1,174 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Automatic generation of high-throughput systolic tree-based solvers for modern FPGAs

    Get PDF
    Tree-based models are a class of numerical methods widely used in financial option pricing, which have a computational complexity that is quadratic with respect to the solution accuracy. Previous research has employed reconfigurable computing with small degrees of parallelism to provide faster hardware solutions compared with general-purpose processing software designs. However, due to the nature of their vector hardware architectures, they cannot scale their compute resources efficiently, leaving them with pricing latency figures which are quadratic with respect to the problem size, and hence to the solution accuracy. Also, their solutions are not productive as they require hardware engineering effort, and can only solve one type of tree problems, known as the standard American option. This thesis presents a novel methodology in the form of a high-level design framework which can capture any common tree-based problem, and automatically generates high-throughput field-programmable gate array (FPGA) solvers based on proposed scalable hardware architectures. The thesis has made three main contributions. First, systolic architectures were proposed for solving binomial and trinomial trees, which due to their custom systolic data-movement mechanisms, can scale their compute resources efficiently to provide linear latency scaling for medium-size trees and improved quadratic latency scaling for large trees. Using the proposed systolic architectures, throughput speed-ups of up to 5.6X and 12X were achieved for modern FPGAs, compared to previous vector designs, for medium and large trees, respectively. Second, a productive high-level design framework was proposed, that can capture any common binomial and trinomial tree problem, and a methodology was suggested to generate high-throughput systolic solvers with custom data precision, where the methodology requires no hardware design effort from the end user. Third, a fully-automated tool-chain methodology was proposed that, compared to previous tree-based solvers, improves user productivity by removing the manual engineering effort of applying the design framework to option pricing problems. Using the productive design framework, high-throughput systolic FPGA solvers have been automatically generated from simple end-user C descriptions for several tree problems, such as American, Bermudan, and barrier options.Open Acces

    FPGA Based Packet Classification Using Multi-Pipeline Architecture

    Full text link

    Design and implementation of a fast and scalable NTT-based polynomial multiplier architecture

    Get PDF
    In this paper, we present an optimized FPGA implementation of a novel, fast and highly parallelized NTT-based polynomial multiplier architecture, which proves to be effective as an accelerator for lattice-based homomorphic cryptographic schemes. As I/O operations are as time-consuming as NTT operations during homomorphic computations in a host processor/accelerator setting, instead of achieving the fastest NTT implementation possible on the target FPGA, we focus on a balanced time performance between the NTT and I/O operations. Even with this goal, we achieved the fastest NTT implementation in literature, to the best of our knowledge. For proof of concept, we utilize our architecture in a framework for Fan-Vercauteren (FV) homomorphic encryption scheme, utilizing a hardware/software co-design approach, in which polynomial multiplication operations are offloaded to the accelerator via PCIe bus while the rest of operations in the FV scheme are executed in software running on an off-the-shelf desktop computer. Specifically, our framework is optimized to accelerate Simple Encrypted Arithmetic Library (SEAL), developed by the Cryptography Research Group at Microsoft Research, for the FV encryption scheme, where large degree polynomial multiplications are utilized extensively. The hardware part of the proposed framework targets Xilinx Virtex-7 FPGA device and the proposed framework achieves almost 11x latency speedup for the offloaded operations compared to their pure software implementations

    Mémoires associatives algorithmiques pou l'opération de recherche du plus long préfixe sur FPGA

    Get PDF
    RÉSUMÉ Les réseaux prédiffusés programmables — en anglais Field Programmable Gate Arrays (FPGAs)— sont omniprésents dans les centres de données, pour accélérer des tâches d’indexations et d’apprentissage machine, mais aussi plus récemment, pour accélérer des opérations réseaux. Dans cette thèse, nous nous intéressons à l’opération de recherche du plus long préfixe en anglais Longest Prefix Match (LPM) — sur FPGA. Cette opération est utilisée soit pour router des paquets, soit comme un bloc de base dans un plan de données programmable. Bien que l’opération LPM soit primordiale dans un réseau, celle-ci souffre d’inefficacité sur FPGA. Dans cette thèse, nous démontrons que la performance de l’opération LPM sur FPGA peut être substantiellement améliorée en utilisant une approche algorithmique, où l’opération LPM est implémentée à l’aide d’une structure de données. Par ailleurs, les résultats présentés permettent de réfléchir à une question plus large : est-ce que l’architecture des FPGA devrait être spécialisée pour les applications réseaux ? Premièrement, pour l’application de routage IPv6 dans le réseau Internet, nous présentons SHIP. Cette solution exploite les caractéristiques des préfixes pour construire une structure de données compacte, pouvant être implémentée de manière efficace sur FPGA. SHIP utilise l’approche ńdiviser pour régnerż pour séparer les préfixes en groupes de faible cardinalité et ayant des caractéristiques similaires. Les préfixes contenus dans chaque groupe sont en-suite encodés dans une structure de données hybride, où l’encodage des préfixes est adapté suivant leurs caractéristiques. Sur FPGA, SHIP augmente l’efficacité de l’opération LPM comparativement à l’état de l’art, tout en supportant un débit supérieur à 100 Gb/s. Deuxièment, nous présentons comment implémenter efficacement l’opération LPM pour un plan de données programmable sur FPGA. Dans ce cas, contrairement au routage de pa-quets, aucune connaissance à priori des préfixes ne peut être utilisée. Par conséquent, nous présentons un cadre de travail comprenant une structure de données efficace, indépendam-ment des caractéristiques des préfixes contenus, et des méthodes permettant d’implémenter efficacement la structure de données sur FPGA. Un arbre B, étendu pour l’opération LPM, est utilisé en raison de sa faible complexité algorithmique. Nous présentons une méthode pour allouer à la compilation le minimum de ressources requis par l’abre B pour encoder un ensemble de préfixes, indépendamment de leurs caractéristiques. Plusieurs méthodes sont ensuite présentées pour augmenter l’efficacité mémoire après implémentation de la structure de données sur FPGA. Évaluée sur plusieurs scénarios, cette solution est capable de traiter plus de 100 Gb/s, tout en améliorant la performance par rapport à l’état de l’art.----------ABSTRACT FPGAs are becoming ubiquitous in data centers. First introduced to accelerate indexing services and machine learning tasks, FPGAs are now also used to accelerate networking operations, including the LPM operation. This operation is used for packet routing and as a building block in programmable data planes. However, for the two uses cases considered, the LPM operation is inefficiently implemented in FPGAs. In this thesis, we demonstrate that the performance of LPM operation can be significantly improved using an algorithmic approach, where the LPM operation is implemented using a data structure. In addition, using the results presented in this thesis, we can answer a broader question: Should the FPGA architecture be specialized for networking? First, we present the SHIP data structure that is tailored to routing IPv6 packets in the Internet network. SHIP exploits the prefix characteristics to build a compact data structure that can be efficiently mapped to FPGAs. First, SHIP uses a "divide and conquer" approach to bin prefixes in groups with a small cardinality and sharing similar characteristics. Second, a hybrid-trie-tree data structure is used to encode the prefixes held in each group. The hybrid data structure adapts the prefix encoding method to their characteristics. Then, we demonstrated that SHIP can be efficiently implemented in FPGAs. Implemented on FPGAs, the proposed solution improves the memory efficiency over the state of the art solutions, while supporting a packet throughput greater than 100 Gbps.While the prefixes and their characteristics are known when routing packets in the Internet network, this is not true for programmable data planes. Hence, the second solution, designed for programmable data planes, does not exploit any prior knowledge of the prefix stored. We present a framework comprising an efficient data structure to encode the prefixes and methods to map the data structure efficiently to FPGAs. First, the framework leverages a B-tree, extended to support the LPM operation, for its low algorithmic complexity. Second, we present a method to allocate at compile time the minimum amount of resources that can be used by the B-tree. Third, our framework selects the B-tree parameters to increase the post-implementation memory efficiency and generates the corresponding hardware architecture. Implemented on FPGAs, this solution supports packet throughput greater than 100 Gbps, while improving the performance over the state of the art
    corecore