3 research outputs found

    Simulating a Pipelined Reconfigurable Mesh on a Linear Array with a Reconfigurable Pipelined Bus System

    Get PDF
    Due to the unidirectional nature of propagation and predictable delays, optically pipelined buses have been gaining more attention. There have been many models proposed over time that use reconfigurable optically pipelined buses. The reconfigurable nature of the models makes them capable of changing their component’s functionalities and structure that connects the components at every step of computation. There are both one dimensional as well as k –dimensional models that have been proposed in the literature. Though equivalence between various one dimensional models and equivalence between different two dimensional models had been established, so far there has not been any attempt to explore the relationship between a one dimensional model and a two dimensional model. In the proposed research work it is shown that a move from one to two or more dimensions does not cause any increase in the volume of communication between the processors as they communicate in a pipelined manner on the same optical bus. When moving from two dimensions to one dimension, the challenge is to map the processors so that those belonging to a two-dimensional bus segment are contiguous and in the same order on the one-dimensional model. This does not increase any increase in communication overhead as the processors instead of communicating on two dimensional buses now communicate on a linear one dimensional bus structure. To explore the relationship between one dimensional and two dimensional models a commonly used model Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) and its two dimensional counterpart Pipelined Reconfigurable Mesh (PR-Mesh) are chosen Here an attempt has been made to present a simulation of a two dimensional PR-Mesh on a one dimensional LARPBS to establish complexity of the models with respect to one another, and to determine the efficiency with which the LARPBS can simulate the PR-Mesh

    Scalable and Efficient Parallel Algorithms for Euclidean Distance Transform on the LARPBS Model

    No full text
    Abstract The Euclidean Distance Transform (EDT) converts a binary image into one where each pixel has a value equal to its distance to the nearest foreground pixel. Two parallel algorithms for EDT transform on linear array with reconfigurable pipeline bus system (LARPBS) are presented. For an image with nĂ—n pixels, the first algorithm log n log log n log log log n can complete EDT transform in) compute the EDT in O ( log n loglog n) time using O time using n 2 processors. The second algorithm can 2 n log log n processors
    corecore