227 research outputs found

    Scan statistics for the online detection of locally anomalous subgraphs

    Get PDF
    Identifying anomalies in computer networks is a challenging and complex problem. Often, anomalies occur in extremely local areas of the network. Locality is complex in this setting, since we have an underlying graph structure. To identify local anomalies, we introduce a scan statistic for data extracted from the edges of a graph over time. In the computer network setting, the data on these edges are multivariate measures of the communications between two distinct machines, over time. We describe two shapes for capturing locality in the graph: the star and the k-path. While the star shape is not new to the literature, the path shape, when used as a scan window, appears to be novel. Both of these shapes are motivated by hacker behaviors observed in real attacks. A hacker who is using a single central machine to examine other machines creates a star-shaped anomaly on the edges emanating from the central node. Paths represent traversal of a hacker through a network, using a set of machines in sequence. To identify local anomalies, these shapes are enumerated over the entire graph, over a set of sliding time windows. Local statistics in each window are compared with their historic behavior to capture anomalies within the window. These local statistics are model-based. To capture the communications between computers, we have applied two different models, observed and hidden Markov models, to each edge in the network. These models have been effective in handling various aspects of this type of data, but do not completely describe the data. Therefore, we also present ongoing work in the modeling of host-to-host communications in a computer network. Data speeds on larger networks require online detection to be nimble. We describe a full anomaly detection system, which has been applied to a corporate sized network and achieves better than real-time analysis speed. We present results on simulated data whose parameters were estimated from real network data. In addition, we present a result from our analysis of a real, corporate-sized network data set. These results are very encouraging, since the detection corresponded to exactly the type of behavior we hope to detect

    Graph based Anomaly Detection and Description: A Survey

    Get PDF
    Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured graph data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised vs. (semi-)supervised approaches, for static vs. dynamic graphs, for attributed vs. plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly attribution and highlight the major techniques that facilitate digging out the root cause, or the ‘why’, of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field

    Locality statistics for anomaly detection in time series of graphs

    Full text link
    The ability to detect change-points in a dynamic network or a time series of graphs is an increasingly important task in many applications of the emerging discipline of graph signal processing. This paper formulates change-point detection as a hypothesis testing problem in terms of a generative latent position model, focusing on the special case of the Stochastic Block Model time series. We analyze two classes of scan statistics, based on distinct underlying locality statistics presented in the literature. Our main contribution is the derivation of the limiting distributions and power characteristics of the competing scan statistics. Performance is compared theoretically, on synthetic data, and on the Enron email corpus. We demonstrate that both statistics are admissible in one simple setting, while one of the statistics is inadmissible a second setting.Comment: 15 pages, 6 figure
    • …
    corecore