235 research outputs found

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Full text link
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate Gaussian distributed, the conventional principal component analysis (PCA) cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    Gaussian Mixture Model-based Quantization of Line Spectral Frequencies for Adaptive Multirate Speech Codec

    Get PDF
    In this paper, we investigate the use of a Gaussian MixtureModel (GMM)-based quantizer for quantization of the Line Spectral Frequencies (LSFs) in the Adaptive Multi-Rate (AMR) speech codec. We estimate the parametric GMM model of the probability density function (pdf) for the prediction error (residual) of mean-removed LSF parameters that are used in the AMR codec for speech spectral envelope representation. The studied GMM-based quantizer is based on transform coding using Karhunen-Loeve transform (KLT) and transform domain scalar quantizers (SQ) individually designed for each Gaussian mixture. We have investigated the applicability of such a quantization scheme in the existing AMR codec by solely replacing the AMR LSF quantization algorithm segment. The main novelty in this paper lies in applying and adapting the entropy constrained (EC) coding for fixed-rate scalar quantization of transformed residuals thereby allowing for better adaptation to the local statistics of the source. We study and evaluate the compression efficiency, computational complexity and memory requirements of the proposed algorithm. Experimental results show that the GMM-based EC quantizer provides better rate/distortion performance than the quantization schemes used in the referent AMR codec by saving up to 7.32 bits/frame at much lower rate-independent computational complexity and memory requirements

    Decorrelation of Neutral Vector Variables: Theory and Applications

    Get PDF
    In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely, serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate-Gaussian distributed, the conventional principal component analysis cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations

    On Multiple Description Coding of Sources with Memory

    Full text link

    On the Comparisons of Decorrelation Approaches for Non-Gaussian Neutral Vector Variables

    Get PDF
    As a typical non-Gaussian vector variable, a neutral vector variable contains nonnegative elements only, and its l₁-norm equals one. In addition, its neutral properties make it significantly different from the commonly studied vector variables (e.g., the Gaussian vector variables). Due to the aforementioned properties, the conventionally applied linear transformation approaches [e.g., principal component analysis (PCA) and independent component analysis (ICA)] are not suitable for neutral vector variables, as PCA cannot transform a neutral vector variable, which is highly negatively correlated, into a set of mutually independent scalar variables and ICA cannot preserve the bounded property after transformation. In recent work, we proposed an efficient nonlinear transformation approach, i.e., the parallel nonlinear transformation (PNT), for decorrelating neutral vector variables. In this article, we extensively compare PNT with PCA and ICA through both theoretical analysis and experimental evaluations. The results of our investigations demonstrate the superiority of PNT for decorrelating the neutral vector variables

    Real-time digital speech transmission over the Internet

    Full text link
    This thesis describes a complete system for real-time digital speech communication over the Internet. A digital speech compressor is described, and a new real-time Internet protocol is designed. We focus on the mathematical representation of the system as well as its implementation providing pseudo-code routines for all components and algorithms. Our contribution stands in a combined solution to the problem that removes undesired properties, such as speech clipping and delay, that appeared in Internet real-time communication systems implemented in the past

    On the Comparisons of Decorrelation Approaches for Non-Gaussian Neutral Vector Variables

    Get PDF
    corecore