2,641 research outputs found

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Multilingual word embeddings and their utility in cross-lingual learning

    Get PDF
    Word embeddings - dense vector representations of a word’s distributional semantics - are an indespensable component of contemporary natural language processing (NLP). Bilingual embeddings, in particular, have attracted much attention in recent years, given their inherent applicability to cross-lingual NLP tasks, such as Part-of-speech tagging and dependency parsing. However, despite recent advancements in bilingual embedding mapping, very little research has been dedicated to aligning embeddings multilingually, where word embeddings for a variable amount of languages are oriented to a single vector space. Given a proper alignment, one potential use case for multilingual embeddings is cross-lingual transfer learning, where a machine learning model trained on resource-rich languages (e.g. Finnish and Estonian) can “transfer” its salient features to a related language for which annotated resources are scarce (e.g. North Sami). The effect of the quality of this alignment on downstream cross-lingual NLP tasks has also been left largely unexplored, however. With this in mind, our work is motivated by two goals. First, we aim to leverage existing supervised and unsupervised methods in bilingual embedding mapping towards inducing high quality multilingual embeddings. To this end, we propose three algorithms (one supervised, two unsupervised) and evaluate them against a completely supervised bilingual system and a commonly employed baseline approach. Second, we investigate the utility of multilingual embeddings in two common cross-lingual transfer learning scenarios: POS-tagging and dependency parsing. To do so, we train a joint POS-tagger/dependency parser on Universal Dependencies treebanks for a variety of Indo-European languages and evaluate it on other, closely related languages. Although we ultimately observe that, in most settings, multilingual word embeddings themselves do not induce a cross-lingual signal, our experimental framework and results offer many insights for future cross-lingual learning experiments

    MixKMeans: Clustering Question-Answer Archives

    Get PDF

    Word Sense Disambiguation: A Structured Learning Perspective

    Get PDF
    This paper explores the application of structured learning methods (SLMs) to word sense disambiguation (WSD). On one hand, the semantic dependencies between polysemous words in the sentence can be encoded in SLMs. On the other hand, SLMs obtained significant achievements in natural language processing, and so it is a natural idea to apply them to WSD. However, there are many theoretical and practical problems when SLMs are applied to WSD, due to characteristics of WSD. Beginning with the method based on hidden Markov model, this paper proposes for the first time a comprehensive and unified solution for WSD based on maximum entropy Markov model, conditional random field and tree-structured conditional random field, and reduces the time complexity and running time of the proposed methods to a reasonable level by beam search, approximate training, and parallel training. The update of models brings performance improvement, the introduction of one step dependency improves performance by 1--5 percent, the adoption of non-independent features improves performance by 2--3 percent, and the extension of underlying structure to dependency parsing tree improves performance by about 1 percent. On the English all-words WSD dataset of Senseval-2004, the method based on tree-structured conditional random field outperforms the best attendee system significantly. Nevertheless, almost all machine learning methods suffer from data sparseness due to the scarcity of sense tagged data, and so do SLMs. Besides improving structured learning methods according to the characteristics of WSD, another approach to improve disambiguation performance is to mine disambiguation knowledge from all kinds of sources, such as Wikipedia, parallel corpus, and to alleviate knowledge acquisition bottleneck of WSD
    • …
    corecore