121 research outputs found

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Particles and fields in fluid turbulence

    Full text link
    The understanding of fluid turbulence has considerably progressed in recent years. The application of the methods of statistical mechanics to the description of the motion of fluid particles, i.e. to the Lagrangian dynamics, has led to a new quantitative theory of intermittency in turbulent transport. The first analytical description of anomalous scaling laws in turbulence has been obtained. The underlying physical mechanism reveals the role of statistical integrals of motion in non-equilibrium systems. For turbulent transport, the statistical conservation laws are hidden in the evolution of groups of fluid particles and arise from the competition between the expansion of a group and the change of its geometry. By breaking the scale-invariance symmetry, the statistically conserved quantities lead to the observed anomalous scaling of transported fields. Lagrangian methods also shed new light on some practical issues, such as mixing and turbulent magnetic dynamo.Comment: 165 pages, review article for Rev. Mod. Phy

    Information processing in biology

    Get PDF
    To survive, organisms must respond appropriately to a variety of challenges posed by a dynamic and uncertain environment. The mechanisms underlying such responses can in general be framed as input-output devices which map environment states (inputs) to associated responses (output. In this light, it is appealing to attempt to model these systems using information theory, a well developed mathematical framework to describe input-output systems. Under the information theoretical perspective, an organismā€™s behavior is fully characterized by the repertoire of its outputs under different environmental conditions. Due to natural selection, it is reasonable to assume this input-output mapping has been fine tuned in such a way as to maximize the organismā€™s fitness. If that is the case, it should be possible to abstract away the mechanistic implementation details and obtain the general principles that lead to fitness under a certain environment. These can then be used inferentially to both generate hypotheses about the underlying implementation as well as predict novel responses under external perturbations. In this work I use information theory to address the question of how biological systems generate complex outputs using relatively simple mechanisms in a robust manner. In particular, I will examine how communication and distributed processing can lead to emergent phenomena which allow collective systems to respond in a much richer way than a single organism could

    Power Laws in Economics and Finance

    Get PDF
    A power law is the form taken by a large number of surprising empirical regularities in economics and finance. This article surveys well-documented empirical power laws concerning income and wealth, the size of cities and firms, stock market returns, trading volume, international trade, and executive pay. It reviews detail-independent theoretical motivations that make sharp predictions concerning the existence and coefficients of power laws, without requiring delicate tuning of model parameters. These theoretical mechanisms include random growth, optimization, and the economics of superstars coupled with extreme value theory. Some of the empirical regularities currently lack an appropriate explanation. This article highlights these open areas for future research.

    Information processing in biology

    Get PDF
    To survive, organisms must respond appropriately to a variety of challenges posed by a dynamic and uncertain environment. The mechanisms underlying such responses can in general be framed as input-output devices which map environment states (inputs) to associated responses (output. In this light, it is appealing to attempt to model these systems using information theory, a well developed mathematical framework to describe input-output systems. Under the information theoretical perspective, an organismā€™s behavior is fully characterized by the repertoire of its outputs under different environmental conditions. Due to natural selection, it is reasonable to assume this input-output mapping has been fine tuned in such a way as to maximize the organismā€™s fitness. If that is the case, it should be possible to abstract away the mechanistic implementation details and obtain the general principles that lead to fitness under a certain environment. These can then be used inferentially to both generate hypotheses about the underlying implementation as well as predict novel responses under external perturbations. In this work I use information theory to address the question of how biological systems generate complex outputs using relatively simple mechanisms in a robust manner. In particular, I will examine how communication and distributed processing can lead to emergent phenomena which allow collective systems to respond in a much richer way than a single organism could
    • ā€¦
    corecore