D profiling of bodywork regions over automotive
vehicles. The approach estimates the shape over selected
regions to be reconstructed based on the detection of features
of interest on vehicle body panels. Once the location of the
regions of interest is known, the approach reconstructs the
panels’ shape using information provided by a set of Kinect
sensors placed conveniently which collect visual and 3D
information from the vehicle.

The final goal of the system being developed is to support
the real-time navigation of a robotic arm in proximity of the
vehicle in order to perform a series of tasks (e.g., cleaning,
maintenance, inspection) while it is interacting with the vehi-
cle surface. The work reported in this paper focuses mainly
on the robotic vision stage.

Figure 1shows various environments used to develop and
test the proposed system. In Figure 1(a), an indoor laboratory
environment is depicted where an actual piece of automotive
bodywork was used for early development along with a
mockup car door model. In Figure 1(b) a multilevel semiout-
door parking garage is shown where real full-size vehicles
were imaged to validate the accuracy of calibration over the
network of RGB-D sensors. The parking garage infrastructure
prevented the direct sunlight from causing interference with
the IR image components of the Kinect units. Natural light
coming from windows and open walls as well as electric lamps
lighted up the scene. The experiments demonstrated that
these sources of light did not trouble the sensors’ technology.

The layout of a vehicle scanning station is shown in
Figure 2. Yellow lines delimit the area where the vehicle stops,
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FIGURE 1: Indoor and semioutdoor environments used to develop and test the proposed acquisition stage.
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FIGURE 2: System layout of the proposed scanning system: yellow
lines delimit the area where the vehicle stops, while depth and color
information is collected.

while depth and color information is collected. At the
beginning, the robotic arm which can be moved on rails is
positioned at the end of the track within the blind spots of the
sensors. Then, the vehicle enters the scanning area and stops
in the designated space. The Kinect sensors collect color and
depth information over the entire length of the vehicle within
10 seconds. The information is then processed in order to con-
struct a 3D model of the bodywork panels on the vehicle. The
whole scanning and modeling process is meant to be fast, in
order to support high inspection cadence. The latter criterion
was the main factor to support adoption of the Kinect
technology in this application in spite of its limited depth
resolution and sensitivity to ambient lighting conditions.

Opverall the scanning and 3D textured modeling processes
are completed in 30 seconds, which rapidly makes the
information available for robot guidance. The data processing
pipeline of the sensory information provided by the Kinect
devices is shown in Figure 3. Rounded rectangles represent
the different modules that are part of the process. Those mod-
ules within the dotted rectangle operate on-line, while the
calibration procedure out of the dotted rectangle is executed
off-line and only once prior to inspection operation. Rectan-
gles represent the inputs and output of the system.

3.1. System Configuration. The scanning system for collecting
color and depth information over the whole lateral view of a
vehicle bodywork consists in three Kinects positioned in a
single row (sensor’s baseline) with their viewing axes perpen-
dicular to the bodywork and two extra sensors, which cover

3
(b)
TABLE 1: Parameters of the proposed scanning system.
IR camera  RGB camera
Horizontal field of view 57° 63°
Vertical field of view 45° 50°
Distance between cameras 1.3m 1.3m
Height of the sensors above the
1m 1m

ground
Distance between baseline cameras

; 2m 2m
and vehicle
Horizontal overlapping area 0.85m 115m

between two cameras

Coverage area for each sensor 47mx165m 5mx1.85m

Total coverage area for the baseline

6mx1.65m 6.3mx185m
depth sensors

partially the front and back areas, rotated toward the vehicle
in such a way that their viewing axes form a 65 degree angle
with respect to the sensor’s baseline.

This configuration can be replicated on the other side of
the vehicle for a complete 360 degree view. As detailed in
Table 1, the sensors are positioned at 1m above the ground
and parallel to the floor. The cameras were set up about 2m
away from the area where the vehicle is positioned. This
configuration permits to meet the following requirements to
cover the entire side of a car: (1) a minimum coverage area
of 4.15 x 1.5 m, which is the typical size of a sedan vehicle; (2)
collection of depth readings in the range of 0.8 to 3 m, which is
the range where Kinect performs well; (3) an overlapping area
in the range of 0.5m to 1m, between contiguous sensors to
ensure accurate external calibration process and point cloud
alignment. Figure 4 depicts the acquisition system. It is worth
mentioning that the proposed acquisition system can be eas-
ily adapted for larger vehicles by including extra sensors in the
sensor’s baseline.

3.2. Interference Issues. Within the overlapping regions
between two contiguous Kinect sensors, interference might
happen between the sensors since all Kinect devices project
a pattern of infrared points at the same wavelength to create
their respective depth map. This produces small holes on the
depth maps of overlapping sensors. To prevent this problem,
the data is collected sequentially over different time slots. In
the first time slot, sensors K, and K, simultaneously collect
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FIGURE 3: Main components of the RGB-D scanning and modeling approach.
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FIGURE 4: Configuration of the acquisition system. Five Kinects sen-
sors are used to collect color and depth information over the entire
set of lateral panels of a vehicle.

their respective information (see Figure 4). Then, sensors K,
Kj;, and K, scan the central, back, and front regions of the
vehicle. The delay between the shots is the time needed to shut
down the first group of devices and initialize the next one.
This process is performed by the Kinect drivers and takes
few seconds. The OpenNI framework was used to control the
Kinect for Xbox 360 version of the sensors; this framework
does not provide means to shut down only the infrared pro-
jector.

4. Calibration of a Network of Kinect Sensors

Kinect technology consists of a multiview system that pro-
vides three outputs: an RGB image, an infrared image, and
a depth image for each sensor. Arranging a group of sensors
as a collaborative network of imagers permits to enlarge the
overall field of view and to model large objects, such as
automotive vehicles. For an adequate operation of the net-
work a precise mapping between color and infrared must be
achieved. For this purpose an internal calibration procedure
that estimates the intrinsic parameters of each camera within
every device as well as the extrinsic parameters between the
RGB and the IR camera inside a given Kinect is required,
along with an external calibration process that provides
accurate estimates of the extrinsic parameters in between the
respective pairs of Kinect devices. A procedure dedicated to
Kinect sensors is proposed and detailed later.

4.1. Internal Calibration

4.1.1. Intrinsic Parameters Estimation for Built-In Kinect
Cameras. The internal calibration procedure includes the
estimation of the respective intrinsic parameters for the color
and the IR sensors, which are the focal length (f,., f,), the
principal point (O,, O,), and the lens distortion coefficients
(ky, ky, p1> pasks) [19]. Because the RGB and IR cameras
exhibit different color responses, the proposed calibration
technique uses a regular chessboard target of size 9 x 7 that
is visible in both sensors’ spectra. During internal calibration
the Kinect’s IR projector is blocked by overlapping a mask on
the projector window. The IR projector otherwise introduces
noise over the IR image as shown in Figure 5(a), and without
projection, the image is too dark as shown in Figure 5(b).
Therefore standard external incandescent lamps are added
to illuminate the checkerboard target, Figure 5(c). The color
image is not affected by the IR projection and creates a clear
pattern, Figure 5(d).

The checkerboard was printed on a regular A3 size paper,
which does not reflect back the bright blobs due to the exter-
nal incandescent lamps in the IR image plane. To ensure the
best calibration results, 100 images were collected from both
the color and the IR cameras. Both images were synchronized
in each frame, so that they could be used for extrinsic calibra-
tion between the cameras. To estimate the intrinsic parame-
ters, each Kinect is calibrated individually using Zhang’s cam-
era calibration method [19]. The method is applied 10 times
on 30 images randomly selected among the 100 captured
images. The reprojection error is also calculated for each
iteration, which is a measure of the deviation of the camera
response to the ideal pinhole camera model. The reprojection
error is calculated as the RMS error of all the target calibration
points.

After calibration, both the RGB and IR cameras achieve
reprojection error between 0.12 and 0.16 pixels, which is bet-
ter than the original performance given by the default man-
ufacturer calibration of the Kinect sensor. The reprojection
error without calibration of the IR camera is greater than 0.3
pixel and that of the color camera is greater than 0.5 pixel. The
focal length of the IR camera is larger than that of the color
camera, that is, the color camera has a larger field of view. It is
also apparent that every Kinect sensor has slightly different
intrinsic parameters. This confirms the need for a formal
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(c)

(d)

FIGURE 5: Views of the checkerboard in different configurations: (a) IR image with IR projector, (b) IR image without IR projector, (c) IR
image with incandescent lighting and without projector, and (d) color image.

intrinsic calibration to be performed on each device to sup-
port accurate data registration.

4.1.2. Extrinsic Parameters Estimation for Built-In Kinect
Cameras. The respective location of the color and IR cameras
within each Kinect unit is determined by stereo calibration.
The camera calibration method proposed by Zhang [19] also
provides the location of the checkerboard target with respect
to the camera coordinate system. If the target remains fixed
for both cameras, then the position between both cameras is
defined by (1)

H = HRGBHI_RI’ ®

where H is the homogenous transformation matrix (consists
of 3 X 3 rotation matrix R and 3 X 1 translation vector T') from
the RGB camera to the IR camera, Hj is the homogenous
transformation matrix from the IR camera to the checker-
board target, and Hygp is the homogenous transformation
from the RGB camera to the checkerboard target. The
translation and rotation parameters between the RGB and
IR sensors are shown in Table 2 for five Kinect sensors. The
internal extrinsic calibration parameters allow to accurately
relate the color to depth data collected by a given Kinect
device.

4.1.3. Registration of Color and Depth Information within a
Given Kinect Device. The Kinect sensor does not provide the
registered color and depth images. Once the internal intrinsic
and extrinsic parameters are determined for a given Kinect
device, the procedure to merge the color and depth based on
the estimated registration parameters is performed as follows.
The first step is to properly relate the IR image and the depth

TABLE 2: Internal extrinsic calibration of embedded sensors.

Translation (cm) and rotation (degree) between RGB and IR
Sensor T, T T R R R

y z x y 2
K, 250 0.0231  0.3423  0.0017  0.0018 —-0.0082
K, 246 -0.0168 -0.1426 0.0049 0.0032 0.0112
K, 2.41 -0.0426 -0.3729 0.0027 0.0065 -0.0075
K; 249 0.0153  0.2572 -0.0046 0.0074 0.0035
K, 247 0.0374 0.3120  0.0052 0.0035 0.0045

image. The depth image is generated from the IR image but
there is a small offset between the two, which is introduced as
a result of the correlation performed internally during depth
calculation. The offset is 5 pixels in the horizontal direction
and 4 pixels in the vertical direction [6]. After removing this
offset using (2), each pixel of the depth image exactly maps the
depth of the corresponding pixel in the IR image. Therefore,
the calibration parameters of the IR camera can be applied on
the depth image considered

dp(x,y) =ds(x~5y-4), )

where x and y are the pixel location, ds(x, y) is the offsetted
depth value affecting the Kinect depth sensor, and dp(x;, y) is
the corrected depth value. The second step consists in trans-
forming both the color and the depth images to compensate
for radial and tangential lens distortion using OpenCV undis-
tort function [20]. This function estimates the geometric
transformation on the images using the distortion parameters
and provides the undistorted color image and depth image
(du(x, y)). The next step is to determine the 3D coordinates
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(a)

(b)

FIGURE 6: Accurate integration of color and depth images.

corresponding to each point in the undistorted depth image,
using (3)

(x = O, r)du(x, )

XIR = f >
x-IR
()’ - Oy,IR) du (x, y) (3)
Y’IR = f >
y-IR
Zg =du(x,y),

where (X1g, Yir, Zg) are the 3D point coordinates of pixel
(x,y) in the depth image with respect to the IR camera
reference frame, (x, y) is the pixel location, (f, 1z, f, 1r) is the
focal length of the IR camera, (O, 1z, O, ) is the optical cen-
ter of the IR camera, and du(x;, y) is the depth of a pixel in the
undistorted depth image. Next, the color is assigned from the
RGB image to each 3D point Pp(X;g, Yig, Zig)- The color is
mapped by transforming the 3D point Py into the color
camera reference frame using the internal extrinsic camera
parameters and then reprojecting that point on the image
plane of the RGB camera using the intrinsic parameters to
find the pixel location of the color in the undistorted color
image using (4)

PRGB (XRGB’YRGB’ ZRGB) =R PIR +T,

X
X = ( RGBS x RGB

+ Oy rap>
Zps )

Yrge S y_RGB
Y=\——%

ZrGe ) * Oz

where Ppgy is the 3D point with respect to the color camera
reference frame, R and Tare the rotation and translation
parameters from the color camera to the IR camera, and (x, y)
is the pixel location of color information in the undistorted
color image.

Figure 6(a) shows a mockup car door as imaged from the
color camera; Figure 6(b) shows the colored depth informa-
tion in the interval 0-2.5 m from the slightly different point
of view of the IR camera, while keeping the Kinect sensor
static with respect to the panel. The difference in position and
orientation between the two cameras contained in the Kinect
unit is accurately compensated by the estimated extrinsic
parameters obtained from internal calibration.

4.2. External Calibration of Kinect Sensors with a Best-Fit
Plane Method. The last set of parameters estimated in the
calibration process is the extrinsic ones, which is the relative
position and orientation between every pair of Kinect sen-
sors. The external calibration is performed between pairs of
IR cameras over the network of sensors because depth infor-
mation is generated with respect to these cameras. The con-
cept behind the proposed method, named here best-fit plane
calibration method, is to determine, for every pair of sensors,
the position and orientation of a fixed planar chessboard in
real world coordinates. Knowing the orientation of the plane
from two different points of view (i.e., two Kinect sensors),
it is possible to estimate the relative orientation and position
change between the sensors.

The procedure developed for external calibration involves
positioning a standard planar chessboard target within the
visible overlapping regions of any two Kinect sensors. Unlike
most calibration techniques in the literature, in this method
there is no need to move the checkerboard to image it from
multiple views. On the contrary, a fixed target increases
the performance of the method. The result is a rigid body
transformation that best aligns the data collected by a pair of
RGB-D sensors. Figure 7 depicts the proposed scanning sys-
tem during the calibration process.

The proposed technique takes advantage of the rapid 3D
measurement technology embedded in the sensor and pro-
vides registration accuracy within the range of the depth mea-
surements resolution available with Kinect. An important
advantage of this method is the fact that it is unnecessary to
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FIGURE 7: Placement of calibration target during calibration of Kinects K, and K.

()

(b)

FIGURE 8: IR image of the checkerboard target for external calibration: (a) effect of the projected IR pattern, (b) filtered image using a median

filter of size 3 x 3.

cover the Kinect infrared projector to perform this phase of
the calibration, which facilitates manipulations when remo-
tely dealing with the network of Kinect devices.

The method consists in finding a normal vector and the
center of the checkerboard plane, which define the relative
orientation and translation of the checkerboard plane. The
first step is to compute the 3D coordinates of the corners
on the checkerboard with respect to the IR camera frame,
using (3). When the checkerboard target is positioned in front
of a Kinect sensor, the IR projector pattern appears on the
checkerboard target as shown in Figure 8(a). This pattern cre-
ates noise and makes it difficult to extract the exact corners.
Since the noise is similar to salt and pepper noise, a median
filter of size 3 x 3 provides a good reduction in the noise level
without blurring the image, as shown in Figure 8(b).

Moreover, the extracted points are not entirely mapped
over a single plane because of quantization effects in the
Kinect depth sensor. Therefore, the corner points are used to
estimate the three-dimensional plane (5) that minimizes the
orthogonal distance between that plane and the set of 3D
points. The equation of the plane then permits to estimate the
orientation in 3D space of the target with respect to the IR
camera

z=Ax+By+C. (5)

Let the 3D coordinates of the #n corners of the checker-
board target be S, (x,, ¥1,21), $3(X55 ¥2:22)5 - -5 S, (X5 V> 2,1)5
then the systems of equations for solving the plane equation

are Ax,;+By,+C = z,, Ax,+By,+C = z,,..., Ax,+By,+C =
z,. These equations can be formulated into a matrix problem

X nl Z)
X ¥l A 2,
.o Bl=] ] (6)
: : C :
Xy Yo 1 Z,

This overdetermined system is solved for the values of A,
B, and C with an orthogonal distance regression approach
[21], which provides the best fit plane on those points. All the
3D points, S,, are projected on the best fit plane, P,. These
points serve to define the center and the normal vector of
the plane. However, projected points, P,, do not represent the
exact corners of the checkerboard. Therefore, the center of the
plane cannot be defined only by the intersection of two lines
passing close to the center. Figure 9(a) shows the set of
possible pairs of symmetric corner points that generate lines
passing close to the center.

The closest point to all intersections between these lines is
selected as a center point O. Two points P; and P; are selected

on the plane to define vectors (ﬁi and OP ;- The normal to the
plane is then defined by the cross product:

oo, 7
“[oBon) 7

This normal is the unit vector of the z-axis of the check-
erboard frame with respect to the RGB-D sensor. The unit



()

Journal of Sensors

()

FIGURE 9: (a) Possible combination of lines passing through the center of the checkerboard, (b) the normal vector and the center of a checker-

board target.

vector of the y-axis of the checkerboard can be found by
any two vertical points in the checkerboard. Let P, and P; be
the two vertical points where P, is the top end and P; is the
bottom end of a vertical line. N is the total number of possible
combinations of vertical lines. The average unit directional

vector can then be defined as
1 b -P
Y= X (8)
N ~|p,-p|

This vector is the unit vector of the y-axis of the checker-
board frame with respect to the RGB-D sensor. The last unit
vector for the x-axis can be found by a cross product, defined
as

X=yXz. 9)

All the unit vectors of the coordinate frame of the check-
erboard target can be combined to define the rotation matrix
between the RGB-D sensor and the checkerboard frame as

xx yx ZX
R=|x, ¥y, z,|. (10)

Xz Yz %2

The translation vector corresponds with the center of the
checkerboard frame

T=[0, O, O,]. (1)

R and T are the rotation and the translation matrices of the
checkerboard frame with respect to the Kinect IR sensor. The
position and orientation between two Kinect sensors can be
determined by the following procedure. Let H, and H, be
the homogenous transformations between Kinect 1 and the
checkerboard and between Kinect 2 and the checkerboard,
respectively, as shown in Figure 10. If the target remains

Checkerboard

z

H

F1Gcure 10: Extrinsic calibration of a pair of Kinect sensors.

fixed for both Kinect sensors, the geometrical transformation
between the sensors is defined as follows:

H = H,H; ', (12)

where H is the homogenous transformation matrix from the
Kinect 2 to the Kinect 1 sensor.

4.3. Complete Calibration of All Cameras in the Network of
Kinect Sensors. The camera arrangement shown in Figure 4
includes overlapping regions between contiguous sensors
marked in gray. During the calibration phase, the checker-
board target is successively placed within those areas for
external calibration between every pair of neighbor Kinect
IR sensors. Figure 7 shows the calibration target placed in
the overlapping region between Kinect K, and K, during an
experimental calibration procedure. External calibration is
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FIGURE 11: Calibration flow for the network of sensors.

performed in pairs using the best-fit plane calibration method
detailed in Section 4.2 The center Kinect, K, is set as a base
of reference for the setup. The relative calibration is then
calculated between (K, K), (K}, K3), (K5, K3), and (K, K,).
Figure 11 shows the calibration flow for the network of Kinect

Sensors.
Kinects K, and K, have a direct relationship with Kj,

immediately defined by the extrinsic calibration parameters
obtained in each case, but K, and K; need to be related to K,
through an intermediate node, respectively, K, and K,. The
relations between (K, K,) and (K, K;) are given by the fol-
lowing equations:

HK1<—K4 = HKI —K, HK0<—K4’

(13)
HK1<—K3 = HKI<—K2HK2<—K3'

5. Automatic Detection of Characteristic
Areas over a Vehicle

Once the network of Kinect sensors distributed around one
side of a vehicle is available and entirely calibrated, the
proposed system determines the location of the vehicle in
the scene and subsequently the location of a set of significant
vehicle components. The purpose of recognizing specific
areas of interest over a large object such as a vehicle is to speed
up the modeling process and also to facilitate the guidance of
the robot arm that will eventually interact with the vehicle to
perform either inspection or maintenance tasks. Acquiring
the knowledge about the location of dominant features over
the vehicle reduces the amount of time spent on scanning at
higher resolution to accurately drive the manipulator by
focusing the operation only over selected areas. It also allows
the robot to rapidly determine where to operate, as it is very
unlikely that the robotic operation will be required over the
entire vehicle for most typical inspection or maintenance

tasks.
To achieve efficient and reliable detection and localization

of characteristic areas over a vehicle, a visual detector of vehi-
cle parts (VDVP) was previously introduced in [22] to operate
on an image depicting a complete view of one side of a vehicle.
The VDVP receives as an input a color image of a lateral view
of the vehicle to determine the location of up to 14 vehicle
parts. The method works with images of different types of
vehicles such as 4-door sedan, 2-door sedan, 3-door hatch-
back, 5-door hatchback, SUV and pickup-trucks. Figure 12
illustrates the result of applying the method over a test image.
Round areas indicate features detected by the classifiers;
square regions mean that the locations of the features were

FIGURE 12: Automatic detection of parts of interest over a side view
of a car.

inferred based on other known features. The VDVP method
is revisited and integrated in this work.

The original method required at least a full lateral view
of the vehicle which was provided by a standard color camera
located far enough from the vehicle to image its entire length.
To better integrate and to increase the compactness of the
acquisition setup, determining the location of the car and the
bodywork panels of the vehicle should be achieved by using
the color information provided by the Kinect sensors. How-
ever, none of the Kinect sensors can collect a full view alone
due to the limited horizontal field of view and depth of field of
Kinect sensor technology. Therefore, it becomes necessary to
merge the color images collected in a collaborative manner by
sensors K, K;, K,. For that purpose, the assumption is made
that the image planes of the group of Kinect sensors are paral-
lel and they all are contained in a larger plane. Thus, in order
to accurately merge the color information, only the transla-
tion vectors defining the relative position of the color cameras
with respect to the central Kinect’s color camera are required.
These parameters were obtained during the calibration proce-
dure described in Section 4 and can be computed by combin-
ing the internal and external extrinsic calibration parameters,
as detailed in Section 4.3. The resulting composite image is
used to determine the segments in each color image that
correspond to both the vehicle and the parts of interest.
Here the original VDVP method is extended such that the
detection process for each part of interest is performed using
individual images from each sensor, each representing a sec-
tion of the vehicle rather than on the segmented panorama.

To determine the location of a car in the side view,
the VDVP method relies on the successful detection of
the car wheels [22]. To tackle this problem, the algorithm
makes a decision based on the result of two techniques that
estimate the position of the wheels: the Hough transform
algorithm and a classifier based on Haar-like features trained
for detecting wheels [16]. Then, the car is enclosed in a
bounding box and segmented from the background. To set
the dimension of the bounding box, a statistical analysis of the
location of significant car features over a training set of images
(t,) was conducted. The training set represents the 67% of a
collection containing one hundred and ten color images.
The remaining 33% of the images were used for evaluation
purposes. Figure13 shows the regions where features of
interest are expected to be located. Each region of interest
corresponds, from left to right, respectively, to rear bumper,
rear lamp, rear wheel, rear handle, rear window, roof, center,
front handle, front window, windshield, lateral mirror, front
wheel, head light, and front bumper.
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FIGURE 13: Regions containing the location of parts of interest for
lateral views of vehicles, as a result of training over a representative
collection of images of different types of automobiles.

Having recovered the position of the wheels in the scene,
for parts of interest detection purposes, a polar coordinate
system is established. The origin is the center of the rear
wheel. Directions X and Y are at right angles to each other.
The direction of the X axis matches with the directed line that
goes from the origin (center of rear wheel) to the center of the
front wheel.

Once the location of the wheels is known, the next step
consists in determining the location of all other remaining
features of interest, C;, on the bodywork. Any feature of
interest, C;, characterizing a vehicle is defined in the polar
coordinate system, as follows:

C,={r0,6):r,6 e R,0<O <}, (14)

where r and 0 define the center of a feature of interest to be
located, in polar coordinates, and § is the minimum radius
of a circumference enclosing the region for a given part of
interest. Let R, be the region where a feature, C, is expected
tobelocated. R, is a 2-tuple (f,, f) that can be represented by
probability distribution functions over the polar map super-
imposed over the lateral image of the vehicle and defined as

1 (=)’ 20]).

fr (1’;‘[/{,,0'?) = o m

(15)
1 (O0-w)/20))

Op V27T

The radial and angular standard deviations (o, and o) and
expectations (y, and ) in (15) are calculated experimentally
from the training set, t,. Consequently, these PDF functions
define a probable searching area for each part of interest con-
sidered.

To achieve rotation, scale and translation invariance in
the definition of the search zones, the direction of the vector
pointing toward the center of the front wheel is used as the X
axis, all the vectors pointing toward features of interest were
normalized with respect to the length between the wheels’
centers, and the origin of the coordinate system corresponds
to the position of the rear wheel’s center as it is shown in
Figure 14(b). Up to this point a set of regions for each part of
interest and for each image, in the segmented panorama, was
defined. Next, for each car feature, C;, to be detected, a search
area, R, is defined. Then, a set of classifiers trained for detect-
ing each feature of interest, C;, is used. The detection method
is constructed as a cascade of boosted classifiers based on
Haar-like features. Classifiers were trained with the set of

fo (9§ Ho> 0';) =
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images, t,. Each detection performed by a classifier is ranked
using the corresponding PDF functions (f,, fy). False detec-
tions are discarded rapidly using this method as well.

5.1. Determining the Position of Missing Vehicle Parts. Vehicle
panels are located using vehicle features on the bodywork.
Figure 15 shows the classification rate for each car part. The
classifiers were evaluated using the testing set that, as men-
tioned previously, contains the 33% of a collection of color
images of vehicles. Twelve features are detected by the learn-
ing algorithms; the locations of the remaining features (win-
dows) as well as the location of those characteristics that were
not successfully detected by the classifiers are inferred as fol-
lows.

Let M be a geometrical model for a vehicle defined as fol-
lows: M = {C,,C,...C,}. That is, M defines the spatial rela-
tionship among the vehicle features of interest in an image by
containing the positions of each car part.

Let M, = {C,,C,...C,_;} a geometrical model con-
structed using the vehicle parts of interest successfully
detected with the method proposed in the previous section, k
being the number of missing features. Let G be the set of geo-
metrical models for each image in the training set, f.. A sim-
ilarity function, L, which measures how adequate M, and M
are, can be defined as follows:

L(M,M) = is (¢)F(c), (16)

where S(¢;) is the probability of the successful detection of the
classifier for a particular feature, ¢;. This probabilistic distri-
bution was determined experimentally for each car part to be
detected and is reported for dominant parts of interest in [22].
F(c;) defines the probability that a detected feature, ¢;, was
found in the right place considering the model, M, and the
probability distribution associated with ;. Therefore, for each
feature, ¢;, in M, the similarity function, L, is calculated using
models in G. This way the most likely position of ¢; is deter-
mined by choosing the lowest value for L. The partial model,
M, is upgraded with the new location of ¢;. This process is
repeated until the full set of features is known. Finally, the
model, M, not only provides accurate information about the
location of the parts of interest but information about the
type of car, size, location, and orientation of the vehicle since
each model M in G beyond containing the spatial relationship
among the vehicle features of interest also contains semantic
information about the type of vehicle. Figure 16 shows some
results obtained after applying the proposed technique for
part detection in color images collected from three Kinect
sensors over different lateral sections of a vehicle.

6. 3D Reconstruction of Vehicle Lateral Panels

The point clouds collected by the set of Kinect sensors are first
aligned using the external calibration parameters previously
calculated. Then, a segmentation procedure is applied to sep-
arate points contained within discovered regions of interest,
using the VDVP method of Section 5, from the whole point
cloud. For segmentation, the locations of the detected parts of
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FIGURE 14: (a) Unrefined segmented panorama, (b) polar coordinate system centered on the rear wheel and the centers of each search zone,

and (c) search zones R, for each image.
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interest in color images are mapped into the 3D point cloud.
The coordinates of the rear bumper, front bumper, roof,
and wheels provide the width and height of a 3D bounding
box enclosing the desired points. The bonding box depth is
defined by adding and subtracting a fixed parameter (30 cm)
to the average depth of the parts. This parameter was estab-
lished experimentally, as folds and pleats of the surface of
automotive vehicles usually do not go beyond this threshold.
Next, a triangle mesh is built over the respective groups of
points that correspond to each region of interest detected over
the surface. This process results in a group of local 3D colored
models that represent the shape and visual appearance of the
surface of the vehicle in the specific regions of interest. A
mesh is a topological structure typically constructed from
unorganized points. The Delaunay triangulation technique
[23] is commonly used for this purpose but tends to be
computationally expensive. Nevertheless, the Kinect sensors
provide depth readings in a structured way (rectangular
lattice). Advantage is taken of this structured information to
perform the triangulation process efficiently using the follow-
ing technique.

Let TR,, be the triangle mesh to be calculated for a given
point cloud P;. The latter being a rectangular lattice of 3D
points under the constraint that Kinect sensors are used. Let h
be a variable threshold that defines the surface continuity and

let pe, ps, pw, pnbe the four neighbors of a point pi defined as
shown in Figure 17. The parameter h increases in accordance
with the distance between the sensor and the surface due to
the fact that the error of the sensor increases along the z-axis.

Now, let us assume that pi, pe, ps, pw, and pn are indices
of the point cloud vector and that a 3D point v; can be
accessed in this way: v; « P; (index). If there is a hole in P},
the z coordinates of the missing points are set to co. Given
this structure, the triangle mesh generation is accelerated as
follows.

For each point i in P}, two candidate triangles are evalu-
ated individually according to the continuity criteria of their
vertices. The criterion for the inclusion or rejection of a tri-
angle consists in comparing the threshold /4, mentioned pre-
viously, to the difference of the z-coordinates between pairs
of points. If the check is passed successfully, the three-sided
polygon is added to the mesh. The triangles are defined as
follows: T, [j] < triangle (v;,v,,v3) and T, [j] <
triangle (v;,v,, vs), where v, = P;(i), v, = Pi(e), v3 = P;(s),
v, = P (w), and v5 = P;(n). By using this technique, the tri-
angulation process is performed rapidly. The downside of the
method is the fact that it tends to leave small holes if there are
missing points in the point cloud.

7. Experimental Evaluation

This section presents a series of experiments aimed to eval-
uate the proposed sensing framework. The first experiment
assesses the tolerance of the sensors when they capture irreg-
ular shapes of car body parts over simulated uneven surfaces
such as that in semicontrolled environments. The framework
provides point clouds of the different sections of the vehicle;
the information is aligned and it is used to create a triangle
mesh of the surface. Thus, the next experiment evaluates the
performance of the proposed mesh generation algorithm.
This section closes with a qualitative evaluation of full 3D
reconstructions of lateral panels of real vehicles and large
objects.
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FIGURE 16: Automatic detection of fourteen parts of interest over three different RGB images which correspond to different sections of a

vehicle: (a) view from sensor K, (b) sensor K, and (c) sensor K;.
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FIGURE 17: 2D representation of a 3D point cloud; the z-coordinate
of each point was removed. The solid dot is a vertex i shared by the
triangles (i, e, s) and (i, w, n).

In order to evaluate the capability of the system to
reconstruct irregular surfaces, a model of a car door was used,
as shown in Figure 6(a) and was imaged with a single Kinect
sensor. The model was designed for simulating the irregular
curves of an actual vehicle surface as well as folds and pleats,
as shown in Figure18(a). A set of salient points over the
surface of the door was selected to evaluate the accuracy of the
method. Using these points, a silhouette of the panel is built.
Figure 18(a) shows the salient points in both the door model
and its reconstruction. Five points of the outline represent
tight curves over the surface. Additionally, three small bumps
were added over the smooth part of the surface to be used
as reference points. Figure 18(b) presents the results of con-
structing the silhouettes for the door model using different
point clouds. The data were collected with the sensor tilted at
angles of 5, 10, and 15 degrees with respect to the horizontal
level. The sensor was positioned at 30 cm above the bottom

of the door and 1.5 m from the closest point of the door. The
uppermost points of the outlines were selected as a common
point for the alignment of the silhouettes.

In Figure 18(b), the black line represents the actual shape
of the model. Color lines represent results from the exper-
iments under three different inclinations of the sensor with
respect to the object. The error along the y and z coordinates,
for most of the points, remains in the interval (0, +1.8) cm
with respect to the actual door model which proves that the
scanning system achieves a good degree of tolerance to irreg-
ular leveling and alignment of the sensors. The image shown
in Figure19 is the 3D reconstruction and 3D mesh of the
mock-up door. For visualization purposes in this paper, the
Quadric Clustering decimation algorithm [24] was applied
over the triangle mesh to reduce the number of triangles.

The next experiment was conducted to measure the per-
formance of the proposed algorithm for triangle mesh gen-
eration. The results are compared, in Table 3, with those
obtained by using the Delaunay algorithm provided by the
Visualization Toolkit library (VTK) [25]. Sensors K, K,
K, were used to create three individual triangle meshes for
their corresponding bodywork region. The results shown in
Table 3 were obtained after running the algorithms 10 times
over each point cloud. The difference in the results can be
explained by the fact that the Delaunay algorithm is designed
to work with nonstructured 3D points while the proposed
technique from Section 6 takes advantage of the rectangular
lattice of 3D points produced by the Kinect sensors.

Lastly, experiments were conducted using the proposed
scanning system and real vehicles. In this test, a full recon-
struction of the lateral panels of different vehicles was
achieved to evaluate the capability of Kinect sensors to
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FIGURE 18: (a) Profile of a car door model over which a set of salient points were selected to construct the outline of the surface for evaluation
purposes, and (b) silhouette reconstruction with the sensor tilted at different angles.

FIGURE 19: Triangle mesh of a mockup door model.

TaBLE 3: Comparison of algorithms performance for triangle mesh
generation.

. Average Delaunay Proposed triangle mesh
Vehicle . - .
anel number of algorithm, generation algorithm,
b vertices average time average time
Front 174687 3.09 sec 0.086 sec
Central 219286 3.65sec 0.171sec
Back 217308 3.63 sec 0.138 sec

perform in semiconstrained environments and over large
objects exhibiting complex surface reflectance characteristics.

FIGURE 20: Point cloud registration of three different lateral sections
of a 4-door sedan vehicle.

The first acquisition was performed in a semioutdoor parking
garage over day time. Natural light was present in the scene
via peripheral openings in the garage, while the sensors were
protected from direct sunlight by means of the concrete
ceiling. Figure 20 shows a sample of 3D reconstruction results
obtained with the proposed methodology and a network of
three Kinect sensors for the vehicle depicted in Figure 1(b).
This acquisition was performed over winter season in Canada
resulting in the vehicle’s side panels being covered with dirt
and salt deposits from the road conditions, which created
various shades of green paint, gray dirty areas, and specular
reflection spots from the overhead lighting present in the
installation. The raw information collected by each Kinect
can be distinguished by its color for the front, central, and
back panels. Figure 21 shows the complete 3D reconstruction
results after registration and fusion based on the calibration
phase performed with the proposed methodology. For visual-
ization purposes a decimation algorithm was applied over the
mesh such that triangles are large enough to be visible. This
also impacts on the apparent smoothness of the displayed
model. The 3D reconstruction is provided in the Stanford
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FIGURE 21: Resulting mesh for a Toyota Echo vehicle.

FIGURE 22: Capturing 3D data over a vehicle with the network of
Kinect sensors.

Triangle Format [26], which is a convenient and standard way
to represent the information of 3D meshes, and it can be used
easily by a robot to plan its trajectory to approach the surface.

For the next experiment the acquisition was performed in
an indoor parking garage. Figure 22 shows a vehicle standing
in front of the experimental setup with 5 Kinect sensors
for the rapid 3D modeling stage that will drive the robotic
inspection. The scene was illuminated by incandescent lamps
and a halogen lamp.

The reconstruction for two different types of vehicles is
shown in Figures 23 and 24. In this case the texture cap-
tured by the Kinects’ RGB cameras is added to the recon-
structed scene, which provides a better appreciation of the
reconstruction.

The windshield, lateral windows, and part of headlamp
and rear lamp are missing in the depth maps because the IR
energy generated by the Kinect devices passes through the
transparent surfaces or is deflected in other directions. How-
ever, the rear window of the minivan, which is made of tinted
glass, is partially captured. All of the main areas of the vehicles
body and wheels, including dark rubber tires, are accurately
reconstructed, and sections of the model acquired from the
five viewpoints are correctly aligned, even over narrow roof
supporting beams and highly curved bumpers areas.

Table 4 presents a comparison between the characteristics
of the reconstructed vehicle and their actual dimensions. The
Kinect depth quantization introduces scaling errors of about
1 cm in height and width and a depth error of about 2.5 cm at
3 m distance. Each sensor covers the full height of the vehicle,
and the average error on height is under 1%. The estimation of
the length of the vehicle and the wheel base (i.e., the distance
between the centers of the front and back wheels) involves
all the calibration parameters estimated for the network of
Kinect sensors. The error on the length is under 2.5%, which is
relatively minor given the medium quality of data provided by

Journal of Sensors

Ficure 23: Six different views of a minivan vehicle 3D reconstruc-
tion.

FIGURE 24: Six different views of a semicompact vehicle 3D recon-
struction.

TABLE 4: Reconstruction compared with ground truth.

Height Length Wheel base

Car

Actual (mm) 1460 4300 2550

Model (mm) 1471 4391 2603

Error (%) 0.75 2.11 2.07
Van

Actual (mm) 1748 5093 3030

Model (mm) 1764 5206 3101

Error (%) 0.91 2.21 2.34

Kinect at a depth of 3 m and in proportion to the large work-
ing volume. For further assessment of the algorithm, an ICP
algorithm [27] was applied on the point clouds, but it did not
significantly improve the registration over what was achieved
with the estimated calibration parameters. This confirms the
accuracy of the initial calibration described in Section 4.
Finally, Figure 25 shows the reconstruction of other mod-
els of vehicles along with that of some garbage bins, acquired
with the exact same setup, to evaluate the generalization capa-
bilities of the proposed calibrated RGB-D acquisition frame-
work. A wide range of vehicles was covered during experi-
ments, in terms of colors and size. The white color vehicle
appears more integrally than the vehicles with dark gray color,
where missing depth data are noticed over the front part on
the right of the vehicles where the density of points in the
acquisition varies to a greater extent given the significant
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FIGURE 25: Reconstruction of various vehicles and garbage bins.

change of alignment between Kinects K, and Kj. The dark
green garbage bins are also correctly reconstructed with
proper alignment between the piecewise RGB-D models.

The algorithms presented in this paper were developed in
C++ and run on a computer with an Intel core i7 CPU and
Windows 7. The average time that the proposed method takes
to reconstruct the 3D surface shape captured from each view-
point for a regular vehicle is 4.0 sec. With regards to the acqui-
sition time, the network of sensors collects the information in
two time slots to avoid interference; the initialization of each
device takes between 1 and 2 seconds. As a result, the scanning
and 3D textured modeling processes for the entire vehicle are
completed within 30 seconds. It is worth to say that most of
that time is consumed by the subsystem for the visual detec-
tion of parts of interest. The calibration process is performed
oft-line, and the triangulation algorithm is run as the sensors
are collecting the depth information.

The automated selection of regions of interest detailed in
Section 5 allows for rapid extraction of subsets of the gener-
ated 3D model over which further processing can be per-
formed, including higher resolution scanning, if required,
over only limited but strategically selected surfaces in order
to drive a robotic operation with higher precision over those
regions. This proves an efficient strategy given that very high
resolution acquisition and 3D modeling over an entire object
of the size of a vehicle would be prohibitive in time and
resources.

8. Conclusions

In this work, a rapid acquisition and reconstruction method-
ology for automated 3D modeling of large objects such as
automotive vehicles is presented. The approach builds on a
network of fast Kinect sensors distributed around the object
to collect color and depth information over lateral panels of
vehicles. The 3D modeling results are meant to provide a
robotic arm with sufficiently accurate spatial information
about the bodywork of a vehicle and the 3D location of up to
fourteen features of interest over the surface such that it can
interact with the automobile panels for various inspection or
maintenance tasks.

This technology opens the door to a great number of real-
time 3D reconstruction applications using low-cost RGB-D
sensors. The main contributions of this work provide a reli-
able methodology to integrate multiple color and depth
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streams of data in the task of 3D reconstruction of large
objects. For that purpose, an efficient method for complete
and accurate calibration of all intrinsic and extrinsic parame-
ters of RGB-D sensor units specifically tailored to the Kinect
sensors technology is presented. Furthermore, an approach
for automated detection and recognition of critical regions of
interest over vehicles from a mosaic of Kinect’s color images is
detailed. Finally, an accelerated triangular mesh generation
algorithm is designed that takes advantage of the intrinsic
structure of range data provided by Kinect sensors to further
speed up the 3D model generation. The entire framework is
experimentally validated under several operating conditions,
including a laboratory environment, and semicontrolled
parking garages where acquisition and 3D reconstruction
are performed over objects of various sizes, including large
vehicles. The results demonstrate the validity, accuracy, and
rapidity of the use of Kinect’s RGB-D sensors, in the context
of robotic guidance. The addition of extra sensors to achieve
full 360 degree coverage of a vehicle represents the next step
of this investigation which will further extend the current
capabilities.
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