
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

1-12-2006

Simulating a Pipelined Reconfigurable Mesh on a
Linear Array with a Reconfigurable Pipelined Bus
System
Mathura Gopalan

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Gopalan, Mathura, "Simulating a Pipelined Reconfigurable Mesh on a Linear Array with a Reconfigurable Pipelined Bus System."
Thesis, Georgia State University, 2006.
https://scholarworks.gsu.edu/cs_theses/13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

SIMULATING A PIPELINED RECONFIGURABLE MESH ON A LINEAR ARRAY

WITH A RECONFIGURABLE PIPELINED BUS SYSTEM

by

MATHURA GOPALAN

Under the Direction of (Anu Bourgeois)

ABSTRACT

Due to the unidirectional nature of propagation and predictable delays, optically pipelined buses

have been gaining more attention. There have been many models that have been proposed over

time that use reconfigurable optically pipelined buses which in turn function based on numerous

parallel algorithms. These models are well suited for parallel processing due to the high

bandwidth available by pipelining of messages. The reconfigurable nature of the models makes

them capable of changing their component’s functionalities and structure that connects the

components at every step of computation. There are both one dimensional as well as k –

dimensional models that have been proposed in the literature. Though equivalence between

various one dimensional models and equivalence between different two dimensional models had

been established, so far there has not been any attempt to explore the relationship between a one

dimensional model and a two dimensional model.

The aim of this thesis is to establish a relationship between a one dimensional and a two

dimensional model. This simulation will be a first of its kind. It will show that a move from one

to two or more dimensions does not cause any increase in the volume of communication between

the processors as they communicate in a pipelined manner on the same optical bus. When

moving from two dimensions to one dimension, the challenge is to map the processors so that

those belonging to a two-dimensional bus segment are contiguous and in the same order on the

one-dimensional model. This does not increase any increase in communication overhead as the

processors instead of communicating on two dimensional buses now communicate on a linear

one dimensional bus structure.

Hence a very commonly used model Linear Array with a Reconfigurable Pipelined Bus System

(LARPBS) and its two dimensional counterpart Pipelined Reconfigurable Mesh (PR-Mesh) are

chosen to understand the relationship between one dimensional and two dimensional models.

Since the PR-Mesh does not allow buses to form cycles, it is feasible to study its functionality

with respect to the LARPBS. In this thesis an attempt has been made to present a simulation of a

two dimensional PR-Mesh on a one dimensional LARPBS to establish complexity of the models

with respect to one another, and to determine the efficiency with which the LARPBS can

simulate the PR-Mesh.

For the simulation, instead of taking the most likely scenario in which processors are connected

to multiple buses and the buses having a much more complex structure, we have considered

different scenarios. These scenarios are based on the varying complexity of bus structures. It is

possible that the number of processors needed for the simulation increase or decrease based on

the complexity of the bus structure and so does the time taken to perform the simulation. Hence

it is pertinent to analyze every possible scenario so that the simulation performance can be

enhanced.

INDEX WORDS: LARPBS, PR-Mesh, Equivalence, Simulation, Optical models

SIMULATING A PIPELINED RECONFIGURABLE MESH ON A LINEAR ARRAY

WITH A RECONFIGURABLE PIPELINED BUS SYSTEM

by

MATHURA GOPALAN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

[Master of Science]

Georgia State University

 Copyright By

 Mathura Gopalan

 2005

SIMULATING A PIPELINED RECONFIGURABLE MESH ON A LINEAR ARRAY

WITH A RECONFIGURABLE PIPELINED BUS SYSTEM

by

MATHURA GOPALAN

 Major Professor: Dr. Anu G. Bourgeois
 Committee: Dr. Yi Pan

 Dr. Michael Weeks

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
December 2005

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Anu G. Bourgeois for her

encouragement, advice and guidance throughout my thesis work. My special thanks to both the

committee members, Dr. Yi Pan and Dr. Michael Weeks for rendering their time in reviewing

this thesis report. Also, I would like to thank my husband Kaushik Kapisthalam and my parents

Mr. T. Gopalan and Mrs. Usha Gopalan for their love and support.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

1 INTRODUCTION .. 1

2 MODEL DESCRIPTIONS ... 7

2.1 LARPBS Model .. 7

2.2 PR-Mesh Model .. 12

3 BACKGROUND .. 19

3.1 Relating One Dimensional Models... 19

3.2 Relating Two Dimensional Models .. 22

4 SIMULATING A PR-MESH MODEL ON AN LARPBS... 24

4.1 Simulating a PR-Mesh model on an LARPBS – Case 1(a) .. 27

4.2 Simulating a PR-Mesh model on an LARPBS – Case 1(b).. 38

4.3 Simulating a PR-Mesh model on an LARPBS – Case 1(c) .. 42

4.4 A note on simulating processors on multiple buses.. 54

4.5 Simulating a PR-Mesh model on an LARPBS – Case 2(a) .. 59

4.6 Simulating processors on multiple buses with multiple bends 67

4.7 Simulating a PR-Mesh model on an LARPBS – Case 2(b).. 68

5 CONCLUSION AND FUTURE RESEARCH DIRECTION .. 75

BIBLIOGRAPHY ... 79

APPENDIX .. 82

vi

List of Tables

Table 1 : Values received by Processors during the Algorithm 1(a)...................................... 35

Table 2 : Results of Simulation.. 75

vii

List of Figures

Figure 1 : LARPBS Model (a) Architecture (b) Switch Connections 8

Figure 2 : PR-Mesh Processor Connections .. 13

Figure 3 : Port Connections of PR-Mesh ... 14

Figure 4 : Detailed view of PR-Mesh Ports & Switch Connections 15

Figure 5 : Possible Roles of Processors on PR-Mesh... 16

Figure 6: Bus Structure of a PR-Mesh (a) High Level View (b) Detailed View.................... 18

Figure 7 : PR- Mesh permitting Cycling.. 25

Figure 8 : Mapping Processors (a) Processors on PR-Mesh (b) Processors on LARPBS.... 31

Figure 9: Simulation Algorithm Case 1(a).. 33

Figure 10 : Need for Refinement for case 1(a) .. 38

Figure 11 : Simulation Steps for case 1(b) .. 40

Figure 12 : Processors on PR-Mesh on Bus with Multiple Bends ... 42

Figure 13 : Prefix Sum Computation for the Pivot Processors .. 48

Figure 14 : Communication among Pivot Processors.. 50

Figure 15 : Maximum Bends in an 8 x 8 Processor PR-Mesh .. 53

Figure 16 : Processors on PR-Mesh on Multiple Buses... 54

Figure 17 : Bus and Port Configurations of Processors on Multiple Buses 55

Figure 18 : Separating Processors on Multiple Buses ... 56

Figure 19 : Pre-Processing Phase of Simulation of Processors on Multiple Buses 57

Figure 20 : Simulation of Processors on Multiple Buses ... 64

Figure 21 : Processors on Multiple Buses with Multiple Bends ... 67

Figure 22 : PR-Mesh (a) Two Dimensional PR-Mesh (b) Three Dimensional PR-Mesh..... 77

viii

List of Abbreviations

PR-Mesh - Pipelined Reconfigurable Mesh

LARPBS - Linear Array with a Reconfigurable Pipelined Bus System

POB - Pipelined Optical Bus

LAROB - Linear Array with Reconfigurable Optical Buses

LPB - Linear Pipelined Bus

AROB - Array with Reconfigurable Optical Buses

APPB - Array Processors with Pipelined Buses

APPBS - Array Processors with Pipelined Buses using Switches

ASOS - Array with Synchronous Optical Switches

RASOB - Reconfigurable Array with Spanning Optical Buses

LR-Mesh - Linear Reconfigurable Mesh

1

1 INTRODUCTION

The advancement in the optoelectronic technologies has caused increase in the usage of optical

interconnects and thus optical computing has emerged as a new computing field. The optical bus

is one such example. Due to the advantages like unidirectional nature of propagation and

predictable delays, optically pipelined buses have been gaining attention. While the

unidirectional nature of the propagation helps in pipelining of messages where multiple messages

are in transit along the same bus there by reducing the number of buses needed for

communication; the predictable delays are advantageous in two ways. First they allow pipelining

of messages; in the sense that multiple messages can travel at the same time on the bus. The

second advantage is the introduction of limited delays which are helpful during the addressing. It

should be noted that because of these features, a synchronized, concurrent access to an optical

bus in a pipelined fashion is possible. The bus has the capability to broadcast and multicast

information with much more efficiency than with electrical buses thus making the architecture

with optically pipelined buses suitable for many parallel processing systems. The success of an

application lies in the fact of how well the processors have been utilized which in turn depends

on how good the communication between processors is. Many models that have been proposed

over time that employ pipelined optical buses which in turn function based on numerous parallel

algorithms. This indicates that these models are well suited for parallel processing due to the

high bandwidth available by pipelining of messages [1].

Many optical models are designed as optical reconfigurable models. Reconfigurable

models are capable of changing their component’s functionalities and structure that connects the

components at every step of computation. Thus the reconfigurable architectures are capable of

changing both their component structure and functionalities at each and every step of

2

computation. For example the reconfigurable models can use the bus as a computation tool for

different problems at hand. When the reconfiguration is fast and causes little to no overhead it is

termed as Dynamic Reconfiguration. It can be said that a dynamically reconfigurable architecture

comprises a large number of computing elements (such as processors) that are connected by a

reconfigurable medium (such as an optical bus) that is used for communication purposes [1]. The

processors used in these kinds of architecture are assumed to have a local memory of their own.

There is no shared memory concept here. These processors function synchronously in a single

instruction multiple data (SIMD) architecture [1]. In an SIMD environment all active processor

work on the same instruction while the data on which they are doing this operation might differ.

The communication among processors takes place via the optical bus. The reason why dynamic

reconfiguration is advantageous is because it can utilize the resources much more effectively by

adapting the functionality of the hardware to the current task that has to be done. In other words,

it describes the adaptability of the hardware to take advantage of a problem instance. Dynamic

reconfiguration envisions greater speed and efficiency in computations. Hence this has promoted

a great amount of interest among many researchers and dynamic reconfiguration had emerged as

a powerful computing paradigm.

There have been both one dimensional as well as multidimensional models that have

been proposed. Some of the one dimensional models include the Linear Array with a

Reconfigurable Pipelined Bus System (LARPBS) [2], the Pipelined Optical Bus (POB) [3], the

Linear Array with Reconfigurable Optical Buses (LAROB) [15] and the Linear Pipelined Bus

(LPB) [4]. Some of the two dimensional models include the Pipelined Reconfigurable Mesh (PR-

Mesh) [5], the Array with Reconfigurable Optical Buses (AROB) [6], Array Processors with

Pipelined Buses (APPB) [7], the Array Processors with Pipelined Buses using Switches (APPBS)

3

[8], the Array with Synchronous Optical Switches (ASOS) [9] and the Reconfigurable Array

with Spanning Optical Buses (RASOB) [10] . Refer to the Appendix for the model architectures.

The commonality among all of these models is that they pipeline messages and propagate

them on a unidirectional path. Also, most of the models allow processors that are in the

downstream path of the message being sent to affect the destination of the messages. In simpler

terms, the actual destination may or may not be a selected destination that was chosen originally.

On the other hand, the differences arise due to some functionality, such as the placement or

presence of segment switches, delay loops, etc. that may or may not be present in a model. It has

been proven already that even in the presence of some physical differences, the models still can

be functionally equivalent [11]. For example the LARPBS, which possesses segmentation

capability, and LPB, which lacks the segmentation capability, are able to perform the same

algorithm of computing the prefix sum in constant time. In fact it has been proven that any

problem that can be solved by an LARPBS can also be solved by an LPB using the same number

of processors in same amount of time [11]. The idea is further explained in forthcoming sections.

In investigating the computational powers of these models, one of the factors considered is how

well a certain model performs as against some other model or how well a resource is utilized by

a model with respect to another one [1]. For example, the Array Processors with Pipelined Buses

using Switches (APPBS) permits processors to change switch configurations between bus cycles,

after each bus cycle or a once or twice during a petit cycle [This denotes the delay between a

processor and its adjacent neighbor]. Hence it is capable of generating many more configurations

than other models, thereby exhibiting a much higher degree of reconfiguration. When trying to

simulate this model on another two dimensional model, the number of processors will have to

increase to accommodate all the possible bus configurations of the APPBS. Hence it becomes

4

vital to study and understand the computational power, capability and equivalence of the

reconfigurable pipelined optical models with respect to one another. These theoretical studies

also help in strengthening the usefulness of features in models and can make us understand when

and where to use each one of them. On relating two models say model A and model B it can be

studied what model A can do given certain resource that model B can’t do. Or how much more

resource will model B need to do the same amount of work done by model A and so on.

In establishing the computational capacity of the models, the translation of algorithms for

models is possible. Sometimes algorithms are easy to develop for certain models, say model A

when compared to a model B. By establishing equivalence between models A and B, the

algorithm developed for A can be mapped to model B. The algorithm is modified for the other

model by using the changes that helped in establishing the equivalence between the models. This

procedure of mapping algorithms is known as the translation of algorithms. These studies also

help in mapping the resources required for a problem to be solved on two different models once

their computational powers with respect to each other are known. A benefit of doing this is if

model B is a more feasible model, then we have the ease of designing algorithms for model A,

but have the cost and practicality of implementing on model B.

It is to be noted that though equivalence between various one dimensional models and

various two dimensional models had been established, so far there has not been any attempt to

explore the relationship between a one dimensional model and a two dimensional model. The

main aim of the thesis is to relate a one dimensional model and a two dimensional model. This

provides a frame work for a first ever simulation of a two dimensional model on a one

dimensional model that will provide a basis to understand the computational powers of the model

with respect to each other. The idea for the research comes from the point that, a move from a

5

one to two or more dimensions does not cause any increase in the volume of communication as

the processors communicate in a pipelined manner on the same optical bus. In forthcoming

sections will establish that the PR-Mesh does not allow cycles to be formed in the bus

configurations. Hence if a bus runs across x-axis and y-axis, it implicitly states that a processor

can be on this bus only once in the same direction. Hence when trying to move from two

dimensions to one dimension, it mainly involves moving the processors from the y-axis to x-axis

in the order that it appears on the two dimensional bus. Therefore it can be seen that this does not

increase the communication volume. The major difference lies in the fact that due to the many

more bus configurations that are possible, capabilities of a model may increase. Hence a very

commonly used model, the LARPBS and its two dimensional counterpart, the PR-Mesh are

chosen to understand the relationship between one dimensional and two dimensional models.

Since the PR-Mesh does not allow buses to form cycles, it is feasible to study its functionality

with respect to the LARPBS.

Thus the goal of the thesis is to simulate an M x M PR-Mesh on an N processor LARPBS

where N = M x M. To accomplish this, we will present the simulations as a few different

scenarios. First we will consider simulating a PR-Mesh such that each processor is connected to

at most one bus and the bus has at most one bend. The bends signify the change in the

directionality of the bus from the x-axis to the y-axis or vice versa. The bends are indicative of

the fact that the buses are no longer linear. Hence one bend would indicate that the bus changes

direction from the x-axis to the y-axis or from the y-axis to the x-axis only once. Next we will

consider simulating a PR-Mesh such that each processor is connected to at most one bus and the

bus had multiple bends. Multiple bends indicate that the directionality of the bus changes many

times. The challenge is to be able to preserve the ordering of the processors when there are

6

multiple bends. This is explained in detail in the forthcoming sections. Third case will involve

simulating a PR-Mesh such that each processor is connected to multiple buses and the buses

have a single bend. When processors are connected to multiple buses the complexity of the

model increases. Therefore a processor may need to communicate with groups of processors in

different sub-arrays of the LARPBS. Our final case involves simulating a PR-Mesh such that

each processor is connected to multiple buses and each of those buses has multiple bends. We

will also analyze and present the complexity of the simulation algorithms.

For the simulation, instead of simply analyzing only the most likely and probable scenario in

which processors are connected to multiple buses and the buses have a complex structure, we

have considered different scenarios. These scenarios differ based on the varying complexity of

bus structures. It is possible that the number of processors needed for the simulation increase or

decrease based on the complexity of the bus structure and so does the time taken to perform the

simulation. Hence it is prudent to analyze every possible scenario so that the simulation

performance can be enhanced.

In Section 2 the model descriptions of the LARPBS and the PR-Mesh provide a basis for

understanding the architectures, features, some basic algorithms and finally the complexity of

each model. In Section 3 some of the background works relating various one dimensional and

two dimensional models are presented. This section basically provides some insight into other

model simulations. In Section 4 the simulation of the PR-Mesh on LARPBS is presented. In

Section 5 the results of the simulation and possible future research work are outlined.

7

2 MODEL DESCRIPTIONS

The development of optoelectronic technologies have resulted in an increase in the usage of

optical interconnects and thus optical computing. A pipelined optical bus utilizes optical fibers to

transmit information. Since the propagation is unidirectional and delays are predictable,

concurrent or parallel access to the optical bus is feasible thus giving rise to many models like

Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2], Linear Pipelined Bus

(LPB) [4], and Linear Array with Reconfigurable Optical Buses (LAROB) [15], etc. which take

advantage of the above mentioned properties. As mentioned in the earlier section the goal here is

to be able to simulate an M x M processor PR-Mesh on an N processor LARPBS where N = M x

M. Hence in the following sections the LARPBS and PR-Mesh architectures are discussed in

detail. The diagrams of all the models referenced in this section are included in the appendix.

2.1 LARPBS Model

The Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2] consists of three

waveguides. It is a one dimensional parallel processing optical model [19] [20] [21]. It can be

thought of as an array, in which there are N processors P1, P2 ….. PN, linearly arranged and

connected by an optical pipelined bus which makes a U–turn around the processors. The

processor closest to the U-turn is the head of the bus and processor farthest away from it is the

tail of the bus. The bus connecting the processor is assumed to have the same length of fiber

between successive processors. This implies that the propagation delays between consecutive

processors are the same. A bus cycle is the end-to-end propagation delay on the bus. The time

complexity of an algorithm is determined in terms of time steps, where a single time step

comprises one bus cycle and one local computation.

8

Figure 1 : LARPBS Model (a) Architecture (b) Switch Connections [12]

The LARPBS model [12] is as depicted in Figure 1. The optical bus of an LARPBS possesses

three distinct waveguides. The data waveguide is used for sending data and the select and

reference waveguides are used for sending address information. The data waveguide is similar to

the reference waveguide and hence it is not shown on Figure 1. The bus is a U-shaped structure.

The top part is used for transmission and bottom for reception. All processors are connected to

the bus through directional couplers, one for transmitting and the other for receiving. The

reference and data waveguides have an extra segment of fiber between every pair of consecutive

processors on the receiving side. This is used to introduce a fixed propagation delay of unit time

in these two waveguides. In addition, the select bus has switch-controlled conditional delays.

This is added between every pair of consecutive processors Pi-1 and Pi on the transmitting

segment of the waveguide and controlled by processor Pi. The switch can function in two

9

positions as shown in Figure 1(b). If set to cross, a unit time delay is introduced. On the other

hand, if the switch is open the messages can pass-through without any delay.

2.1.1 Addressing

Though there are many addressing methods [1], the coincident pulse technique is the most

common and flexible way of communication. The coincident pulse technique helps in addressing

by manipulating the relative time delay of select and reference pulses on separate buses so that

they will coincide only at the desired receiver. If they coincide a double height pulse indicates to

the processor to read the corresponding data frame. The coincident pulse technique uses frames

for writing and addressing information. Each processor possesses a select and reference frame

that has N slots for the N processors present on the LARPBS. Assuming a processor Pi wants to

sends a message to another processor Pj, which is termed as the selected destination, the

processor Pi transmits a message frame on the message waveguide. It selects the slot

corresponding to the processor Pj on the select frame and the Nth slot on the reference frame. As

these two frames move through the transmitting and receiving segments they will coincide at the

selected destination and the processor knows that it needs to read the data frame.

In order to perform multicasting, each processor on LARPBS uses the select frame of N

slots to inject a pulse into a subset of N slots within a single bus cycle. And then it chooses the

rightmost slot on the reference pulses on reference waveguides. Now instead of coinciding at a

single processor the pulses coincide at the subset of N processors that were selected. To

broadcast messages the LARPBS injects a pulse into all the N slots of its select frame.

It must be noted that the message can be read by some other processor due to delay

switches that are set. Such processors are termed actual destinations. When more than one

10

message arrives at a processor in the same bus cycle, it accepts only the first message and

disregards subsequent messages that have coinciding pulses at the processor.

2.1.2 Reconfigurability

The strength of this model lies in the fact that it supports dynamic reconfiguration facility on the

bus. There is a separate set of optical switches that exists in each waveguide of the bus. It should

be noted that these are present on both the transmitting and the receiving sides. If the switches at

processor Pi are set, the bus is split into two separate buses, one connecting processors P1,

P2, . . . , Pi and the other connecting processors Pi+1, Pi+2, . . , Pn. Thus the whole model is split

into two separate LARPBS structures that can work independently. The bus system can be

reconfigured to allow as many separate subsystems to accommodate any need for computation

and communication purposes. Further details of the model can be referred to in the paper by Pan

and Li [2] [17] [18].

2.1.3 Data Movement Operations

In this section, basic algorithms designed for the LARPBS [2] that will be used in the simulation

are discussed:

1. Broadcasting

In order to broadcast data across the array all conditional switches must be set to straight. A

processor that wants to broadcast injects a pulse into the Nth slot of the reference frame and

pulses in all the slots of the select frame and sends it across the respective waveguides. Thus

both pulses will coincide at every processor on the bus. And all processors detect a double-

height pulse and thus read the message. The broadcasting operation can take place in O(1)

time step [1].

11

2. Multicasting

While broadcasting is one to all communication operation, multicast is a one-to-many

communication operation. Each processor receives only one message from a processor that

wants to send a message during a bus cycle. To perform multicasting all delays switches are set

straight. A processor on LARPBS that wants to send the message uses the select frame of N slots

to inject a pulse into a subset of N slots within a single bus cycle. And then it chooses the

rightmost slot on the reference pulses on reference waveguides. Now instead of coinciding at a

single processor the pulses coincide at the subset of N processors that were selected. The

multicasting operation can take place in O(1) time step [1] .

3. Binary Prefix Sum Computation

Assuming there are N binary bits held by N processors on the LARPBS say V0 ,V1….VN-1. The

aim of the binary prefix sum operation is to compute psumi = V0+V1 …+VN-1 for all 0 ≤ i < N.

The binary prefix sum uses the conditional delay switches and segment switches. The binary

prefix sum can be done in O(1) bus cycle on an LARPBS. Processor i, for all 0 ≤ i ≤ N - 1, sets

its switch on the transmitting segment to cross if they hold a flag say ai = 1, and straight if ai = 0.

All processors try and address processor N- 1 which is the head of the bus. Suppose that all

processors to the right of processor i contains 0, all switches to the right of processor i on the

select waveguide are set to straight, and thus no delay is introduced. As a result, the two pulses

from processor i will coincide at processor N - 1. Suppose that only one processor to the right of

processor i contains a 1, only one switch to the right of processor i on the select waveguide is set

to cross, and thus only one unit delay is introduced. As a result, the two pulses from processor i

will coincide at processor N – 2 and so on. After this step processor j that received the index of

processor i sends a message containing its own address back to processor i. When processor V0

12

receives a message containing an address j, it first calculates the sum of all binary numbers in the

array y = V0 + (N - 1 - j), and broadcasts it to all processors on the bus. Processor i then gets its

partial sum Vo + V1 + V2 + ... + Vi = y - (N - 1 - j). Thus, the binary prefix sum on the LARPBS

can be thus be computed in O(l) time [2].

4. Compression

The compression algorithm takes a set of processors that are marked and compress them into

contiguous order. These processors can be scattered across the LARPBS and may not have any

particular order of occurrence. After the compression operation is performed the relative order of

the occurrence of these processors is preserved. For the LARPBS this operation is performed by

computing the prefix sums processors. Assume an array of N data elements with each processor

having one data element. For example, assume that among N processors on the LARPBS some s

number of processors hold a marked data value say a flag value of 1 and the rest of the

processors hold a value flag value of 0. Processors that hold the marked data are referred to as

active processors. The prefix sum of all processors is computed. The objective of the

compression algorithm is to move these active data elements to processors N - s – 1, N - s ,

N - 1. Thus each processor lets the processor corresponding to the prefix sum simulate itself that

is the prefix sum becomes the index of the processors that the marked elements are to be routed

to. Thus the compression algorithm moves all active processors to the left side of the array [2].

2.2 PR-Mesh Model

The Pipelined Reconfigurable Mesh (PR-Mesh) [5] is a multi dimensional version of the

LARPBS. The PR-Mesh can be thought of a k-dimensional mesh of processors, where each

processor in the mesh has 2k ports. Processors can locally manipulate their ports so as to connect

to at most one other port, to form linear buses. Similar to the LARPBS the PR-Mesh also

13

assumes that the optically pipelined bus has the same length of fiber between successive

processors, thus the propagation delays between adjacent processors are the same. The bus cycle

again is considered to be the end-to-end propagation delay on the bus. The PR-Mesh can appear

as a directional network since both the transmitting and receiving segments are directional. These

are represented by the T and R on the figure. The architecture [5] of a PR-Mesh is as shown in

Figure 2.

 Figure 2 : PR-Mesh Processor Connections [5]

The figure represents a two dimensional PR-Mesh in which each processors has four ports. The

PR-Mesh consists of an R x C [where R means row and C means column] mesh of processors, in

which the four ports of the processors are joined to eight bus segments using the directional

couplers. The functionality of the delay loops is similar to that of the LARPBS. There are

waveguides for both the dimensions as well as directions. Similar to the LARPBS the PR-Mesh

processors possesses a set of switches which they control locally to fuse/open bus segments.

These are represented by the dotted boxes in Figure 2.

14

 Figure 3 : Port Connections of PR-Mesh [5]

In Figure 3 the ten possible port connections for a two dimensional PR-Mesh are shown. This

kind of fusing of ports in successive processors may give rise to buses that run through them to

their neighbors thus forming a linear bus corresponding to the LARPBS. It must also be noted

that the all buses that are formed are linear and no cycles are allowed.

2.2.1 Bus and Port Configurations

A detailed pictorial representation of the two dimensional PR-Mesh that shall be simulated by

the LARPBS is shown in Figure 4. In the figure the two dimensional transmitting and receiving

segments in both directions are represented as straight lines and the T/R symbol on the lines

denote the direction of transmission/reception of data. Each processor has four ports denoted by

North (N), East (E), West (W) and South (S). The directional couplers are shown in thick dark

lines. The switches used for bus interconnections are divided into four quadrants as shown in

dotted rectangle boxes. Each quadrant has twelve switches. The black switches are labeled E1,

E2, W1, W2 are helpful in forming row buses and switches N1, N2, S1, and S2 are helpful in

forming column buses, for each of the quadrants. The blue switches labeled F1, F2, F3, F4 for

each quadrant are helpful in forming two dimensional buses that run in two directions, for

example North-West, South-East and so on. Essentially, they enable fusing horizontal and

vertical segments together so that the bus can bend from the x- axis to the y-axis or vice versa in

15

any direction. A more detailed explanation of the roles of processors with respect to buses is

given in detail in further course.

Figure 4 : Detailed view of PR-Mesh Ports & Switch Connections

2.2.2 Processors on PR-Mesh

The processors of the PR-Mesh can perform many roles as compared to the LARPBS processors.

Processors of an LARPBS can be a disconnected processor, a head (processor closest to the U-

turn), or a tail (processor farthest from the U-turn) or simply an intermediate processor

(processors that are neither head nor tail) on the row bus. The possible roles performed by

processors on the PR-Mesh are as depicted in Figure 5. The processors shown in Figure 5

correspond to the bus structure shown in Figure 6.

16

Figure 5 : Possible Roles of Processors on PR-Mesh

A PR-Mesh processor can be the head of the segment for up to two out of the four directional

buses. The head of a bus will set some of its F* ports [Where F represents any of its fusing ports

F1, F2, F3 and F4] in any of its quadrants. This fusing causes a U-turn in the bus, thereby

connecting the transmitting to the receiving segment. An example of the head of the processor is

as shown in Figure 5(a). Processors on a column bus fuse their N1, N2, S1 and S2 ports as shown

in Figure 5(b). Fusing vertical segments together in the same direction makes the bus continue

along the same vertical direction. Processors may be on one or both of its column buses.

Processors that are the tail of a bus fuse switches in only one quadrant as shown in Figure 5(d)

17

thereby stopping the progress of the bus along the same direction. Processors on a row bus fuse

their E1, E2, W1 and W2 ports as shown in Figure 5(f) making the bus progress in the same

horizontal direction. Processors that are not connected to any bus open all their switches as

shown in Figure 5(e). Since the PR-Mesh is a two dimensional model the buses may run in both

horizontal and vertical directions. It is pertinent to assume that the buses will not be a linear

structure. The capability of the bus to change directions from horizontal to vertical direction or

vice versa is what is called a bend. To achieve a bend the diagonally opposite ports in the same

quadrant are fused as shown in Figure 5(c). The processor at which the bus bends is called a

“pivot-processor” and it connects a horizontal and a vertical segment together.

There are eight possible ways in which a bus can bend. A bus can start transmission from

east to west and bend in north or south direction. Similarly the transmission can start from west

to east and bend to transmit along north or south direction. This way the bus bends from the

horizontal to vertical direction. Similarly the bus can transmit from north to south and bend with

in east or west direction or start transmitting from south to north and bends towards east or west

direction. In this manner the bus bends from vertical to horizontal direction.

In order to understand the working of the PR-Mesh and the bus connections of processors,

a small example is described. Consider a two dimensional 3 x 2 Mesh of processors with a bus

structure as shown in Figure 6(a). P5 being the head of the bus fuses the ports F1 and F3 in the

first quadrant and P5 and P4 lie on the row bus thus connecting the E1, E2 ,W1 and W2 ports in

the third and fourth quadrants. At the pivot P3, the bus bends from a row bus to a column bus.

The switches F2 and F4 are fused in the fourth quadrant. P3 and P0 lie on the column bus and

they fuse their N1, N2, S1 and S2 ports. P1 and P2 are disconnected and hence open all their

switches.

18

 Figure 6: Bus Structure of a PR-Mesh (a) High Level View (b) Detailed View

In further sections it is assumed that the readers are familiar with the switch and port connections

and different roles of processors.

19

3 BACKGROUND

In the introduction section the importance of studying the relationships between models was

briefly mentioned. In this section this idea is further explored. In simpler terms, establishing a

relationship means showing if a particular model is equivalent, more powerful or less powerful

when compared to other model being compared. If a model A can simulate any step of another

model B in the same amount of time it took for model B using same number of processors, and

vice versa, then they both are considered equivalent. There has been a lot of work done in this

regard. By establishing the relationship capabilities and limitations of the models can be

understood. Further the presence of absence of certain features may make a model powerful than

the other model to which it is being compared to. Establishing relationships helps in translation

of algorithms which in turn enriches the pool of algorithms. In this section the relationships

between one dimensional model and two dimensional models is discussed briefly.

3.1 Relating One Dimensional Models

Previous work that relates one dimensional models establishes the equivalence between the

Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2], the Pipelined Optical

Bus (POB) [3] and the Linear Pipelined Bus (LPB) [4] using a cycle of simulations. For the

figures of the POB and the LPB refer to the appendix. Segmentation switches that allow the

LARPBS to be portioned into separate sub arrays is absent in the other two models. Also, the

POB lacks the fixed delay switches. It has been proved using a cycle of simulations that the

LARPBS, LPB, and POB are equivalent [11] in the sense that any algorithm proposed for one of

these models can be implemented on any of the others with the same number of processors and

in constant time.

20

The segmentation property simplifies algorithm design, but it has been proven that this

functionality alone does not make the LARPBS any more powerful than the other two models

that do not posses this capability. The LPB is identical to the LARPBS except that it does not

posses any segment switches. The POB is also a similar model in which the conditional delay

switches are positioned on the receiving side of the reference and data waveguides, rather than

on the transmitting side of the select line and it also does not posses any segmentation capability.

In the simulation of the models it becomes clear that the segmentation capability must be

replaced by some other property that is common to all three models. The simulation entitles

usage of prefix sum algorithm that plays a key role. It efficiently utilizes the multicasting ability

of the models, rather than the segmenting ability of the LARPBS. The cycle of simulations as

mentioned earlier is used to establish the equivalence between the three models, i.e. initially an

LPB is used to simulate an LARPBS then POB is made to simulate the LPB and finally an

LARPBS simulates the POB. Each step of the simulation consists of the following three steps,

namely, determining the parameters for the actual destinations of all messages, creating the

select frames, and finally sending the messages.

Due to the fact that the setting of the delay switches may cause the messages to be

delivered to other processors rather than the selected destination, the first step is to adjust the

select frame so that the messages are sent to the selected processors. In the first step of the

simulation, each processor of the LPB referred as Li identifies if any segment switches are set in

the LARPBS model that it is simulating. It has to check for any such switch because that

effectively means that the LAPRBS has been divided into two separate sub-arrays. On finding

such a set switch to its left, a processor Li must inform processors ahead of it the beginning of the

new sub-array. Hence it multicasts i+1 to each Lj (where i<j<N), and Lj stores this as leftj.

21

Processors that did not receive a message will assume the lowest indexed processor within its

sub array to be L0. Similarly the processors should be able to determine the sub array to it right.

Lj determines the analogous position, rightj, by reversing the order of the processors and

proceeding as before.

In the next step each processor has to determine the number of set conditional delay

switches to the right of processor in its sub array which causes messages to be delivered to other

processors than chosen processors. For this, the prefix sum computation is done on the set

switches to the right of the processors.Now each processor has to modify the select frame so that

it reflects the changes caused by the presence of delay switches and segment switches. The

change is based on the information collected in the previous steps, i.e. the actual destination is

found using the expression rightj-N+1-psumj. While psumj reflects the changes due to the

presence of delay switches, rightj accounts for segmenting and leftj is used to mask off

processors that are not present in the same subarray. To send messages, all processors set all

delay switches to straight and transmit their messages. If the correct processors receive the

messages intended for them then the simulation is assumed successful.

The simulation of an LPB on a POB at first seems easy since both of these models lack

the segmentation capability. The problems arise however, from the fact that the architecture of

both models is very different. It is due to differences in the location of delay switches, the way in

which it works and finally in the methods of multicasting. Here to determine the actual

destination of all messages, the POB first determines the number of conditional delay switches

set using the same binary prefix sums algorithm. Depending on these values, each processor of

the POB can manipulate its select frame and then send the messages in the normal state of

operation. The normal state of operation for an LPB is where the conditional delays are set

22

straight, for an LARPBS the conditional delays and segment switches are set straight and for a

POB the conditional delays are set to cross.

 For an LARPBS to simulate a POB, the problem lies in the fact that one select pulse in

the LARPBS can address only one processor, while the POB can address multiple processors

with one select pulse by setting successive conditional delay switches to straight. The processors

on the LARPBS are defined as Ri and processors on the POB as Bi. In order to be able to send

messages to multiple processors, the LARPBS sends messages to intermediate destinations. First,

the LARPBS sends its messages to the selected destinations in the normal state of operation i.e.

without modifying the select frames. Processor Ri next requests a copy of the message received

by Rk in the previous step. It is quite possible that many processors might send such a request to

Rk. The priority is given to the rightmost requesting processor. Then each processor Ri sets its

segment switch to cross if the processor on the POB has its delay switch set to cross. The head of

each subarray now broadcasts the data it received in the previous step, to forward the message to

other such actual destinations, and each processor Ri now has the same message as Bi would have

in the POB. Hence it has been proved that the LARPBS, LPB, and POB are equivalent models.

Each one can simulate any step of one of the other models in O(1) steps with the same number of

processors.

3.2 Relating Two Dimensional Models

In the previous section equivalence was proved by an automatic mapping of algorithms with

respect to their functionalities without any loss of speed or efficiency among the models. In this

section the issues in relating two dimensional models is discussed briefly. The main problem

associated with two dimensional models is the number of configurations possible due to the

multiple dimensions. Keeping this factor in mind, their equivalence is denoted in a slightly

23

different manner. Here the complexity is measured by relating their time to within a constant

factor and the number of processors to within a polynomial factor. Mentioning some of the major

unifying methods it has been established that the PR-Mesh has the same complexity as the cycle-

free Linear Reconfigurable Network (LR-Mesh) [13]. In the paper it is proved that in constant

time, using a polynomial number of processors, the cycle-free LR-Mesh can solve the same class

of problems as the LR-Mesh. It can be inferred that the PR-Mesh can solve the same class of

problems within the same order of steps using polynomial processors. The complexity class is

then extended to accommodate two other optical models, namely the Array with Reconfigurable

Optical Buses (AROB) [6] and the Array Processors with Pipelined Buses using Switches

(APPBS) [8]. The AROB is a two dimensional expansion of the LAROB. The main features of

the AROB include an internal timing circuit that is capable of counting petit-cycles. Among

other functionalities the AROB is capable of bit polling, capacity to shift the select frame with

accordance with the reference pulse by adding up to N unit delays and an enhanced model that is

capable of changing switch settings during bus-cycles. Similar to the AROB an APPBS also

allows the processors to change their switch configuration in midst of a bus–cycle and within

petit- cycles. [It denotes the delay between a processor and its adjacent neighbor.]

Though the PR-Mesh does not possesses any of these functionalities of the AROB and the

APPBS it has been proved that with a polynomial increase in the number of processors the PR-

Mesh is capable of simulating both the AROB and the APPBS. For detailed explanation of the

simulation please refer to Trahan et al. [1]. For figures please refer the Appendix. These were

some of the major accomplishments in unifying the reconfigurable optical models and relate

them to other more widely known models [14].

24

4 SIMULATING A PR-MESH MODEL ON AN LARPBS

Before the simulation of the PR-Mesh on a LARPBS can be begun it is necessary to know how

the processors on a PR-Mesh are to be mapped to a LARPBS model. This basically identifies

how the processors simulating the PR-Mesh processors are to be placed in the LARPBS. So for

this, a simple row-major arrangement of processors on PR-Mesh based on their index is

sufficient for the initial linear arrangement the processors in the LARPBS.

Some of the aims of the simulation will be:

1. Identification and Ranking of Components: Components here refer to the number of

independent buses that can be present on the PR-Mesh. Here simulation is performed for a

two dimensional PR-Mesh and hence buses can be on x-axis alone or y-axis alone or can be

on both the axis. Buses panning across both the dimensions must be treated as a single bus.

The components must be ranked and at the end of simulation each of the buses must be

represented as a separate sub-array in the LARPBS and arranged in the descending order of

rank. It has to be noted that processors that do not belong to any bus must be treated as

thought they are the only component of a bus.

2. Identification of Component-Members: Component members refer to the processors that are

connected to each of the buses. Since it is known that each processor on the PR-Mesh can be

connected to multiple buses when simulating on the LARPBS it must be determined which

processors belong to which components or bus segment. A detailed explanation of situations

when processors are connected to multiple buses is explained in further course of the

simulation. Processors that are not connected to any bus can be ranked separately after all the

processors that belong to a bus or they can appear in between two sub-arrays.

25

3. Ranking Component-Members: The next step in the simulation is the ranking of the

processors that belong to a particular bus. Referring to Figure 6, it must be noted that P5 is

ranked 0 since it is the head of the bus. While P4, P3 and P0 are ranked 1, 2 and 3 respectively.

It is possible that the PR-Mesh may form cycles while configuring the bus as depicted in

Figure 7.

Figure 7 : PR- Mesh permitting Cycling

It can be seen from the Figure 7 that the PR-Mesh can form cycles as processors P1, P2 and

P3 are on the bus twice as shown by the darker line. The dots represent the change in

directionality of the bus. But the processors in the loop can only receive messages only once

26

during a bus cycle hence rendering cycling of buses useless. Therefore it is legitimate to

assume that a processor cannot appear twice on a bus, i.e. there can be no cycles.

4. Switch and Port Configurations of Component Members: As the processors are mapped

from the PR-Mesh to LARPBS in row major order, the processors retain their port as well as

switch configurations. For example, processors with delay switches in cross position will

retain that configuration.

In the forthcoming sections the simulation is performed by considering simpler to more complex

bus configuration patterns. The first case (CASE 1-a) deals with the assumption that the

processors are connected to at most one bus and the bus is bent at most once. This case is further

refined in the subsequent section (CASE 1-b) since it fails to effectively segment the row and

column segments when the ID of the head of the bus is lower than that of the rest of the

processors. The next case (CASE 1-c) assumes the processors are connected to at most one bus

and the bus can be bent any number of times. The maximum possible bends that the bus can have,

which also represents the worst case scenario is also discussed. The next section (CASE 2-a)

assumes the processors to be present across multiple buses while the bus is allowed to be bent

only once and the final case (CASE 2-b) deals with processors across multiple buses and buses

can have multiple bends.

27

4.1 Simulating a PR-Mesh model on an LARPBS – Case 1(a)

This case involves simulating an M x M PR-Mesh using N processor LARPBS. The assumptions

made here are that the processors on the PR-Mesh can be connected to only one bus and that bus

bends only once. The main aim here is to successfully identify and rank different buses as well as

the processors that appear on the buses using the same number of processors.

Overview:

This section describes the high level operations needed to be performed for this simulation.

Begin
 Perform Bus Ranking

 Compress heads of a segments and disconnected processors

 Compute the prefix sum on these processors

 Identify Row Segments

 Arrange processors in row major order

 Group processors lying on same bus

 Rank processors in along row segments

 Pivot nodes hold total number of processors in row segment

 Identify Column Segments

 Arrange processors in column major order

 Group processors lying on same bus

 Rank processors in along column segments

 Pivot nodes hold total number of processors in column segment

Re-Rank Processors

 If pivot node gets bus rank from column segment

 Processors in the column segment retain rank

 Processor in row segments adjust ranks

28

 Pseudocode - Case 1(a)
Simulation:

The following section describes the actual simulation process with details about each step

described in the overview.

Model: An N processor LARPBS, where N = M x M.

Input: An M x M PR-Mesh

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh

Assumptions: For simulating the PR-Mesh on the LARPBS the following assumptions are made

1. Each Processor on PR-Mesh is connected to at most one bus.

2. Each bus has just one bend.

Steps:

Begin

1. Processors which are the head of a segment and processors that are completely disconnected;

set flag as 1.

2. Compress all processors holding flag value as 1.

If pivot node gets bus rank from row segment

 Processors in the row segment retain rank

 Processor in column segments adjust ranks

 Compute Slot start value

Compress heads of segments and disconnected processors

 Compute prefix sum on total number of processors

 Broadcast slot start values to all processors on the bus

 Each processor compute new index

Arrange each processor based on new index

End

29

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor

(BRANK).

4. Arrange the processors in row major order

5. Forming row segments

a. All processors which are pivot nodes (where their index i; i Mod M is not equal to 0),

completely disconnected, head of segments and processors whose East-West port are

not connected set their segment switches.

b. Processors whose West Port is not connected send their index (NR) to the head of the

segment. Disconnected processors take their corresponding indices as NR.

c. If the processor that sent message in step 5b is a head of the bus send a value of 1 as

(HSEG) to the head of the segment and also the BRANK. Disconnected processors

assume value of HSEG as 1.

d. Processors that received message in step 5b send its index as (PPIVOT-NODE) as well as

received index and finally the value of HSEG to all processors between them and the

end node (including the end node).

e. All nodes that received message in previous step set flag as 1.

f. Compute the prefix sum of all these processors (PRANK). [Subtract 1 to start Ranking

from 0].

g. Processor with index PPIVOT-NODE – 1 sends its prefix sum (NRow-Sum) to the pivot node.

[Must add one to NRow-Sum as ranks begin from 0]

6. Arrange Processors in column major order.

7. Forming column segments

30

a. All processors whose North port is not connected or completely disconnected set their

segment switches.

b. All pivot nodes and processors whose North Port is not connected send their index

(NC) to the head of the segment. Also they send the NRow-Sum which is stored as PTOTAL.

Disconnected processors take their corresponding indices as NC.

c. If the processor that sent message in step 6b is a head of the bus send a value of 1 as

(HSEG) to the head of the segment and also the BRANK. Disconnected processors

assume value of HSEG as 1.

d. Processors that received a message in step 6b send its index as (PHEAD) as well as

received index and finally the value of HSEG as 1 if it is the head of segment to all

processors between them and the end node (including the end node).

e. All processors now compute their ranks (PRANK). [Subtract 1 to start Ranking from 0].

f. Processor with index NC sends the rank (NCol-Sum) to the node whose index it received

in Step 6b.

8. Re-Ranking Processors on the bus

a. If pivot node received HSEG =1 in Step 6

i. The processors along the column segment retain their PRANK.

ii. Form row segments and pivot node broadcast NCol-Sum and NRow-Sum to all

processors in row segment.

iii. All processors adjust their ranks as NCol-Sum+ ((NRow-Sum -1) – PRANK).

iv. Pivot node sends total number of processor to the head to the bus (PTOTAL).

b. If pivot node received HSEG =1 in Step 5

31

i. Pivot node adds 1 to NRow-Sum and broadcasts to all processors along column

segment.

ii. All processors adjust their ranks as NRow-Sum+ PRANK.

iii. Pivot node sends total number of processor to the head to the bus (PTOTAL).

9. All disconnected and head of segments holds the value of PTOTAL and a prefix sum (NSLOT-

START) is performed on computed for each segment.

10. Form Row and column segments again and broadcast the NSLOT-START value.

11. Each processor computes its new index as NSLOT-START + PRANK.

12. Each processor then arranges itself according to the new index.

End

4.1.1 Explanation
The algorithm in the preceding section is explained with the help of an example shown below.

Figure 8 : Mapping Processors (a) Processors on PR-Mesh (b) Processors on LARPBS

32

In the overview section the steps of the simulation is described in terms of major steps. In the

simulation how this aims set in the overview section are achieved by the processors is described.

In this section a further elaboration of the simulation process is described. Figure 8 (a) shows the

processors on the PR-Mesh and (b) shows how the processors have to be arranged so as to

simulate the PR-Mesh on LARPBS. In other words, the (a) part is the input to the LARPBS and

(b) part is the output that is expected after the simulation is performed. The first step in the

algorithm is to determine the number of buses that exist on the PR-Mesh. It should be understood

that each disconnected processor must be assumed to lie independently on a bus. Further, the

order in which these buses are present, i.e. the rank of each bus is to be determined. This detail is

provided by the “BRANK” variable. This value at the beginning of the simulation is held by the

head of the segments and the disconnected processors which are basically thought of as the head

of the segment in which these are the only processors.

In the next few stages, the processors that lie across the same bus are to be identified.

Processors may lie on a along a row bus or a column bus or on a row as well as column bus as

shown in Figure 8. One important thing to notice from Figure 8 is that pivot processors (that

form a bend as shown in Figure 5(c)) are key in identifying the processors that lie on the same

bus. It becomes clear as the algorithm progresses. In order to find processors along the same bus,

the first step is to find processors that lie on the horizontal part of the bus and then to temporarily

rank (PRANK) them if these processors lie on the row as well as column bus. It is a temporary

ranking as the rest of the processors along the bus are not known at this stage and also the

direction of the head processor is not known. However, for processors that entirely lay on a

horizontal bus the ranking will be permanent. Once the horizontal segments of the processors are

33

identified by arranging processors in row-major format, the pivot processor now knows the

following facts:

1. The number of processors along a row segment (NRow-Sum)

2. If the head of the segment lies in this segment (HSEG)

Now the processors that are along the column of the bus can be found by arranging processors in

column-major order and finding the number of processors along this segment. Once this step is

completed the above mentioned facts hold true for this step of simulation also. Now the ranks

have to be readjusted as the direction of the bus is now known. This is done by rearranging the

processors in row major order and broadcasting the number of processors that are present

between the head of the segment and pivot processors now processors along the pivot-tail of the

segment need to re-adjust their ranks.

Figure 9: Simulation Algorithm Case 1(a)

34

The final step of the algorithm is finding which slot is to be occupied by which bus

(NSLOT-START). This is calculated by the computing the prefix sum of total number of processors

along each bus as they are ranked. All the processors need to know is the beginning of the slot as

they are ranked; the new index is easily calculated. The table shown below describes in detail the

variables and values received by processors during the simulation.

35

Table 1 : Values received by Processors during the Algorithm 1(a)

 PROCESSORS ON LARPBS
Steps Variables 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Flag 1 1 1 1 1 1
3 BRANK 0 1 2 3 4 5
5.b NR 0 4 8 12 14
5.c HSEG 1 1
5.c BRANK 2 5

5.d
PPIVOT-NODE
& HSEG &
BRANK

2
&
0

2
&
0

5
&
1
&
0

9
&
0

5.e Flag 1 1 1 1
5.f PRANK 0 1 0 0
5.g NRow-Sum 2 1
6.b NC 2 9 3
6.c HSEG 1 1 1 1 1
6.d PHEAD 10 15 10 15 13 15 15
6.d BRANK 1 5 1 5 3 5 2 3 4 5

6.e Flag 1 1 1 1 1 1 1

6.f PRANK 0 0 1 1 0 2 1 3
6.g NCol-Sum 3 2
7.a.ii NCol-Sum 3 3 2
7.a.iii PRANK 5 4 3
8. PTOTAL 2 5 1 3 1 4
8. NSLOT-START 0 2 7 8 11 12

9.
BRANK &
NSLOT-START
& index

1
&
2
&
2

1
&
2
&
3

1
&
2
&
4

5
&
12
&
12

0
&
0
&
0

0
&
0
&
1

1
&
2
&
5

5
&
12
&
13

3
&
8
&
8

3
&
8
&
9

1
&
2
&
6

5
&
12
&
14

2
&
7
&
7

3
&
8
&
10

4
&
11
&
11

5
&
12
&
15

36

4.1.2 Complexity Analysis

The following section describes in detail the complexity analysis of the algorithm discussed in

this section. The steps discussed below take into account complexity of each and every step of

the algorithm and give a final value based on the summation of these steps. The complexity

analysis is this section as well as the others is based on the algorithms designed for the LARPBS.

The sources are sited for each and every step.

The complexity of steps in the simulation algorithm is as follows:

1. Compression algorithm takes O(1) time [2].

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time

[rank = index of head of segment – index of the processor computing its rank] [2].

3. Arranging the processors in row major order as well as column major order to identify

processors along each row and column segment takes O(1) time [2].

4. All communication between processors [this includes communication between two

processors, multicasting or broadcasting] takes O(1) time [2].

5. All the internal functions that the processors perform for example adjusting their ranks once

the other processors along the bus have been identified, finding number of processors along

their segments etc takes O(1) time [2].

6. The prefix sum is computed for the head of the segments. For integers with bounded

magnitude algorithm for prefix sum computation, takes O(log log N) time using N processors

[12].

7. The permutation routing of the processors in LARPBS takes O(1) time [11].

It is to be noted that the efficiency of this simulation lies in the efficiency of computing the

prefix sum of integers with bounded magnitude. Hence in the future, the efficiency of the

37

simulation is likely to improve if the prefix sum computation algorithm can be made to work in a

more efficient way.

Lemma 1: Each step of an M x M processor PR-Mesh, in which each processor is

connected to at most one bus and the bus can have at most one bend, can be simulated

by an N (where N = M x M) processor LARPBS in O(log log N) time.

38

4.2 Simulating a PR-Mesh model on an LARPBS – Case 1(b)

From the diagrams shown in Figure 8(a) it can be seen that all the buses run in the same direction

and the index of the head is always higher than the other processors along a bus. Hence on

implementing the algorithm Case 1(a) for cases where the buses run in opposite directions and

with a head processor with lower index than the other processors; the algorithm does not work

any more as shown in Figure 10.

 Figure 10 : Need for Refinement for case 1(a)

From the Figure 10 it can be seen that processors zero to three lie on the same row bus, but since

the pivot node‘s index is lower than rest of the processors in that row bus, the segmentation

causes processor P9 alone to lie on the row bus and the other two processors are separated. Hence

the algorithm had to be improved to accommodate the aforementioned conditions. It can be seen

that the problem lies only in the identifying the row and column segments. Hence once this is

39

overcome the algorithm can function as before. The identification and ranking of the bus is

similar to the previous case, Case 1(a)) Steps 1 to 3. The model, input, output and assumptions

are same as the previous case. The following steps outline the procedure for identifying

row/column segments.

Begin

1. Arrange the processors in row major order

2. Forming row segments

a. All processors whose East-West ports are not connected as shown in Figure 5(f) set

their segment switches.

b. All processors who segmented in previous step send their index to its left/right

neighbor processor as shown in the Figure 11(a). The messages are denoted by the

arrows below the processors. [The left neighbor is the processor sending its index – 1,

and right neighbor is processor sending its index +1]. All disconnected processors

also do the same.

c. If a processor receives a message, it must set its segment switch. Received processor

now knows that processor on its left/right had set its segment switch since it did not

lie on a row bus therefore it cannot also lie on the row bus that the receiving

processor lies on.

d. Now the algorithm can proceed as before.

End

40

 Figure 11 : Simulation Steps for case 1(b)

3. Forming column segments.

a. All processors whose North South ports are not connected as shown in Figure 5(b) set

their segment switches.

b. All processors who segmented in previous step send their index to its left/right

neighbor processor. [Left neighbor is processor sending its index – M for the

processor above on the column and right neighbor is processor sending its index + M

for the processor below on the column]. All disconnected processors also do the same.

c. If a processor receives a message, it must set its segment switch. Received processor

now knows that processor on its left/right had set its segment switch since it did not

lie on a column bus therefore it cannot also lie on the column bus that the receiving

processor lies on.

41

d. Now the algorithm can proceed as before.

End

4.2.1 Complexity Analysis

The only changes made to the algorithm lie in the communication between the processors and

therefore bear no effect on the complexity. Thus there is no change in Lemma 1.

42

4.3 Simulating a PR-Mesh model on an LARPBS – Case 1(c)

In the simulations in the previous sections it is not realistic to neither assume that the buses in the

PR-Mesh are one dimensional nor have only one bend between a horizontal and a vertical

direction. It is reasonable to assume that the bus will be bent multiple times, indicating that the

directionality of the bus changes many times. This makes it difficult to preserve the order in

which the processors lie on the bus. This case modifies the assumption in the previous case. It is

still assumed that the processors are still connected to at most one bus as shown in Figure 12.

Figure 12 : Processors on PR-Mesh on Bus with Multiple Bends

43

Overview:

This section describes the high level operations needed to be performed for this simulation.

Begin
 Perform Bus Ranking

 Compress heads of a segments and disconnected processors.

 Compute the prefix sum on these processors

 Identify Row Segments

 Arrange processors in row major order

 Group processors lying on same bus

 Pivot nodes hold total number of processors in row segment

 Identify Column Segments

 Arrange processors in column major order

 Group processors lying on same bus

 Pivot nodes hold total number of processors in column segment

 Rank Processors

 Repeat on pivot nodes until prefix sum is computed

 {

 Perform ranking using binary prefix sum algorithm

 Pivot processor send index to pivot ahead of it

 Pivot receiving index send prefix sum

 Pivot receiving index also send next pivot index

 Pivots newly learning index of head of segment

 Send their index to head

 }

 After ranking tail send rank to head (denotes total processors on bus)

44

 Pseudocode - Case 1 (c)

Simulation:

The following section describes the actual simulation process with details about each step

described in the overview.

Model: An N processor LARPBS, where N = M x M.

Input: An M x M PR-Mesh

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made

1. Each Processor on PR-Mesh is connected to at most one bus.

2. Each bus can have multiple bends.

Steps:

Begin

1. Processors which are the head of a segment and processors that are completely disconnected;

set flag as 1.

2. Compress all processors holding flag value as 1.

Compute Slot start value

 Compress heads of segments and disconnected processors

 Compute prefix sum on total number of processors

 Broadcast slot start value to all pivots on the bus

 Pivots broadcast slot start to processors in their segment

Each processor compute new index

 Arrange each processor based on new index

End

45

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor

(BRANK).

4. Arrange the processors in row major order

5. Forming row segments

a. All processors whose East-West ports are not connected as shown in Figure 5(f) set

their segment switches.

b. All processors who segmented in previous step send their index to its left/right

neighbor processor as shown in the Figure 11(a).The messages are denoted by the

arrows below the processors. [The left neighbor is processor sending its index – 1,

and the right neighbor is processor sending its index +1]. All disconnected processors

also do the same.

c. If a processor receives a message, it must set its segment switch. Received processor

now knows that processor on its left/right had set its segment switch since it did not

lie on a row bus therefore it cannot also lie on the row bus that the receiving

processor lies on.

d. The head and tail segment processors exchange their indices and also the head

informs all the processors between itself and the tail the head and the tail processor

index.

4. Forming column segments.

a. All processors whose North South ports are not connected as shown in Figure 5(b) set

their segment switches.

b. All processors who segmented in previous step send their index to its left/right

neighbor processor. [The left neighbor is processor sending its index – M and the

46

right neighbor is processor sending its index + M]. All disconnected processors also

do the same.

c. If a processor receives a message, it must set its segment switch. The receiving

processor now knows that processor on its left/right had set its segment switch since it

did not lie on a column bus therefore it cannot also lie on the column bus that the

receiving processor lies on.

d. The head and tail segment processors exchange their indices and also the head

informs all the processors between itself and the tail the head and the tail processor

index.

5. Ranking processors on the bus

a. After forming row and column segments it can be seen that at each pivot processor, in

order to rank the processors in its segment, it needs the number of processors ahead of

it and hence this problem in simple terms boils down to calculating the prefix sum of

the number of processors lying ahead of it. Rank processors (PRANK) on the bus.

Detailed working of the ranking process is provided in the explanation section.

b. All new pivot processors learning the identity of the head of the bus must

communicate with the head, to convey their IDs. This is vital since the ID is used by

the head to convey the beginning slot value (NSLOT-START) to all pivot processors.

6. All disconnected and head of segments holds the total number of processors (PTOTAL) on that

bus and then a prefix sum (NSLOT-START) is computed for each bus.

7. The NSLOT-START value is then sent to each pivot processors so that it can be broadcasted to all

processors on the bus.

8. Form Row and column segments again and broadcast the NSLOT-START value.

47

9. Each processor computes its new index as NSLOT-START + PRANK.

10. Each processor then arranges itself according to the new index.

End

4.3.1 Explanation

The initial steps of the simulation are same as the previous sections. For detailed explanation for

these steps refer to Section 4.1.Here a detailed explanation of the prefix sum computation using a

binary tree-like method is furnished. It can be observed that after forming row and column

segments each pivot processor becomes aware of the number of processors ahead and behind it

and also of the next pivot processor that it might need to communicate with in order to find the

number of processors in that segment. Here the bus that runs through processors P7, P0, P1, P8,

P15, P16, P17, P18, P25, P26, P33 and P34 of Figure 12 is considered for explanation purposes. On first

forming the row bus, both processors lying on the row buses (for example P0 - P1, P15 through

P18, P25 - P26 and P33 - P34) become aware of the pivot processors that they might need to

communicate with in order to know the number of processors ahead of them. At this point it has

to be noted that the head of the bus is not known.

After forming the column segments, the pivot processors gain knowledge of another set

of pivot processors and also the number of processors in their segment. For example, after

forming column segments processor P0 becomes aware that there is just one processor ahead of it

processor P7 and it is the head of the bus. Now the directionality of the bus is learned by a new

processor and must be passed on to other processors. This can be done only by the pivot

processors. And ranking the processors in their segments can be done only after learning the

number of processors ahead of them. This has now become a prefix sum computation on the

48

number of processors held in each segment. The binary tree structure that is ideally used for the

prefix sum computation for the bus is as shown.

 Figure 13 : Prefix Sum Computation for the Pivot Processors

The main problem why the traditional binary tree method cannot be used here can be

seen from the diagram. Unlike the traditional binary tree method, the index of the processor in

the next step is not known. For example if there were processors ranked P0 to P5 for which the

prefix sum is to be computed then it is known that in first stages processors communicate in pairs

like P0- P1 , P2 –P3, P4 -P5. In the next stage processors P1 -P3 know they have to communicate

since the indices are increasing in a uniform manner. But here that is not the case.

Hence in order to solve that problem, row and column segments are formed and the new

processor that has learnt of the directionality and the bus rank steps up and has to proceed to the

next stage so as to provide information. After the first communication step P0 learns of the

identity of the head of the segment and computes its rank based on the prefix sum. Each

processor computes the rank by adding the prefix sum to the number of processors held in its

own segment. For example, the prefix sum of P0 is 1 and it computes its rank by adding 1 to the

49

number of processors held in its segment which is 1 and subtracting 1 as rank starts with 0. So

the rank of P0 is 1+1-1 = 1. In the second stage the row segments are formed again. Now

processor P1 is the processor that knows the prefix sum of pivot processors ahead of it as it

communicates with P0 again and can becomes the processor ahead of which prefix sums are

already computed. Subsequent pivot nodes have to communicate with this node to get the

information on the bus.

For segments where the processor has not yet learned of the identity of the rank and ID of

the head of the bus, it must be informed by processors that have this information farther in the

direction of transmission. For communication purposes all the set segment switches are now set

straight. During the formation of row/column segments each pivot node must provide the index

as well as the sum computed so far to the processor communicating with it. For example in the

first step processor P15 communicates with P18 and informs it the id of P1. The detailed

communication between processors on the bus for prefix sum computation is as shown in Figure

14.

50

Figure 14 : Communication among Pivot Processors

 Taking the example of processor P34 from the Figure 14 in the first stage of the row

formation communicates with processor P33. After the column segments are formed and

processor P33 becomes aware of processor P26. Now the prefix sum computation phase begins

and it is indicated by the blue arrow mark. The arrow also is representative of the number of

steps required for this operation. During the prefix sum computation phase again processor P34

communicates with processor P33. During this step three important actions take place processor

P34 must provide processor P33 its index for communication purposes. In the second step

processor P33 sends the prefix sum it has computed so far to processor P34 and during the final

step processor P33 provides the index of processor P26 to processor P34. During the next phase

51

processor P34 communicates with processor P26 which provides it with the index of processor P18

and so on.

This is continued until the prefix sums are computed. In addition each pivot node that

newly learns the identity of the head of the segment must send its index to the head of the bus.

The head of the segment becomes aware of all the pivot nodes at the end of the prefix sum

computation. [This becomes vital because after the processors are ranked, the next step is to find

the slot which this bus needs to occupy depending on the rank.] This is continued until the last

step in which the final node posses prefix sum of all the pivot nodes in front of it. Prefix sum is

then used compute the rank of the other processors on the same bus. Once the ranking is done

rest of simulation is similar to the previous section.

4.3.2 Complexity Analysis

The following section describes in detail the complexity analysis of the algorithm discussed in

this section. The steps discussed below take into account complexity of each and every step of

the algorithm and give a final value based on the summation of these steps.

The complexity of steps in the simulation algorithm is as follows:

1. Compression algorithm takes O(1) time [2].

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time

[rank = index of head of segment – index of the processor computing its rank] [2].

3. Arranging the processors in row major order as well as column major order to identify

processors along each row and column segment takes O(1) time [2].

4. All communication between processors [this includes communication between two

processors, multicasting or broadcasting] takes O(1) time [2].

52

5. All the internal functions that the processors perform for e.g. adjusting their ranks once the

other processors along the bus, finding number of processors along their segments etc takes

O(1) time [2].

6. Prefix sum computation using the binary tree method takes about O(log b) time using N

processors where b denotes the number of bends in the bus [1].

7. For integers with bounded magnitude algorithm for prefix sum computation takes O(log log

N) time using N processors. This is done to find the prefix sum of processors in each bus to

find the slot which the next ranked processors needs to occupy [12].

8. The permutation routing of the processors in LARPBS takes O(1) time [11].

9. The total time taken to run the simulation is O(log log N + log b) where b denotes the number

of bends in the bus.

4.3.3 Calculating Worst Case Complexity

From the previous section it can be noticed that the number of bends that are present in the bus

are vital in the complexity analysis. Hence it becomes necessary to compute the worst case

scenario. The architecture of the PR-Mesh allows the buses to bend at every opportunity and

form a meandering structure as shown in Figure 15. At each processor the bus can be bent twice

at the most. Hence allowing the maximum number of bends, the bus across an 8 x 8 mesh of

processors looks as shown in Figure 15.

Lemma 2: Each step of an M x M processor PR-Mesh, in which each processor is connected to

at most one bus and the bus can have more than one bend, can be simulated by an N (where N

= M x M) processor LARPBS in O(log log N + log b) time.

53

 Figure 15 : Maximum Bends in an 8 x 8 Processor PR-Mesh

From the Figure 15 it can be noticed that there are about 58 bends in a 64 processor PR-

Mesh which can be roughly thought of as O(N2) bends. But it should be noted that it is highly

unlikely that the bus is bent so many times. The number of bends will typically be much less

than the worst case as defined. In simpler terms, b <<< O(N2) where b denotes the number of

bends the bus can have.

Hence the worst case complexity of Simulating a PR-Mesh model on LARPBS (bus with

multiple bends) is O(log log N + log N2).

Lemma 3: Each step of an M x M processor PR-Mesh, in which each processor is connected

to at most one bus and the bus can have more than one bend, can be simulated by an N

(where N = M x M) processor LARPBS in O(log log N + log N2) time.

54

4.4 A note on simulating processors on multiple buses

In the following section the underlying assumption is that the processors can be on multiple

buses or can be the head of multiple buses as shown in the following Figure 16.

 Figure 16 : Processors on PR-Mesh on Multiple Buses

From Figures 16 and 17, it is evident that unlike the simulation of processors on a single

bus simulating processors that are on multiple buses is much more complicated by the fact that

there are many more possible bus configurations that are possible as shown in Figure 17 and

hence cannot be simulated by the same number of processors. It will further be explained why

the simulation of such processors cannot be equivalent within a constant factor of processors.

55

 Figure 17 : Bus and Port Configurations of Processors on Multiple Buses

This kind of assumption for an increase in the number of processors where there is a large

bus configuration due to multiple dimensions is already done in the simulation of cycle free

linear reconfigurable mesh (CF-LR) Mesh - LR-Mesh, between the PR-Mesh - APPBS and

relation between the PR-Mesh and the AROB [14], and hence is permissible. In the simulation of

a two dimensional PR-Mesh on an LARPBS the increase in the number of processors is constant

instead of the polynomial increase as in the simulations in [14].

Elaborating on the reason why there is a need for an increase in the number of processors

from Figure 16 it can be seen that the processor P26 is the head of two buses and many other

processors are on multiple buses. Hence within a single bus cycle, these processors might have to

56

function as members of different components which is not possible. This can be visualized as

seen in Figure 18.

Figure 18 : Separating Processors on Multiple Buses

There has to be an increase in the number of processors so that they can be

accommodated on as many as four buses [which is the maximum] like processor P13 at the same

time. Hence the increase in the number of processors is constant, i.e. each processor has four

copies rather than a polynomial increase. A notation has to be introduced prior to the presenting

of results of the simulation [14]. For a model Z, let F= Z (T, Constant (N)) denote the class of

problems solved by the model Z in O(T) steps with a constant increase in the number of

processors. Here the LARPBS is the model represented by Z and the two parameters of F are to

be found. But from the configuration of the PR-Mesh it is known that at the most each processor

can be on four buses and hence the value of the constant with which N has to be multiplied is

57

four. The equation is now modified as F= Z (T, 4 (N)). Now all that is to be done is to determine

the time needed to simulate processors that are on multiple buses on a PR-Mesh using an

LARPBS.

For the simulation of processors on multiple buses on PR-Mesh the number of processors

simulating them on the LARPBS has quadrupled. Hence the first step in the simulation is the

indexing of processors and then arrangement or mapping on the LARPBS. The four copies of the

processor Pi have indices Pia, Pib, Pic and Pid respectively. For example P5 on the PR-Mesh has

four copies on the LARPBS with indices P5a, P5b, P5c and P5d respectively. Processor with index

Pia, is deemed as the “master processor” which holds the port and switch configurations of

Processor Pi and the rest of the three processors are the slave processors at the beginning of the

simulation. All processors with Pix index are grouped together in ascending order of i as shown

in the Figure 19 assuming there were three processors on the PR-Mesh.

Figure 19 : Pre-Processing Phase of Simulation of Processors on Multiple Buses

58

During the pre-processing phase (which is the phase before the start of simulation) if the

processor Pia notices that it is on multiple buses it allows itself to simulate the bus segment in

which the transmission is from left to right, it makes processor Pib to simulate the bus segment in

which the transmission is from right to left, it makes processor Pic to simulate the bus segment in

which the transmission is from north to south and it makes processor Pid to simulate the bus

segment in which the transmission is south to north. That is respective port and switch

configurations are passed on to these processors in constant time. After this step the processors

can independently operate in each step of the simulation and need not pass on any information to

the master processor. An additional point to be noted is that when a processor is a head of

multiple buses those buses should be ranked consecutively. For example processor P26c and P26d

should be ranked consecutively.

59

4.5 Simulating a PR-Mesh model on an LARPBS – Case 2(a)

In this case the simulation is complicated by the fact that processors are on multiple buses. But

during the preprocessing phase all those clusters have been separated out into individual

segments. Here the main problem involves the elimination of duplicate processors that are

present in certain segments. In this simulation the elimination process is discussed in detail while

the rest of the simulation remains the same as in case 1(a).

Overview:

This section describes the high level operations needed to be performed for this simulation.

Begin
 Perform Bus Ranking

 Compress heads of a segments and disconnected processors.

 Compute the prefix sum on these processors

 Identify Row Segments

 Arrange processors in row major order

 Group processors lying on same bus

 Rank processors in along row segments

 Pivot nodes hold total number of processors in row segment

 Identify Column Segments

 Arrange processors in column major order

 Group processors lying on same bus

 Rank processors in along column segments

 Pivot nodes hold total number of processors in column segment

 Elimination of Mirror Pivots

 If pivot node gets bus rank from column segment

 Preserve and rank pivot in column segment

 Eliminate pivot in row segment

60

 Pseudocode - Case 2(a)
Simulation:

The following section describes the actual simulation process with details about each step

described in the overview.

Model: A 4N processor LARPBS [where N = M x M] after the pre-processing phase has been

completed.

Input: An M x M PR-Mesh

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made

1. Each Processor on PR-Mesh is connected to any number of the four buses.

If pivot node gets bus rank from row segment

 Preserve and rank pivot in row segment

 Eliminate pivot in column segment

Re-Rank Processors

 If pivot node gets bus rank from column segment

 Processors in the column segment retain rank

 Processor in row segments adjust ranks

 If pivot node gets bus rank from row segment

 Processors in the row segment retain rank

 Processor in column segments adjust ranks
 Compute Slot start value

Compress heads of segments and disconnected processors

 Compute prefix sum on total number of processors

 Broadcast slot start values to all processors on the bus

 Each processor compute new index

 Arrange each processor based on new index

61

2. Each bus has just one bend.

Steps:

Begin

1. All processors which are the head of a segment set flag as 1.

2. Compress all processors holding flag value as 1.

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor

(BRANK).

4. Forming Bus Sections

a. Arrange all Pia processors together in the increasing order of i such that they form

Group-a. Similarly group Pib processors, Pic processors and Pid processors to form

Group-b, Group-c and Group-d respectively in row major order. In other words,

Group-a consists of processors with index Pia only where i ranges between 0 and N.

And all the Nth processors with in the group set their segment switches to form 4

different sub-arrays which will be named Group-a, Group-b, Group-c and Group-d.

b. Processors in Group-c and Group-d are then arranged in column major format. Now

two among the four sub-arrays is in row major order and other two in column major

order.

c. Processors in Group-a simulate bus segments in which the transmission is from west

to east. Processors in Group-b simulate bus segment in which the transmission is from

east to west. Processors in Group-c simulate bus segments in which the transmission

is from north to south and Processors in Group-d simulate bus segments in which the

transmission is south to north.

5. Forming row and column segments and ranking row/column only bus

62

a. All the processors in Group-a and Group-b, whose East-West ports are not connected

as shown in Figure 5(f) set their segment switches to cross. All processors in Group-c

and Group-d whose North South ports are not connected as shown in Figure 5(b) set

their segment switches to cross.

b. All the processors in Group-a and Group-b, that segmented in the previous step send

their index to its left/right neighbor processor as shown in the Figure 11(a). The

messages are denoted by the arrows below the processors. [Left neighbor is processor

sending its index – 1, and right neighbor is processor sending its index +1]. All

disconnected processors also do the same in these two groups. All processors in

Group-c and Group-d who segmented in the previous step send their index to its

left/right neighbor processor. [Left neighbor is processor sending its index – M and

right neighbor is processor sending its index + M]. All disconnected processors also

do the same in these two groups.

c. If a processor receives a message, it must set its segment switch. A receiving

processor now knows that the processor on its left/right had set its segment switch

since it did not lie on a row bus or a column bus therefore it cannot also lie on the row

or a column bus that the receiving processor lies on.

d. The head and tail segment processors with in each segment of each group exchange

their indices and also the head of the segment informs all the processors between

itself and the tail of the head and the tail processor indices.

e. One of the processors on either end of the segment is head of the bus. It sends a value

of 1 as (HSEG) to the other processor that lies on the other end of the segment and also

the BRANK.

63

f. All processors find their temporary ranks based on the direction of transmission. For

segments where the head of the bus has been identified, this is the final rank of the

processors. For example the processors P10 to P14, P16 to P26, and P26 to P31 from

Figure 16 find their ranks and also the bus rank at the end of this step. For other

processors the following steps are continued.

6. Ranking Processors on buses with a bend

a. All Processors straighten their segment switches to form a single LARPBS.

b. Since the bus has only one bend the bus is divided into two parts with a mirror image

of the same pivot processor in both the segments as seen in Figure 20. It can be said

with certainty that one among the two mirror pivots will definitely be in a segment

where the identity of the head of the segment is known. So the pivot processor that

knows the identity of the head of the segment and rank of the bus contacts the mirror

pivot to rank processors in the other segment. It must be noted that all processors

know the id as well as index (when arranged in terms of groups a, b, c and d) of the

processor simulating its pivot. Thus multiple one-to-one communications can take

place in a single step.

64

Figure 20 : Simulation of Processors on Multiple Buses

c. Only one among the two mirror pivot possessors is ranked and it is the

communicating processor that knows the bus rank is ranked while the other one

becomes idle after passing on the information.

d. The adjustment of the ranks is similar to case 1(a).

7. All disconnected processors, idle processors and head of segments holds flag value of 1 and

are compressed.

8. Head of segments hold total number of processors in their segments (PTOTAL), while the

disconnected processors and idle processors that do not belong on a bus hold a value of one

(as they are a single entity within their segments) and a prefix sum (NSLOT-START) is computed

for each segment.

9. Form row and column segments again and broadcast the NSLOT-START value.

10. Each processor computes its new index as NSLOT-START + PRANK.

11. Each processor then arranges itself according to the new index.

End

65

4.5.1 Complexity Analysis

The following section describes in detail the complexity analysis of the algorithm discussed in

this section. The steps discussed below take into account the complexity of every step of the

algorithm and give a final value based on the summation of these steps.

The complexity of steps in the simulation algorithm is as follows:

1. Compression algorithm takes O(1) time [2].

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time

[rank = index of head of segment – index of the processor computing its rank] [2].

3. Arranging the processors in row major order as well as column major order to identify

processors along each row and column segment takes O(1) time [2].

4. All communication between processors [this includes communication between two

processors, multicasting or broadcasting] takes O(1) time [2].

5. All the internal functions that the processors perform for e.g. adjusting their ranks once the

other processors along the bus, finding number of processors along their segments, etc. takes

O(1) time [2].

6. The prefix sum is computed for the head of the segments. For integers with bounded

magnitude algorithm for prefix sum computation, takes O(log log N) time using N processors

[12].

7. The permutation routing of the processors in LARPBS takes O(1) time [11].

This proves that PR-Mesh (T, M x M) ⊆ LARPBS (O(log log N), 4N)

From the notation above it is to be understood that any class of problems solved by the PR-Mesh

in O(T) time steps using M x M processors can be solved by an LARPBS in O(log log N) time

using 4N processors.

66

Lemma 4: Each step of an M x M processor PR-Mesh, in which each processor can be

connected to multiple buses where the bus can have at most one bend can be simulated by

an LARPBS in O(log log N) time using 4N (where N =M x M) processors.

67

4.6 Simulating processors on multiple buses with multiple bends

In this section the more general scenario that many processors can be on multiple buses and the

buses are likely to have multiple bends is simulated. An example is as shown in Figure 21.

 Figure 21 : Processors on Multiple Buses with Multiple Bends

Figure 21 shows in detail how the processors can exist on multiple buses. For example

processor P26 is a pivot processor for two separate buses which are shown in different colors.

Since the preprocessing phase of the simulation already separates out the processors into

different segments based on the directionality of the simulation the pivots can communicate with

different processors with in the same bus cycle. From the figure above and the simulation of

processors on multiple buses as discussed in case 2(a) we can summarize the problem of

simulating this scenario into two main steps. Namely, the identification and elimination of mirror

pivots to concatenate the separate bus segments into one and then ranking processors on the bus.

Since after the identification and elimination of the mirror pivots makes the problem same as

processors on single bus with multiple bends the rest of the simulation is done as discussed in

Case 1(c). Hence only the first part of the algorithm is discussed here.

68

4.7 Simulating a PR-Mesh model on an LARPBS – Case 2(b)

This scenario of the simulation is the most probable and realistic scenario to be considered.

Similar to case 2(a) it is assumed that the processors are on multiple buses which are bent

multiple times. Again all those clusters have been separated out into individual segments during

the preprocessing phase. Here again the main problem involves the elimination of duplicate

processors that are present in multiple segments. In this simulation the elimination process is

discussed in detail while the rest of the simulation remains the same as in case 1(c).

Overview:

This section describes the high level operations needed to be performed for this simulation.

Begin
 Perform Bus Ranking

 Compress heads of a segments and disconnected processors.

 Compute the prefix sum on these processors

 Identify Row Segments

 Arrange processors in row major order

 Group processors lying on same bus

 Pivot nodes hold total number of processors in row segment

 Identify Column Segments

 Arrange processors in column major order

 Group processors lying on same bus

 Pivot nodes hold total number of processors in column segment

Elimination of Mirror Pivots

 If pivot node gets bus rank from column segment

 Preserve and rank pivot in column segment

 Eliminate pivot in row segment

69

Pseudocode - Case 2(b)

If pivot node gets bus rank from row segment

 Preserve and rank pivot in row segment

 Eliminate pivot in column segment

 In segments where bus rank not know

 Preserve and rank pivot farther in direction of transmissi

 Rank Processors

 Repeat on pivot nodes until prefix sum is computed

 {

 Perform ranking using binary prefix sum algorithm

 Pivot processor send index to pivot ahead of it

 Pivot receiving index send prefix sum

 Pivot receiving index also send next pivot index

 Pivots newly learning index of head of segment

 Send their index to head

 }

After ranking tail send rank to head (denotes total processors on bus)

Compute Slot start value

 Compress heads of segments and disconnected processors

 Compute prefix sum on total number of processors

 Broadcast slot start value to all pivots on the bus

 Pivots broadcast slot start to processors in their segment

 Each processor compute new index

 Arrange each processor based on new index

End

70

Model: A 4N processor LARPBS [where N = M x M] after the pre-processing phase has been

completed.

Input: An M x M PR-Mesh

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made

1. Each Processor on PR-Mesh is connected to any or all or none of the four buses.

2. Each bus can have multiple bends.

Steps:

Begin

1. All processors which are the head of a segment set flag as 1.

2. Compress all processors holding flag value as 1.

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor

(BRANK).

4. Forming Bus Sections

a. Arrange all Pia processors together in the increasing order of i such that they form

Group-a. Similarly group Pib processors, Pic processors and Pid processors to form

Group-b, Group-c and Group-d respectively in row major order. In other words,

Group-a consists of processors with index Pia only where i ranges between 0 and N.

And all the Nth processors with in the group set their segment switches to form 4

different sub-arrays which will be named Group-a, Group-b, Group-c and Group-d.

b. Processors in Group-c and Group-d are then arranged in column major format. Now

two among the four sub-arrays is in row major order and other two in column major

order.

71

c. Processors in Group-a simulate bus segments in which the transmission is from west

to east. Processors in Group-b simulate bus segment in which the transmission is from

east to west. Processors in Group-c simulate bus segments in which the transmission

is from north to south and Processors in Group-d simulate bus segments in which the

transmission is south to north.

5. Forming row and column segments and ranking row/column only bus

a. All the processors in Group-a and Group-b, whose East-West ports are not

connected as shown in Figure 5(f) set their segment switches. All processors in

Group-c and Group-d whose North South ports are not connected as shown in

Figure 5(b) set their segment switches.

b. All processors in Group-a and Group-b who segmented in the previous step send

their index to its left/right neighbor processor .The messages are denoted by the

arrows below the processors. [Left neighbor is processor sending its index – 1,

and right neighbor is processor sending its index +1]. All disconnected processors

also do the same in these two groups. All processors in Group-c and Group-d who

segmented in the previous step send their index to its left/right neighbor processor.

[Left neighbor is processor sending its index – M and right neighbor is processor

sending its index + M]. All disconnected processors also do the same in these two

groups.

c. If a processor receives a message, it must set its segment switch. A receiving

processor now knows that the processor on its left/right had set its segment switch

since it did not lie on a row bus or a column bus therefore it cannot also lie on the

row or a column bus that the receiving processor lies on.

72

d. The head and tail segment processors with in each segment of each group,

exchange their indices and also the head of the segment informs all the processors

between itself and the tail of the head and the tail processor indices.

e. One of the processors on either end of the segment is head of the bus. It sends a

value of 1 as (HSEG) to the other processor that lies on the other end of the

segment and also the BRANK.

f. All processors find their temporary ranks based on the direction of transmission.

Segments where the head of the bus has been identified this is the final rank of the

processors. For other processors the following steps are continued.

6. Identification and Elimination of Mirror Pivots

a. All processors straighten their segment switches to form a single LARPBS.

b. In the case that the bus has multiple bends, the bus with mirror image of the same

pivot processor is present in two of the bus segments. Hence one among the two

needs to be eliminated. Elimination here means not ranking one of the processors.

So the pivot processor that knows the identity of the head of the segment and rank

of the bus contacts the mirror pivot to rank processors in the other segment. Since

the direction of the transmission is known the mirror-pivot farther in the direction

of transmission is always chosen and the other pivot informs the chosen one the

number of processors in its segment and also the identity of the pivot that it needs

to communicate in the next steps. For example on the red bus processor P1 will

have mirror pivots in P1b and P1d and P1d is chosen as its farther in the direction of

communication

73

c. After this step all the segments have been joined together and now the simulation

for the ranking is similar to Case 1(c). Once ranking of the components has been

completed the rest of the simulation is the same as Case 2(a) for ranking the idle

and disconnected processors and finally computing the slots to be occupied.

End

4.7.1 Complexity Analysis

The following section describes in detail the complexity analysis of the algorithm discussed in

this section. For this simulation the first few steps are common to the previous sections. The

elimination of the mirror pivot processors is just a communication step and takes O(1) time [2].

The prefix sum is computed for the head of the segments. For integers with bounded magnitude

algorithm for prefix sum computation, takes O(log log N) time using N processors [12] while the

ranking of the processors takes O(log b) steps [1] where b denotes the number of bends in the

bus. The worst case is similar to Case 1(c). Hence the total simulation time takes O(log log N +

log b) steps.

This proves that PR-Mesh (T, M x M) ⊆ LARPBS O(log log N + log b), 4N)

From the notation above it is to be understood that any class of problems solved by the PR-Mesh

in O(T) time steps using M x M processors can be solved by an LARPBS in O(log log N + log b)

time using 4N processors.

74

Lemma 5: Each step of an M x M processor PR-Mesh, in which each processor is

connected to multiple buses where the buses can have multiple bends (b) , can be

simulated by an 4N (where N = M x M) processor LARPBS in O(log log N +log b)

time or O(log log N +log N2) in worst case.

75

5 CONCLUSION AND FUTURE RESEARCH DIRECTION

From the simulation it is established that a two dimensional M x M PR-Mesh can be simulated

on an N or 4N (depending on the bus configuration) processor LARPBS (where N = M x M). It

has to be noted that the PR-Mesh is slightly more powerful model than the LARPBS due to the

much richer configurations that are possible due to a higher dimension.

The results are presented below in Table 2 for the different cases that were considered for

our simulations. The results are tabulated based on different cases that were considered and on

the assumptions that were made for each of those cases. The table also lists the number of

processors that were needed for that particular case and the time taken for the simulation. The

“WC” in the table indicates the worst case scenario where the bus bends (b) multiple times.

 Table 2 : Results of Simulation

 Assumptions No. of
Processors

Time Taken

I. Processors on a Single Bus
with Single Bend

N O(log log N)

II. Processors on a Single Bus
with Multiple Bends

N O(log log N + log b)
WC: O(log log N + log N2)

III. Processors on Multiple Bus

with Single Bend
4N O(log log N)

IV. Processors on a Multiple Bus
with Multiple Bends

4N O(log log N + log b)
WC: O(log log N + log N2)

Instead of just considering one general scenario for the simulation we have considered

different cases. These scenarios or cases differ based on the varying complexity of bus structures.

Since the number of processors needed for the simulation differ based on the complexity of the

bus structure and so does the time taken to perform the simulation, choosing an appropriate case

76

will yield better and efficient simulation performance. Another point worth mentioning at this

point is that the efficiency of the simulation directly depends on the efficiency of the prefix sum

computation for integers with bounded magnitude.

This simulation is first of its kind to establish a relationship between a one dimensional

optical model and a two dimensional optical model. It is also shown that the move in fact, has

caused no overhead in the volume of communication. The mapping of processors from the PR-

Mesh to the LARPBS was done successfully by preserving the order in which the processors

appeared on the two dimensional PR-Mesh. The aim of the simulation was achieved by making

the processors communicate on a linear bus instead of a two dimensional bus. The complexity in

reconfigurable architecture is due to two main factors. One is due to the functionalities provided

by the models and another due to the complexity of the bus structure. In this case the

functionalities provided by both the models are the same. The complexity of the PR-Mesh is due

to the latter aspect. In order to handle the bus complexity the number of processors was increased.

This is due to the fact that each bus is represented as separate sub-arrays in the LARPBS, a

processor that is a part of multiple buses may have to communicate with processors in different

sub – arrays with in a single bus cycle.

Since the PR-Mesh is a two dimensional extension of the LARPBS there was a natural

correspondence between them that was exploited, but there are many other models which have

much richer switch and port configurations or due to the functionalities that they provide. Hence

there should be attempts to study the relationships of these models with respect to the LARPBS

as well as their one dimensional counterparts (for example the AROB and the LAROB] and so

on. Similar to the PR-Mesh, the LR-Mesh allows no branching and forms linear buses and hence

it is possible to simulate the LR-Mesh on the LARPBS.

77

On a different note, it has to be remembered that the PR-Mesh is in fact a k-dimensional

model as depicted in the Figure 22. Figure 22 represents the structure of a two dimensional PR-

Mesh that was utilized in this simulation and the three dimensional structure that is to be

considered for the future simulation purposes. This can then lead to future work in expanding the

simulation to the k – dimensional PR-Mesh model. The simplicity of the two dimensional model

is that there are only two axes to be considered. But with an increase in the number of

dimensions the complexity of the bus structure will increase.

 Figure 22 : PR-Mesh (a) Two Dimensional PR-Mesh (b) Three Dimensional PR-Mesh

The simulation that we completed so far on the LARPBS is only for the two dimensional

version of this model. Hence a much more generalized version of algorithm that is capable of

simulating for any value of k is to be developed. Some of the areas where some thought needs to

be put in are the mapping from different dimensions of the PR-Mesh to the LARPBS, the

placement of ports and how the processors on different dimensions are connected. Similar to this

78

simulation, the identification of different buses, ranking of the buses, identification, ranking of

the processors on the different buses needs to be found. But the process of identification of

different bus segments is complicated by the presence of multiple dimensions. Similarly a

simulation involving models in which cycles are permissible should be looked into as well.

From this thesis, we can now easily relate the complexity of the LARPBS to that of the PR-

Mesh. This provides us with a better understanding of the overhead required for simulating the

PR-Mesh on the LARPBS. The overhead involved in the simulation is mainly due to the increase

in the number of processors. Thus in simulations involving higher dimensions though a constant

or a polynomial increase in the number of processors is permissible, it would be a challenge to

keep the number of processor the same as the simulated model and investigate the time taken.

79

BIBLIOGRAPHY

[1] R. Vaidynathan and J. L. Trahan, “Dynamic Reconfiguration: Architectures and

Algorithms”, Kluwer Pub., 2003.

[2] Y. Pan and K. Li, “Linear array with a reconfigurable pipelined bus system: Concepts and

applications”, Inform. Sci. 106 (1998), 237-258.

[3] S. Q. Zheng and Y. Li, “Pipelined asynchronous time-division multiplexing optical bus”, Opt.

Eng. 36 (1997), 3392-3400.

[4] Y. Pan, “Order statistics on optically interconnected multiprocessor systems”, Opt. Laser

Tech. 26 (1994), 281-287.

[5] A. G. Bourgeois and J. L. Trahan, “Relating Two-Dimensional Reconfigurable Meshes with

Optically Pipelined Buses,” International Journal on Foundations of Computer Science, vol.

11, (2000), pp. 553-571.

[6] S. Pavel and S. G. Akl, “On the Power of Arrays with Optical Pipelined Buses”, Proc. Int'l.

Conf. Par. Distr. Proc. Techniques and Appl.”, (1996), pp. 1443- 1454.

[7] M. Middendorf and H. ElGindy, ”Matrix Multiplication on Processor Arrays with Optical

Buses”, to appear in Informatica.

[8] Z. Guo, “Optically Interconnected Processor Arrays with Switching Capability”, Journal of

Parallel and Distributed Computing vol. 23, (1994), pp. 314-329.

[9] C. Qiao and R. Melhem, “Time-Division Optical Communicationsin Multiprocessor Arrays”,

IEEE Trans. Comput., vol. 42, (1993), pp. 577-590.

[10] C. Qiao, “On Designing Communication-Intensive Algorithms for a Spanning Optical Bus

Based Array”, Parallel Processing Letters , vol. 5, (1995), pp. 499-511.

80

[11] J. L. Trahan, A. G. Bourgeois, Y. Pan, and R. Vaidyanathan, “An Optimal and Scalable

Algorithm for Permutation Routing on Reconfigurable Linear Arrays with Optically

Pipelined Buses”, Journal of Parallel and Distributed Computing, vol. 60, (2000), pp. 1125-

1136.

[12] Amitava Datta, “Multiple Addition and Prefix Sum on a Linear Array with a Reconfigurable

Pipelined Bus System”, The Journal of Supercomputing, 29, 303–317, 2004.

 [13] J. L. Trahan, A. G. Bourgeois, and R. Vaidyanathan, “Tighter and Broader Complexity

Results for Reconfigurable Models”, Parallel Proccessing Letters, vol. 8, (1998),pp. 271-282.

[14] A. G. Bourgeois and J. L. Trahan, “Relating Two-Dimensional Reconfigurable Meshes with

Optically Pipelined Buses”, International Journal on Foundations of Computer Science, vol.

11, (2000), pp. 553-571.

[15] S.Pavel and S.G Akl, ”Integer Sorting and routing in arrays with reconfigurable optical

buses”, Proceedings of International Conference of Parallel Processing, pp. III-90-III-94,

1996.

[16] Mounir Hamdi,Chunming Qiao,Yi Pan, and J. Tong, “Communication-Efficient Sorting

Algorithms on Reconfigurable Array of Processors With Slotted Optical Buses”, Journal of

Parallel and Distributed Computing 57, 166-187 (1999).

[17] L. Chen, Y. Pan, and X. Xu, "Scalable and Efficient Parallel Algorithms for Euclidean

Distance Transform on the LARPBS Model," IEEE Transactions on Parallel and Distributed

Systems, Vol. 15, No. 11, Nov. 2004, pp. 975-982.

[18] L. Chen, Y. Pan, Y. Chen, and X. Xu, ``An Efficient Parallel Algorithm for Euclidean

Distance Transform,'' The Computer Journal , Vol. 47, No. 6, 2004, pp. 694-700.

81

[19] L. Chen and H. Chen, Y. Pan, and Y. Chen, "A Fast Efficient Parallel Hough Transform

Algorithm on LARPBS," The Journal of Supercomputing, Vol. 29, pp. 185-195, 2004.

[20] S.-J. Horng, H.-R. Tsai, Y. Pan, and J. Seitzer, ``Optimal Algorithms for the Channel-

Assignment Problem on a Reconfigurable Array of Processors with Wider Bus Networks,''

IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 11, November 2002,

pp. 1124-1138.

[21] Y. Pan, Y. Li, J. Li, K. Li, and S.Q. Zheng, "Efficient Parallel Algorithms for Distance

Maps of 2D Binary Images Using an Optical Bus," IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans , Vol. 32, No. 2, March 2002, pp. 228-236.

82

APPENDIX

Optical Reconfigurable Models

1. Model of POB [3]

2. Model of one dimensional APPB [6]

3. Model of LPB and LARPBS [11]

83

4. Segment Switches on an LARPBS [11]

5. Model of LARPBS with Switch Connections [12]

6. Model of LAROB [1]

84

7. Model of AROB [6]

(a) Two-Dimensional Reconfigurable Network (b) Switch Configurations

8. Model of PR-Mesh [5]

9. Model of APPBS with Switches [1] [14]

(a) switch connections at each APPBS processor (b) switch configurations at each processor

85

10. Model of RASOB

(a) RASOB architecture (b) Switch connecting row and column bus

	Georgia State University
	ScholarWorks @ Georgia State University
	1-12-2006

	Simulating a Pipelined Reconfigurable Mesh on a Linear Array with a Reconfigurable Pipelined Bus System
	Mathura Gopalan
	Recommended Citation

	Microsoft Word - Mathura-thesis2005-08-17.doc

