2,542 research outputs found

    Scalar Reduction of a Neural Field Model with Spike Frequency Adaptation

    Full text link
    We study a deterministic version of a one- and two-dimensional attractor neural network model of hippocampal activity first studied by Itskov et al 2011. We analyze the dynamics of the system on the ring and torus domain with an even periodized weight matrix, assum- ing weak and slow spike frequency adaptation and a weak stationary input current. On these domains, we find transitions from spatially localized stationary solutions ("bumps") to (periodically modulated) solutions ("sloshers"), as well as constant and non-constant velocity traveling bumps depending on the relative strength of external input current and adaptation. The weak and slow adaptation allows for a reduction of the system from a distributed partial integro-differential equation to a system of scalar Volterra integro-differential equations describing the movement of the centroid of the bump solution. Using this reduction, we show that on both domains, sloshing solutions arise through an Andronov-Hopf bifurcation and derive a normal form for the Hopf bifurcation on the ring. We also show existence and stability of constant velocity solutions on both domains using Evans functions. In contrast to existing studies, we assume a general weight matrix of Mexican-hat type in addition to a smooth firing rate function.Comment: 60 pages, 22 figure

    Coarse-grained dynamics of an activity bump in a neural field model

    Full text link
    We study a stochastic nonlocal PDE, arising in the context of modelling spatially distributed neural activity, which is capable of sustaining stationary and moving spatially-localized ``activity bumps''. This system is known to undergo a pitchfork bifurcation in bump speed as a parameter (the strength of adaptation) is changed; yet increasing the noise intensity effectively slowed the motion of the bump. Here we revisit the system from the point of view of describing the high-dimensional stochastic dynamics in terms of the effective dynamics of a single scalar "coarse" variable. We show that such a reduced description in the form of an effective Langevin equation characterized by a double-well potential is quantitatively successful. The effective potential can be extracted using short, appropriately-initialized bursts of direct simulation. We demonstrate this approach in terms of (a) an experience-based "intelligent" choice of the coarse observable and (b) an observable obtained through data-mining direct simulation results, using a diffusion map approach.Comment: Corrected aknowledgement

    The iso-response method

    Get PDF
    Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed characterization of signal integration is thus a central ingredient to understanding information processing in neural circuits. Conventional methods for measuring single-neuron response properties, such as reverse correlation, however, are often limited by the implicit assumption that stimulus integration occurs in a linear fashion. Here, we review a conceptual and experimental alternative that is based on exploring the space of those sensory stimuli that result in the same neural output. As demonstrated by recent results in the auditory and visual system, such iso-response stimuli can be used to identify the non-linearities relevant for stimulus integration, disentangle consecutive neural processing steps, and determine their characteristics with unprecedented precision. Automated closed-loop experiments are crucial for this advance, allowing rapid search strategies for identifying iso-response stimuli during experiments. Prime targets for the method are feed-forward neural signaling chains in sensory systems, but the method has also been successfully applied to feedback systems. Depending on the specific question, ā€œiso-responseā€ may refer to a predefined firing rate, single-spike probability, first-spike latency, or other output measures. Examples from different studies show that substantial progress in understanding neural dynamics and coding can be achieved once rapid online data analysis and stimulus generation, adaptive sampling, and computational modeling are tightly integrated into experiments

    Synchronization of electrically coupled resonate-and-fire neurons

    Full text link
    Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with strong electrical coupling have been shown to exhibit resonant properties, and the subthreshold fluctuations arising from resonance are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with linear subthreshold dynamics and discrete post-spike reset. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuity in the dynamics. We find that both spikes and resonant subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs

    How adaptation currents change threshold, gain and variability of neuronal spiking

    Get PDF
    Many types of neurons exhibit spike rate adaptation, mediated by intrinsic slow K+\mathrm{K}^+-currents, which effectively inhibit neuronal responses. How these adaptation currents change the relationship between in-vivo like fluctuating synaptic input, spike rate output and the spike train statistics, however, is not well understood. In this computational study we show that an adaptation current which primarily depends on the subthreshold membrane voltage changes the neuronal input-output relationship (I-O curve) subtractively, thereby increasing the response threshold. A spike-dependent adaptation current alters the I-O curve divisively, thus reducing the response gain. Both types of adaptation currents naturally increase the mean inter-spike interval (ISI), but they can affect ISI variability in opposite ways. A subthreshold current always causes an increase of variability while a spike-triggered current decreases high variability caused by fluctuation-dominated inputs and increases low variability when the average input is large. The effects on I-O curves match those caused by synaptic inhibition in networks with asynchronous irregular activity, for which we find subtractive and divisive changes caused by external and recurrent inhibition, respectively. Synaptic inhibition, however, always increases the ISI variability. We analytically derive expressions for the I-O curve and ISI variability, which demonstrate the robustness of our results. Furthermore, we show how the biophysical parameters of slow K+\mathrm{K}^+-conductances contribute to the two different types of adaptation currents and find that Ca2+\mathrm{Ca}^{2+}-activated K+\mathrm{K}^+-currents are effectively captured by a simple spike-dependent description, while muscarine-sensitive or Na+\mathrm{Na}^+-activated K+\mathrm{K}^+-currents show a dominant subthreshold component.Comment: 20 pages, 8 figures; Journal of Neurophysiology (in press
    • ā€¦
    corecore