307 research outputs found

    Robust signatures for 3D face registration and recognition

    Get PDF
    PhDBiometric authentication through face recognition has been an active area of research for the last few decades, motivated by its application-driven demand. The popularity of face recognition, compared to other biometric methods, is largely due to its minimum requirement of subject co-operation, relative ease of data capture and similarity to the natural way humans distinguish each other. 3D face recognition has recently received particular interest since three-dimensional face scans eliminate or reduce important limitations of 2D face images, such as illumination changes and pose variations. In fact, three-dimensional face scans are usually captured by scanners through the use of a constant structured-light source, making them invariant to environmental changes in illumination. Moreover, a single 3D scan also captures the entire face structure and allows for accurate pose normalisation. However, one of the biggest challenges that still remain in three-dimensional face scans is the sensitivity to large local deformations due to, for example, facial expressions. Due to the nature of the data, deformations bring about large changes in the 3D geometry of the scan. In addition to this, 3D scans are also characterised by noise and artefacts such as spikes and holes, which are uncommon with 2D images and requires a pre-processing stage that is speci c to the scanner used to capture the data. The aim of this thesis is to devise a face signature that is compact in size and overcomes the above mentioned limitations. We investigate the use of facial regions and landmarks towards a robust and compact face signature, and we study, implement and validate a region-based and a landmark-based face signature. Combinations of regions and landmarks are evaluated for their robustness to pose and expressions, while the matching scheme is evaluated for its robustness to noise and data artefacts

    Analysis of cardiac magnetic resonance images : towards quantification in clinical practice

    Get PDF

    Study of Computational Image Matching Techniques: Improving Our View of Biomedical Image Data

    Get PDF
    Image matching techniques are proven to be necessary in various fields of science and engineering, with many new methods and applications introduced over the years. In this PhD thesis, several computational image matching methods are introduced and investigated for improving the analysis of various biomedical image data. These improvements include the use of matching techniques for enhancing visualization of cross-sectional imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), denoising of retinal Optical Coherence Tomography (OCT), and high quality 3D reconstruction of surfaces from Scanning Electron Microscope (SEM) images. This work greatly improves the process of data interpretation of image data with far reaching consequences for basic sciences research. The thesis starts with a general notion of the problem of image matching followed by an overview of the topics covered in the thesis. This is followed by introduction and investigation of several applications of image matching/registration in biomdecial image processing: a) registration-based slice interpolation, b) fast mesh-based deformable image registration and c) use of simultaneous rigid registration and Robust Principal Component Analysis (RPCA) for speckle noise reduction of retinal OCT images. Moving towards a different notion of image matching/correspondence, the problem of view synthesis and 3D reconstruction, with a focus on 3D reconstruction of microscopic samples from 2D images captured by SEM, is considered next. Starting from sparse feature-based matching techniques, an extensive analysis is provided for using several well-known feature detector/descriptor techniques, namely ORB, BRIEF, SURF and SIFT, for the problem of multi-view 3D reconstruction. This chapter contains qualitative and quantitative comparisons in order to reveal the shortcomings of the sparse feature-based techniques. This is followed by introduction of a novel framework using sparse-dense matching/correspondence for high quality 3D reconstruction of SEM images. As will be shown, the proposed framework results in better reconstructions when compared with state-of-the-art sparse-feature based techniques. Even though the proposed framework produces satisfactory results, there is room for improvements. These improvements become more necessary when dealing with higher complexity microscopic samples imaged by SEM as well as in cases with large displacements between corresponding points in micrographs. Therefore, based on the proposed framework, a new approach is proposed for high quality 3D reconstruction of microscopic samples. While in case of having simpler microscopic samples the performance of the two proposed techniques are comparable, the new technique results in more truthful reconstruction of highly complex samples. The thesis is concluded with an overview of the thesis and also pointers regarding future directions of the research using both multi-view and photometric techniques for 3D reconstruction of SEM images

    Surface Reconstruction from Noisy and Sparse Data

    Get PDF
    We introduce a set of algorithms for registering, filtering and measuring the similarity of unorganized 3d point clouds, usually obtained from multiple views. We contribute a method for computing the similarity between point clouds that represent closed surfaces, specifically segmented tumors from CT scans. We obtain watertight surfaces and utilize volumetric overlap to determine similarity in a volumetric way. This similarity measure is used to quantify treatment variability based on target volume segmentation both prior to and following radiotherapy planning stages. We also contribute an algorithm for the drift-free registration of thin, non- rigid scans, where drift is the build-up of error caused by sequential pairwise registration, which is the alignment of each scan to its neighbor. We construct an average scan using mutual nearest neighbors, each scan is registered to this average scan, after which we update the average scan and continue this process until convergence. The use case herein is for merging scans of plants from multiple views and registering vascular scans together. Our final contribution is a method for filtering noisy point clouds, specif- ically those constructed from merged depth maps as obtained from a range scanner or multiple view stereo (MVS), applying techniques that have been utilized in finding outliers in clustered data, but not in MVS. We utilize ker- nel density estimation to obtain a probability density function over the space of observed points, utilizing variable bandwidths based on the nature of the neighboring points, Mahalanobis and reachability distances that is more dis- criminative than a classical Mahalanobis distance-based metric

    Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis

    Get PDF
    This paper proposes an arbitrary view gait recognition method where the gait recognition is performed in 3-dimensional (3D) to be robust to variation in speed, inclined plane and clothing, and in the presence of a carried item. 3D parametric gait models in a gait period are reconstructed by an optimized 3D human pose, shape and simulated clothes estimation method using multiview gait silhouettes. The gait estimation involves morphing a new subject with constant semantic constraints using silhouette cost function as observations. Using a clothes-independent 3D parametric gait model reconstruction method, gait models of different subjects with various postures in a cycle are obtained and used as galleries to construct 3D gait dictionary. Using a carrying-items posture synthesized model, virtual gait models with different carrying-items postures are synthesized to further construct an over-complete 3D gait dictionary. A self-occlusion optimized simultaneous sparse representation model is also introduced to achieve high robustness in limited gait frames. Experimental analyses on CASIA B dataset and CMU MoBo dataset show a significant performance gain in terms of accuracy and robustness
    • …
    corecore