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SIMULATING A PIPELINED RECONFIGURABLE MESH ON A LINEAR ARRAY 

WITH A RECONFIGURABLE PIPELINED BUS SYSTEM 

by 

MATHURA GOPALAN 

Under the Direction of (Anu Bourgeois) 

ABSTRACT 

Due to the unidirectional nature of propagation and predictable delays, optically pipelined buses 

have been gaining more attention. There have been many models that have been proposed over 

time that use reconfigurable optically pipelined buses which in turn function based on numerous 

parallel algorithms. These models are well suited for parallel processing due to the high 

bandwidth available by pipelining of messages. The reconfigurable nature of the models makes 

them capable of changing their component’s functionalities and structure that connects the 

components at every step of computation.  There are both one dimensional as well as k –

dimensional models that have been proposed in the literature. Though equivalence between 

various one dimensional models and equivalence between different two dimensional models had 

been established, so far there has not been any attempt to explore the relationship between a one 

dimensional model and a two dimensional model.  

The aim of this thesis is to establish a relationship between a one dimensional and a two 

dimensional model. This simulation will be a first of its kind. It will show that a move from one 

to two or more dimensions does not cause any increase in the volume of communication between 

the processors as they communicate in a pipelined manner on the same optical bus. When 

moving from two dimensions to one dimension, the challenge is to map the processors so that 



 

 

those belonging to a two-dimensional bus segment are contiguous and in the same order on the 

one-dimensional model. This does not increase any increase in communication overhead as the 

processors instead of communicating on two dimensional buses now communicate on a linear 

one dimensional bus structure. 

Hence a very commonly used model Linear Array with a Reconfigurable Pipelined Bus System 

(LARPBS) and its two dimensional counterpart Pipelined Reconfigurable Mesh (PR-Mesh) are 

chosen to understand the relationship between one dimensional and two dimensional models. 

Since the PR-Mesh does not allow buses to form cycles, it is feasible to study its functionality 

with respect to the LARPBS. In this thesis an attempt has been made to present a simulation of a 

two dimensional PR-Mesh on a one dimensional LARPBS to establish complexity of the models 

with respect to one another, and to determine the efficiency with which the LARPBS can 

simulate the PR-Mesh. 

For the simulation, instead of taking the most likely scenario in which processors are connected 

to multiple buses and the buses having a much more complex structure, we have considered 

different scenarios. These scenarios are based on the varying complexity of bus structures.  It is 

possible that the number of processors needed for the simulation increase or decrease based on 

the complexity of the bus structure and so does the time taken to perform the simulation. Hence 

it is pertinent to analyze every possible scenario so that the simulation performance can be 

enhanced. 
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1 INTRODUCTION 
 
The advancement in the optoelectronic technologies has caused increase in the usage of optical 

interconnects and thus optical computing has emerged as a new computing field. The optical bus 

is one such example. Due to the advantages like unidirectional nature of propagation and 

predictable delays, optically pipelined buses have been gaining attention. While the 

unidirectional nature of the propagation helps in pipelining of messages where multiple messages 

are in transit along the same bus there by reducing the number of buses needed for 

communication; the predictable delays are advantageous in two ways. First they allow pipelining 

of messages; in the sense that multiple messages can travel at the same time on the bus. The 

second advantage is the introduction of limited delays which are helpful during the addressing. It 

should be noted that because of these features, a synchronized, concurrent access to an optical 

bus in a pipelined fashion is possible. The bus has the capability to broadcast and multicast 

information with much more efficiency than with electrical buses thus making the architecture 

with optically pipelined buses suitable for many parallel processing systems. The success of an 

application lies in the fact of how well the processors have been utilized which in turn depends 

on how good the communication between processors is. Many models that have been proposed 

over time that employ pipelined optical buses which in turn function based on numerous parallel 

algorithms. This indicates that these models are well suited for parallel processing due to the 

high bandwidth available by pipelining of messages [1].  

Many optical models are designed as optical reconfigurable models. Reconfigurable 

models are capable of changing their component’s functionalities and structure that connects the 

components at every step of computation. Thus the reconfigurable architectures are capable of 

changing both their component structure and functionalities at each and every step of 
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computation. For example the reconfigurable models can use the bus as a computation tool for 

different problems at hand. When the reconfiguration is fast and causes little to no overhead it is 

termed as Dynamic Reconfiguration. It can be said that a dynamically reconfigurable architecture 

comprises a large number of computing elements (such as processors) that are connected by a 

reconfigurable medium (such as an optical bus) that is used for communication purposes [1]. The 

processors used in these kinds of architecture are assumed to have a local memory of their own. 

There is no shared memory concept here. These processors function synchronously in a single 

instruction multiple data (SIMD) architecture [1]. In an SIMD environment all active processor 

work on the same instruction while the data on which they are doing this operation might differ. 

The communication among processors takes place via the optical bus. The reason why dynamic 

reconfiguration is advantageous is because it can utilize the resources much more effectively by 

adapting the functionality of the hardware to the current task that has to be done. In other words, 

it describes the adaptability of the hardware to take advantage of a problem instance. Dynamic 

reconfiguration envisions greater speed and efficiency in computations. Hence this has promoted 

a great amount of interest among many researchers and dynamic reconfiguration had emerged as 

a powerful computing paradigm.  

There have been both one dimensional as well as multidimensional models that have 

been proposed. Some of the one dimensional models include the Linear Array with a 

Reconfigurable Pipelined Bus System (LARPBS) [2], the Pipelined Optical Bus (POB) [3], the 

Linear Array with Reconfigurable Optical Buses (LAROB) [15] and the Linear Pipelined Bus 

(LPB) [4]. Some of the two dimensional models include the Pipelined Reconfigurable Mesh (PR-

Mesh) [5], the Array with Reconfigurable Optical Buses (AROB) [6], Array Processors with 

Pipelined Buses (APPB) [7], the Array Processors with Pipelined Buses using Switches (APPBS) 
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[8], the Array with Synchronous Optical Switches (ASOS) [9] and the Reconfigurable Array 

with Spanning Optical Buses (RASOB) [10] . Refer to the Appendix for the model architectures. 

The commonality among all of these models is that they pipeline messages and propagate 

them on a unidirectional path. Also, most of the models allow processors that are in the 

downstream path of the message being sent to affect the destination of the messages. In simpler 

terms, the actual destination may or may not be a selected destination that was chosen originally. 

On the other hand, the differences arise due to some functionality, such as the placement or 

presence of segment switches, delay loops, etc. that may or may not be present in a model. It has 

been proven already that even in the presence of some physical differences, the models still can 

be functionally equivalent [11]. For example the LARPBS, which possesses segmentation 

capability, and LPB, which lacks the segmentation capability, are able to perform the same 

algorithm of computing the prefix sum in constant time. In fact it has been proven that any 

problem that can be solved by an LARPBS can also be solved by an LPB using the same number 

of processors in same amount of time [11]. The idea is further explained in forthcoming sections.  

In investigating the computational powers of these models, one of the factors considered is how 

well a certain model performs as against some other model or how well a resource is utilized by 

a model with respect to another one [1]. For example, the Array Processors with Pipelined Buses 

using Switches (APPBS) permits processors to change switch configurations between bus cycles, 

after each bus cycle or a once or twice during a petit cycle [This denotes the delay between a 

processor and its adjacent neighbor]. Hence it is capable of generating many more configurations 

than other models, thereby exhibiting a much higher degree of reconfiguration. When trying to 

simulate this model on another two dimensional model, the number of processors will have to 

increase to accommodate all the possible bus configurations of the APPBS. Hence it becomes 
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vital to study and understand the computational power, capability and equivalence of the 

reconfigurable pipelined optical models with respect to one another. These theoretical studies 

also help in strengthening the usefulness of features in models and can make us understand when 

and where to use each one of them. On relating two models say model A and model B it can be 

studied what model A can do given certain resource that model B can’t do. Or how much more 

resource will model B need to do the same amount of work done by model A and so on.  

In establishing the computational capacity of the models, the translation of algorithms for 

models is possible. Sometimes algorithms are easy to develop for certain models, say model A 

when compared to a model B. By establishing equivalence between models A and B, the 

algorithm developed for A can be mapped to model B. The algorithm is modified for the other 

model by using the changes that helped in establishing the equivalence between the models. This 

procedure of mapping algorithms is known as the translation of algorithms. These studies also 

help in mapping the resources required for a problem to be solved on two different models once 

their computational powers with respect to each other are known. A benefit of doing this is if 

model B is a more feasible model, then we have the ease of designing algorithms for model A, 

but have the cost and practicality of implementing on model B.  

It is to be noted that though equivalence between various one dimensional models and 

various two dimensional models had been established, so far there has not been any attempt to 

explore the relationship between a one dimensional model and a two dimensional model. The 

main aim of the thesis is to relate a one dimensional model and a two dimensional model. This 

provides a frame work for a first ever simulation of a two dimensional model on a one 

dimensional model that will provide a basis to understand the computational powers of the model 

with respect to each other. The idea for the research comes from the point that, a move from a 
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one to two or more dimensions does not cause any increase in the volume of communication as 

the processors communicate in a pipelined manner on the same optical bus. In forthcoming 

sections will establish that the PR-Mesh does not allow cycles to be formed in the bus 

configurations. Hence if a bus runs across x-axis and y-axis, it implicitly states that a processor 

can be on this bus only once in the same direction. Hence when trying to move from two 

dimensions to one dimension, it mainly involves moving the processors from the y-axis to x-axis 

in the order that it appears on the two dimensional bus. Therefore it can be seen that this does not 

increase the communication volume. The major difference lies in the fact that due to the many 

more bus configurations that are possible, capabilities of a model may increase.  Hence a very 

commonly used model, the LARPBS and its two dimensional counterpart, the PR-Mesh are 

chosen to understand the relationship between one dimensional and two dimensional models. 

Since the PR-Mesh does not allow buses to form cycles, it is feasible to study its functionality 

with respect to the LARPBS. 

Thus the goal of the thesis is to simulate an M x M PR-Mesh on an N processor LARPBS 

where N = M x M. To accomplish this, we will present the simulations as a few different 

scenarios. First we will consider simulating a PR-Mesh such that each processor is connected to 

at most one bus and the bus has at most one bend. The bends signify the change in the 

directionality of the bus from the x-axis to the y-axis or vice versa. The bends are indicative of 

the fact that the buses are no longer linear. Hence one bend would indicate that the bus changes 

direction from the x-axis to the y-axis or from the y-axis to the x-axis only once. Next we will 

consider simulating a PR-Mesh such that each processor is connected to at most one bus and the 

bus had multiple bends. Multiple bends indicate that the directionality of the bus changes many 

times. The challenge is to be able to preserve the ordering of the processors when there are 
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multiple bends. This is explained in detail in the forthcoming sections. Third case will involve 

simulating a PR-Mesh such that each processor is connected to multiple buses and the buses 

have a single bend. When processors are connected to multiple buses the complexity of the 

model increases. Therefore a processor may need to communicate with groups of processors in 

different sub-arrays of the LARPBS. Our final case involves simulating a PR-Mesh such that 

each processor is connected to multiple buses and each of those buses has multiple bends. We 

will also analyze and present the complexity of the simulation algorithms.  

For the simulation, instead of simply analyzing only the most likely and probable scenario in 

which processors are connected to multiple buses and the buses have a complex structure, we 

have considered different scenarios. These scenarios differ based on the varying complexity of 

bus structures. It is possible that the number of processors needed for the simulation increase or 

decrease based on the complexity of the bus structure and so does the time taken to perform the 

simulation. Hence it is prudent to analyze every possible scenario so that the simulation 

performance can be enhanced. 

In Section 2 the model descriptions of the LARPBS and the PR-Mesh provide a basis for 

understanding the architectures, features, some basic algorithms and finally the complexity of 

each model. In Section 3 some of the background works relating various one dimensional and 

two dimensional models are presented. This section basically provides some insight into other 

model simulations. In Section 4 the simulation of the PR-Mesh on LARPBS is presented. In 

Section 5 the results of the simulation and possible future research work are outlined. 
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2 MODEL DESCRIPTIONS 
 
The development of optoelectronic technologies have resulted in an increase in the usage of 

optical interconnects and thus optical computing. A pipelined optical bus utilizes optical fibers to 

transmit information. Since the propagation is unidirectional and delays are predictable, 

concurrent or parallel access to the optical bus is feasible thus giving rise to many models like 

Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2], Linear Pipelined Bus 

(LPB) [4], and Linear Array with Reconfigurable Optical Buses (LAROB) [15], etc. which take 

advantage of the above mentioned properties. As mentioned in the earlier section the goal here is 

to be able to simulate an M x M processor PR-Mesh on   an N processor LARPBS where N = M x 

M. Hence in the following sections the LARPBS and PR-Mesh architectures are discussed in 

detail. The diagrams of all the models referenced in this section are included in the appendix. 

2.1 LARPBS Model 
 
The Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2] consists of three 

waveguides. It is a one dimensional parallel processing optical model [19] [20] [21]. It can be 

thought of as an array, in which there are N processors P1, P2 ….. PN, linearly arranged and 

connected by an optical pipelined bus which makes a U–turn around the processors. The 

processor closest to the U-turn is the head of the bus and processor farthest away from it is the 

tail of the bus. The bus connecting the processor is assumed to have the same length of fiber 

between successive processors. This implies that the propagation delays between consecutive 

processors are the same. A bus cycle is the end-to-end propagation delay on the bus. The time 

complexity of an algorithm is determined in terms of time steps, where a single time step 

comprises one bus cycle and one local computation.  
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Figure 1 : LARPBS Model (a) Architecture (b) Switch Connections [12] 

 
The LARPBS model [12] is as depicted in Figure 1. The optical bus of an LARPBS possesses 

three distinct waveguides. The data waveguide is used for sending data and the select and 

reference waveguides are used for sending address information. The data waveguide is similar to 

the reference waveguide and hence it is not shown on Figure 1. The bus is a U-shaped structure. 

The top part is used for transmission and bottom for reception. All processors are connected to 

the bus through directional couplers, one for transmitting and the other for receiving. The 

reference and data waveguides have an extra segment of fiber between every pair of consecutive 

processors on the receiving side. This is used to introduce a fixed propagation delay of unit time 

in these two waveguides. In addition, the select bus has switch-controlled conditional delays. 

This is added between every pair of consecutive processors Pi-1 and Pi on the transmitting 

segment of the waveguide and controlled by processor Pi. The switch can function in two 
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positions as shown in Figure 1(b). If set to cross, a unit time delay is introduced. On the other 

hand, if the switch is open the messages can pass-through without any delay.  

2.1.1 Addressing  
 
Though there are many addressing methods [1], the coincident pulse technique is the most 

common and flexible way of communication. The coincident pulse technique helps in addressing 

by manipulating the relative time delay of select and reference pulses on separate buses so that 

they will coincide only at the desired receiver. If they coincide a double height pulse indicates to 

the processor to read the corresponding data frame. The coincident pulse technique uses frames 

for writing and addressing information. Each processor possesses a select and reference frame 

that has N slots for the N processors present on the LARPBS. Assuming a processor Pi wants to 

sends a message to another processor Pj, which is termed as the selected destination, the 

processor Pi transmits a message frame on the message waveguide. It selects the slot 

corresponding to the processor Pj on the select frame and the Nth slot on the reference frame. As 

these two frames move through the transmitting and receiving segments they will coincide at the 

selected destination and the processor knows that it needs to read the data frame. 

In order to perform multicasting, each processor on LARPBS uses the select frame of N 

slots to inject a pulse into a subset of N slots within a single bus cycle. And then it chooses the 

rightmost slot on the reference pulses on reference waveguides. Now instead of coinciding at a 

single processor the pulses coincide at the subset of N processors that were selected. To 

broadcast messages the LARPBS injects a pulse into all the N slots of its select frame. 

It must be noted that the message can be read by some other processor due to delay 

switches that are set. Such processors are termed actual destinations. When more than one 
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message arrives at a processor in the same bus cycle, it accepts only the first message and 

disregards subsequent messages that have coinciding pulses at the processor.  

2.1.2  Reconfigurability 
 
The strength of this model lies in the fact that it supports dynamic reconfiguration facility on the 

bus. There is a separate set of optical switches that exists in each waveguide of the bus. It should 

be noted that these are present on both the transmitting and the receiving sides.  If the switches at 

processor Pi are set, the bus is split into two separate buses, one connecting processors P1, 

P2, . . . , Pi and the other connecting  processors Pi+1, Pi+2, . . , Pn. Thus the whole model is split 

into two separate LARPBS structures that can work independently. The bus system can be 

reconfigured to allow as many separate subsystems to accommodate any need for computation 

and communication purposes. Further details of the model can be referred to in the paper by Pan 

and Li [2] [17] [18]. 

2.1.3 Data Movement Operations 
 
In this section, basic algorithms designed for the LARPBS [2] that will be used in the simulation 

are discussed: 

1. Broadcasting  

In order to broadcast data across the array all conditional switches must be set to straight. A 

processor that wants to broadcast injects a pulse into the Nth slot of the reference frame and 

pulses in all the slots of the select frame and sends it across the respective waveguides. Thus 

both pulses will coincide at every processor on the bus. And all processors detect a double-

height pulse and thus read the message. The broadcasting operation can take place in O(1) 

time step [1].           
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2. Multicasting 

While broadcasting is one to all communication operation, multicast is a one-to-many 

communication operation. Each processor receives only one message from a processor that 

wants to send a message during a bus cycle. To perform multicasting all delays switches are set 

straight. A processor on LARPBS that wants to send the message uses the select frame of N slots 

to inject a pulse into a subset of N slots within a single bus cycle. And then it chooses the 

rightmost slot on the reference pulses on reference waveguides. Now instead of coinciding at a 

single processor the pulses coincide at the subset of N processors that were selected. The 

multicasting operation can take place in O(1) time step [1] . 

3. Binary Prefix Sum Computation  

Assuming there are N binary bits held by N processors on the LARPBS say V0 ,V1….VN-1. The 

aim of the binary prefix sum operation is to compute psumi = V0+V1 …+VN-1 for all 0 ≤  i < N. 

The binary prefix sum uses the conditional delay switches and segment switches. The binary 

prefix sum can be done in O(1 ) bus cycle on an LARPBS. Processor i, for all 0 ≤  i ≤  N - 1, sets 

its switch on the transmitting segment to cross if they hold a flag say ai = 1, and straight if ai = 0. 

All processors try and address processor N- 1 which is the head of the bus. Suppose that all 

processors to the right of processor i contains 0, all switches to the right of processor i on the 

select waveguide are set to straight, and thus no delay is introduced. As a result, the two pulses 

from processor i will coincide at processor N - 1. Suppose that only one processor to the right of 

processor i contains a 1, only one switch to the right of processor i on the select waveguide is set 

to cross, and thus only one unit delay is introduced. As a result, the two pulses from processor i 

will coincide at processor N – 2 and so on. After this step processor j that received the index of 

processor i sends a message containing its own address back to processor i. When processor V0 



12 

 

receives a message containing an address j, it first calculates the sum of all binary numbers in the 

array y = V0 + (N - 1 - j), and broadcasts it to all processors on the bus. Processor i then gets its 

partial sum Vo + V1 + V2 + ... + Vi = y - (N - 1 - j). Thus, the binary prefix sum on the LARPBS 

can be thus be computed in O(l) time [2]. 

4. Compression 

The compression algorithm takes a set of processors that are marked and compress them into 

contiguous order. These processors can be scattered across the LARPBS and may not have any 

particular order of occurrence. After the compression operation is performed the relative order of 

the occurrence of these processors is preserved. For the LARPBS this operation is performed by 

computing the prefix sums processors. Assume an array of N data elements with each processor 

having one data element. For example, assume that among N processors on the LARPBS some s 

number of processors hold a marked data value say a flag value of 1 and the rest of the 

processors hold a value flag value of 0. Processors that hold the marked data are referred to as 

active processors. The prefix sum of all processors is computed. The objective of the 

compression algorithm is to move these active data elements to processors N - s – 1, N - s . . . . . , 

N - 1.  Thus each processor lets the processor corresponding to the prefix sum simulate itself that 

is the prefix sum becomes the index of the processors that the marked elements are to be routed 

to. Thus the compression algorithm moves all active processors to the left side of the array [2].  

2.2 PR-Mesh Model 
 
The Pipelined Reconfigurable Mesh (PR-Mesh) [5] is a multi dimensional version of the 

LARPBS. The PR-Mesh can be thought of a k-dimensional mesh of processors, where each 

processor in the mesh has 2k ports. Processors can locally manipulate their ports so as to connect 

to at most one other port, to form linear buses. Similar to the LARPBS the PR-Mesh also 
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assumes that the optically pipelined bus has the same length of fiber between successive 

processors, thus the propagation delays between adjacent processors are the same. The bus cycle 

again is considered to be the end-to-end propagation delay on the bus. The PR-Mesh can appear 

as a directional network since both the transmitting and receiving segments are directional. These 

are represented by the T and R on the figure. The architecture [5] of a PR-Mesh is as shown in 

Figure 2. 

 

   Figure 2 : PR-Mesh Processor Connections [5] 

The figure represents a two dimensional PR-Mesh in which each processors has four ports. The 

PR-Mesh consists of an R x C [where R means row and C means column] mesh of processors, in 

which the four ports of the processors are joined to eight bus segments using the directional 

couplers.  The functionality of the delay loops is similar to that of the LARPBS. There are 

waveguides for both the dimensions as well as directions. Similar to the LARPBS the PR-Mesh 

processors possesses a set of switches which they control locally to fuse/open bus segments. 

These are represented by the dotted boxes in Figure 2. 
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                                              Figure 3 : Port Connections of PR-Mesh [5] 

In Figure 3 the ten possible port connections for a two dimensional PR-Mesh are shown. This 

kind of fusing of ports in successive processors may give rise to buses that run through them to 

their neighbors thus forming a linear bus corresponding to the LARPBS. It must also be noted 

that the all buses that are formed are linear and no cycles are allowed. 

2.2.1 Bus and Port Configurations 
 
A detailed pictorial representation of the two dimensional PR-Mesh that shall be simulated by 

the LARPBS is shown in Figure 4. In the figure the two dimensional transmitting and receiving 

segments in both directions are represented as straight lines and the T/R symbol on the lines 

denote the direction of transmission/reception of data. Each processor has four ports denoted by 

North (N), East (E), West (W) and South (S). The directional couplers are shown in thick dark 

lines. The switches used for bus interconnections are divided into four quadrants as shown in 

dotted rectangle boxes. Each quadrant has twelve switches. The black switches are labeled E1, 

E2, W1, W2 are helpful in forming row buses and switches N1, N2, S1, and S2 are helpful in 

forming column buses, for each of the quadrants. The blue switches labeled F1, F2, F3, F4 for 

each quadrant are helpful in forming two dimensional buses that run in two directions, for 

example North-West, South-East and so on. Essentially, they enable fusing horizontal and 

vertical segments together so that the bus can bend from the x- axis to the y-axis or vice versa in 
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any direction. A more detailed explanation of the roles of processors with respect to buses is 

given in detail in further course. 

 

Figure 4 :  Detailed view of PR-Mesh Ports & Switch Connections 

2.2.2 Processors on PR-Mesh 
 
The processors of the PR-Mesh can perform many roles as compared to the LARPBS processors. 

Processors of an LARPBS can be a disconnected processor, a head (processor closest to the U-

turn), or a tail (processor farthest from the U-turn) or simply an intermediate processor 

(processors that are neither head nor tail) on the row bus. The possible roles performed by 

processors on the PR-Mesh are as depicted in Figure 5. The processors shown in Figure 5 

correspond to the bus structure shown in Figure 6. 
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Figure 5 : Possible Roles of Processors on PR-Mesh 

 

A PR-Mesh processor can be the head of the segment for up to two out of the four directional 

buses. The head of a bus will set some of its F* ports [Where F represents any of its fusing ports 

F1, F2, F3 and F4] in any of its quadrants. This fusing causes a U-turn in the bus, thereby 

connecting the transmitting to the receiving segment. An example of the head of the processor is 

as shown in Figure 5(a). Processors on a column bus fuse their N1, N2, S1 and S2 ports as shown 

in Figure 5(b). Fusing vertical segments together in the same direction makes the bus continue 

along the same vertical direction. Processors may be on one or both of its column buses. 

Processors that are the tail of a bus fuse switches in only one quadrant as shown in Figure 5(d) 
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thereby stopping the progress of the bus along the same direction. Processors on a row bus fuse 

their E1, E2, W1 and W2 ports as shown in Figure 5(f) making the bus progress in the same 

horizontal direction. Processors that are not connected to any bus open all their switches as 

shown in Figure 5(e). Since the PR-Mesh is a two dimensional model the buses may run in both 

horizontal and vertical directions. It is pertinent to assume that the buses will not be a linear 

structure. The capability of the bus to change directions from horizontal to vertical direction or 

vice versa is what is called a bend. To achieve a bend the diagonally opposite ports in the same 

quadrant are fused as shown in Figure 5(c). The processor at which the bus bends is called a 

“pivot-processor” and it connects a horizontal and a vertical segment together.  

There are eight possible ways in which a bus can bend. A bus can start transmission from 

east to west and bend in north or south direction. Similarly the transmission can start from west 

to east and bend to transmit along north or south direction. This way the bus bends from the 

horizontal to vertical direction. Similarly the bus can transmit from north to south and bend with 

in east or west direction or start transmitting from south to north and bends towards east or west 

direction. In this manner the bus bends from vertical to horizontal direction. 

In order to understand the working of the PR-Mesh and the bus connections of processors, 

a small example is described. Consider a two dimensional 3 x 2 Mesh of processors with a bus 

structure as shown in Figure 6(a). P5 being the head of the bus fuses the ports F1 and F3 in the 

first quadrant and P5 and P4 lie on the row bus thus connecting the E1, E2 ,W1 and W2 ports in 

the third and fourth quadrants. At the pivot P3, the bus bends from a row bus to a column bus. 

The switches F2 and F4 are fused in the fourth quadrant. P3 and P0 lie on the column bus and 

they fuse their N1, N2, S1 and S2 ports. P1 and P2 are disconnected and hence open all their 

switches. 
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          Figure 6: Bus Structure of a PR-Mesh (a) High Level View (b) Detailed View 

In further sections it is assumed that the readers are familiar with the switch and port connections 

and different roles of processors.  
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3 BACKGROUND 
 
In the introduction section the importance of studying the relationships between models was 

briefly mentioned. In this section this idea is further explored. In simpler terms, establishing a 

relationship means showing if a particular model is equivalent, more powerful or less powerful 

when compared to other model being compared. If a model A can simulate any step of another 

model B in the same amount of time it took for model B using same number of processors, and 

vice versa, then they both are considered equivalent. There has been a lot of work done in this 

regard. By establishing the relationship capabilities and limitations of the models can be 

understood. Further the presence of absence of certain features may make a model powerful than 

the other model to which it is being compared to. Establishing relationships helps in translation 

of algorithms which in turn enriches the pool of algorithms. In this section the relationships 

between one dimensional model and two dimensional models is discussed briefly. 

3.1 Relating One Dimensional Models 
 
Previous work that relates one dimensional models establishes the equivalence between the 

Linear Array with a Reconfigurable Pipelined Bus System (LARPBS) [2], the Pipelined Optical 

Bus (POB) [3] and the Linear Pipelined Bus (LPB) [4] using a cycle of simulations. For the 

figures of the POB and the LPB refer to the appendix. Segmentation switches that allow the 

LARPBS to be portioned into separate sub arrays is absent in the other two models. Also, the 

POB lacks the fixed delay switches. It has been proved using a cycle of simulations that the 

LARPBS, LPB, and POB are equivalent [11] in the sense that any algorithm proposed for one of 

these models can be implemented on any of the others with the same number of processors and 

in constant time.  
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The segmentation property simplifies algorithm design, but it has been proven that this 

functionality alone does not make the LARPBS any more powerful than the other two models 

that do not posses this capability. The LPB is identical to the LARPBS except that it does not 

posses any segment switches. The POB is also a similar model in which the conditional delay 

switches are positioned on the receiving side of the reference and data waveguides, rather than 

on the transmitting side of the select line and it also does not posses any segmentation capability.  

In the simulation of the models it becomes clear that the segmentation capability must be 

replaced by some other property that is common to all three models. The simulation entitles 

usage of prefix sum algorithm that plays a key role. It efficiently utilizes the multicasting ability 

of the models, rather than the segmenting ability of the LARPBS. The cycle of simulations as 

mentioned earlier is used to establish the equivalence between the three models, i.e. initially an 

LPB is used to simulate an LARPBS then POB is made to simulate the LPB and finally an 

LARPBS simulates the POB. Each step of the simulation consists of the following three steps, 

namely, determining the parameters for the actual destinations of all messages, creating the 

select frames, and finally sending the messages.  

Due to the fact that the setting of the delay switches may cause the messages to be 

delivered to other processors rather than the selected destination, the first step is to adjust the 

select frame so that the messages are sent to the selected processors. In the first step of the 

simulation, each processor of the LPB referred as Li identifies if any segment switches are set in 

the LARPBS model that it is simulating. It has to check for any such switch because that 

effectively means that the LAPRBS has been divided into two separate sub-arrays. On finding 

such a set switch to its left, a processor Li must inform processors ahead of it the beginning of the 

new sub-array. Hence it multicasts i+1 to each Lj (where i<j<N), and Lj stores this as leftj. 



21 

 

Processors that did not receive a message will assume the lowest indexed processor within its 

sub array to be L0. Similarly the processors should be able to determine the sub array to it right. 

Lj determines the analogous position, rightj, by reversing the order of the processors and 

proceeding as before.  

In the next step each processor has to determine the number of set conditional delay 

switches to the right of processor in its sub array which causes messages to be delivered to other 

processors than chosen processors. For this, the prefix sum computation is done on the set 

switches to the right of the processors.Now each processor has to modify the select frame so that 

it reflects the changes caused by the presence of delay switches and segment switches. The 

change is based on the information collected in the previous steps, i.e. the actual destination is 

found using the expression rightj-N+1-psumj. While psumj reflects the changes due to the 

presence of delay switches, rightj accounts for segmenting and leftj is used to mask off 

processors that are not present in the same subarray. To send messages, all processors set all 

delay switches to straight and transmit their messages. If the correct processors receive the 

messages intended for them then the simulation is assumed successful. 

The simulation of an LPB on a POB at first seems easy since both of these models lack 

the segmentation capability. The problems arise however, from the fact that the architecture of 

both models is very different. It is due to differences in the location of delay switches, the way in 

which it works and finally in the methods of multicasting. Here to determine the actual 

destination of all messages, the POB first determines the number of conditional delay switches 

set using the same binary prefix sums algorithm. Depending on these values, each processor of 

the POB can manipulate its select frame and then send the messages in the normal state of 

operation. The normal state of operation for an LPB is where the conditional delays are set 
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straight, for an LARPBS the conditional delays and segment switches are set straight and for a 

POB the conditional delays are set to cross. 

  For an LARPBS to simulate a POB, the problem lies in the fact that one select pulse in 

the LARPBS can address only one processor, while the POB can address multiple processors 

with one select pulse by setting successive conditional delay switches to straight. The processors 

on the LARPBS are defined as Ri and processors on the POB as Bi. In order to be able to send 

messages to multiple processors, the LARPBS sends messages to intermediate destinations. First, 

the LARPBS sends its messages to the selected destinations in the normal state of operation i.e. 

without modifying the select frames. Processor Ri next requests a copy of the message received 

by Rk in the previous step. It is quite possible that many processors might send such a request to 

Rk. The priority is given to the rightmost requesting processor. Then each processor Ri sets its 

segment switch to cross if the processor on the POB has its delay switch set to cross. The head of 

each subarray now broadcasts the data it received in the previous step, to forward the message to 

other such actual destinations, and each processor Ri now has the same message as Bi would have 

in the POB. Hence it has been proved that the LARPBS, LPB, and POB are equivalent models. 

Each one can simulate any step of one of the other models in O(1) steps with the same number of 

processors. 

3.2 Relating Two Dimensional Models 
 
In the previous section equivalence was proved by an automatic mapping of algorithms with 

respect to their functionalities without any loss of speed or efficiency among the models. In this 

section the issues in relating two dimensional models is discussed briefly. The main problem 

associated with two dimensional models is the number of configurations possible due to the 

multiple dimensions. Keeping this factor in mind, their equivalence is denoted in a slightly 
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different manner. Here the complexity is measured by relating their time to within a constant 

factor and the number of processors to within a polynomial factor. Mentioning some of the major 

unifying methods it has been established that the PR-Mesh has the same complexity as the cycle-

free Linear Reconfigurable Network (LR-Mesh) [13]. In the paper it is proved that in constant 

time, using a polynomial number of processors, the cycle-free LR-Mesh can solve the same class 

of problems as the LR-Mesh. It can be inferred that the PR-Mesh can solve the same class of 

problems within the same order of steps using polynomial processors. The complexity class is 

then extended to accommodate two other optical models, namely the Array with Reconfigurable 

Optical Buses (AROB) [6] and the Array Processors with Pipelined Buses using Switches 

(APPBS) [8]. The AROB is a two dimensional expansion of the LAROB. The main features of 

the AROB include an internal timing circuit that is capable of counting petit-cycles. Among 

other functionalities the AROB is capable of bit polling, capacity to shift the select frame with 

accordance with the reference pulse by adding up to N unit delays and an enhanced model that is 

capable of changing switch settings during bus-cycles. Similar to the AROB an APPBS also 

allows the processors to change their switch configuration in midst of a bus–cycle and within 

petit- cycles.  [It denotes the delay between a processor and its adjacent neighbor.] 

Though the PR-Mesh does not possesses any of these functionalities of the AROB and the 

APPBS it has been proved that with a polynomial increase in the number of processors the PR-

Mesh is capable of simulating both the AROB and the APPBS. For detailed explanation of the 

simulation please refer to Trahan et al. [1]. For figures please refer the Appendix. These were 

some of the major accomplishments in unifying the reconfigurable optical models and relate 

them to other more widely known models [14]. 
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4 SIMULATING A PR-MESH MODEL ON AN LARPBS 
 
Before the simulation of the PR-Mesh on a LARPBS can be begun it is necessary to know how 

the processors on a PR-Mesh are to be mapped to a LARPBS model. This basically identifies 

how the processors simulating the PR-Mesh processors are to be placed in the LARPBS. So for 

this, a simple row-major arrangement of processors on PR-Mesh based on their index is 

sufficient for the initial linear arrangement the processors in the LARPBS.  

Some of the aims of the simulation will be: 

1. Identification and Ranking of Components: Components here refer to the number of 

independent buses that can be present on the PR-Mesh. Here simulation is performed for a 

two dimensional PR-Mesh and hence buses can be on x-axis alone or y-axis alone or can be 

on both the axis. Buses panning across both the dimensions must be treated as a single bus. 

The components must be ranked and at the end of simulation each of the buses must be 

represented as a separate sub-array in the LARPBS and arranged in the descending order of 

rank. It has to be noted that processors that do not belong to any bus must be treated as 

thought they are the only component of a bus. 

2. Identification of Component-Members: Component members refer to the processors that are 

connected to each of the buses. Since it is known that each processor on the PR-Mesh can be 

connected to multiple buses when simulating on the LARPBS it must be determined which 

processors belong to which components or bus segment. A detailed explanation of situations 

when processors are connected to multiple buses is explained in further course of the 

simulation. Processors that are not connected to any bus can be ranked separately after all the 

processors that belong to a bus or they can appear in between two sub-arrays.   
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3. Ranking Component-Members: The next step in the simulation is the ranking of the 

processors that belong to a particular bus. Referring to Figure 6, it must be noted that P5 is 

ranked 0 since it is the head of the bus. While P4, P3 and P0 are ranked 1, 2 and 3 respectively. 

It is possible that the PR-Mesh may form cycles while configuring the bus as depicted in 

Figure 7. 

 

Figure 7 :  PR- Mesh permitting Cycling 
 

It can be seen from the Figure 7 that the PR-Mesh can form cycles as processors P1, P2 and 

P3 are on the bus twice as shown by the darker line. The dots represent the change in 

directionality of the bus. But the processors in the loop can only receive messages only once 
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during a bus cycle hence rendering cycling of buses useless. Therefore it is legitimate to 

assume that a processor cannot appear twice on a bus, i.e. there can be no cycles. 

4. Switch and Port Configurations of Component Members: As the processors are mapped 

from the PR-Mesh to LARPBS in row major order, the processors retain their port as well as 

switch configurations. For example, processors with delay switches in cross position will 

retain that configuration. 

In the forthcoming sections the simulation is performed by considering simpler to more complex 

bus configuration patterns. The first case (CASE 1-a) deals with the assumption that the 

processors are connected to at most one bus and the bus is bent at most once. This case is further 

refined in the subsequent section (CASE 1-b) since it fails to effectively segment the row and 

column segments when the ID of the head of the bus is lower than that of the rest of the 

processors. The next case (CASE 1-c) assumes the processors are connected to at most one bus 

and the bus can be bent any number of times. The maximum possible bends that the bus can have, 

which also represents the worst case scenario is also discussed. The next section (CASE 2-a) 

assumes the processors to be present across multiple buses while the bus is allowed to be bent 

only once and the final case (CASE 2-b) deals with processors across multiple buses and buses 

can have multiple bends. 
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4.1 Simulating a PR-Mesh model on an LARPBS – Case 1(a) 
 
This case involves simulating an M x M PR-Mesh using N processor LARPBS. The assumptions 

made here are that the processors on the PR-Mesh can be connected to only one bus and that bus 

bends only once. The main aim here is to successfully identify and rank different buses as well as 

the processors that appear on the buses using the same number of processors. 

Overview:  

This section describes the high level operations needed to be performed for this simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin 
  Perform Bus Ranking 

   Compress heads of a segments and disconnected processors 

   Compute the prefix sum on these processors 

  Identify Row Segments  

  Arrange processors in row major order 

  Group processors lying on same bus  

  Rank processors in along row segments 

  Pivot nodes hold total number of processors in row segment 

   Identify Column Segments  

  Arrange processors in column major order 

  Group processors lying on same bus  

  Rank processors in along column segments 

  Pivot nodes hold total number of processors in column segment 

Re-Rank Processors  

  If pivot node gets bus rank from column segment  

   Processors in the column segment retain rank 

   Processor in row segments adjust ranks  
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     Pseudocode - Case 1(a) 
Simulation: 

The following section describes the actual simulation process with details about each step 

described in the overview. 

Model: An N processor LARPBS, where N = M x M.  

Input: An M x M PR-Mesh  

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh  

Assumptions: For simulating the PR-Mesh on the LARPBS the following assumptions are made 

1. Each Processor on PR-Mesh is connected to at most one bus. 

2. Each bus has just one bend. 

Steps: 

Begin 

1. Processors which are the head of a segment and processors that are completely disconnected; 

set flag as 1. 

2. Compress all processors holding flag value as 1. 

If pivot node gets bus rank from row segment  

   Processors in the row segment retain rank 

   Processor in column segments adjust ranks   

  Compute Slot start value 

Compress heads of segments and disconnected processors 

  Compute prefix sum on total number of processors   

 Broadcast slot start values to all processors on the bus   

 Each processor compute new index 

Arrange each processor based on new index 

End 
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3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor 

(BRANK).  

4. Arrange the processors in row major order 

5. Forming row segments 

a. All processors which are pivot nodes (where their index i; i Mod M is not equal to 0), 

completely disconnected, head of segments and processors whose East-West port are 

not connected set their segment switches. 

b. Processors whose West Port is not connected send their index (NR) to the head of the 

segment. Disconnected processors take their corresponding indices as NR.  

c. If the processor that sent message in step 5b is a head of the bus send a value of 1 as 

(HSEG) to the head of the segment and also the BRANK. Disconnected processors 

assume value of HSEG as 1. 

d. Processors that received message in step 5b send its index as (PPIVOT-NODE) as well as 

received index and finally the value of HSEG to all processors between them and the 

end node (including the end node). 

e. All nodes that received message in previous step set flag as 1. 

f. Compute the prefix sum of all these processors (PRANK). [Subtract 1 to start Ranking 

from 0]. 

g. Processor with index PPIVOT-NODE – 1 sends its prefix sum (NRow-Sum) to the pivot node. 

[Must add one to NRow-Sum  as ranks begin from 0]  

6. Arrange Processors in column major order. 

7. Forming column segments 
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a. All processors whose North port is not connected or completely disconnected set their 

segment switches. 

b. All pivot nodes and processors whose North Port is not connected send their index 

(NC) to the head of the segment. Also they send the NRow-Sum which is stored as PTOTAL. 

Disconnected processors take their corresponding indices as NC.  

c. If the processor that sent message in step 6b is a head of the bus send a value of 1 as 

(HSEG) to the head of the segment and also the BRANK. Disconnected processors 

assume value of HSEG as 1. 

d. Processors that received a message in step 6b send its index as (PHEAD) as well as 

received index and finally the value of HSEG  as 1 if it is the head of segment to all 

processors between them and the end node (including the end node). 

e. All processors now compute their ranks (PRANK). [Subtract 1 to start Ranking from 0]. 

f. Processor with index NC sends the rank (NCol-Sum) to the node whose index it received 

in Step 6b. 

8. Re-Ranking Processors on the bus  

a. If pivot node received HSEG =1 in Step 6  

i. The processors along the column segment retain their PRANK.  

ii. Form row segments and pivot node broadcast NCol-Sum and NRow-Sum to all 

processors in row segment. 

iii. All processors adjust their ranks as NCol-Sum+ ((NRow-Sum -1) – PRANK). 

iv. Pivot node sends total number of processor to the head to the bus (PTOTAL). 

b. If pivot node received HSEG =1 in Step 5  
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i. Pivot node adds 1 to NRow-Sum and broadcasts to all processors along column 

segment. 

ii. All processors adjust their ranks as NRow-Sum+ PRANK. 

iii. Pivot node sends total number of processor to the head to the bus (PTOTAL). 

9. All disconnected and head of segments holds the value of PTOTAL and a prefix sum (NSLOT-

START) is performed on computed for each segment. 

10. Form Row and column segments again and broadcast the NSLOT-START value. 

11. Each processor computes its new index as NSLOT-START + PRANK. 

12. Each processor then arranges itself according to the new index. 

End  

4.1.1 Explanation 
The algorithm in the preceding section is explained with the help of an example shown below. 

 

Figure 8 : Mapping Processors (a) Processors on PR-Mesh (b) Processors on LARPBS 
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In the overview section the steps of the simulation is described in terms of major steps. In the 

simulation how this aims set in the overview section are achieved by the processors is described. 

In this section a further elaboration of the simulation process is described. Figure 8 (a) shows the 

processors on the PR-Mesh and (b) shows how the processors have to be arranged so as to 

simulate the PR-Mesh on LARPBS. In other words, the (a) part is the input to the LARPBS and 

(b) part is the output that is expected after the simulation is performed. The first step in the 

algorithm is to determine the number of buses that exist on the PR-Mesh. It should be understood 

that each disconnected processor must be assumed to lie independently on a bus. Further, the 

order in which these buses are present, i.e. the rank of each bus is to be determined. This detail is 

provided by the “BRANK” variable. This value at the beginning of the simulation is held by the 

head of the segments and the disconnected processors which are basically thought of as the head 

of the segment in which these are the only processors. 

In the next few stages, the processors that lie across the same bus are to be identified. 

Processors may lie on a along a row bus or a column bus or on a row as well as column bus as 

shown in Figure 8.  One important thing to notice from Figure 8 is that pivot processors (that 

form a bend as shown in Figure 5(c)) are key in identifying the processors that lie on the same 

bus. It becomes clear as the algorithm progresses. In order to find processors along the same bus, 

the first step is to find processors that lie on the horizontal part of the bus and then to temporarily 

rank (PRANK) them if these processors lie on the row as well as column bus.  It is a temporary 

ranking as the rest of the processors along the bus are not known at this stage and also the 

direction of the head processor is not known. However, for processors that entirely lay on a 

horizontal bus the ranking will be permanent. Once the horizontal segments of the processors are 
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identified by arranging processors in row-major format, the pivot processor now knows the 

following facts: 

1. The number of processors along a row segment (NRow-Sum) 

2. If the head of the segment lies in this segment (HSEG) 

Now the processors that are along the column of the bus can be found by arranging processors in 

column-major order and finding the number of processors along this segment. Once this step is 

completed the above mentioned facts hold true for this step of simulation also. Now the ranks 

have to be readjusted as the direction of the bus is now known. This is done by rearranging the 

processors in row major order and broadcasting the number of processors that are present 

between the head of the segment and pivot processors now processors along the pivot-tail of the 

segment need to re-adjust their ranks. 

 

Figure 9: Simulation Algorithm Case 1(a) 



34 

 

The final step of the algorithm is finding which slot is to be occupied by which bus 

(NSLOT-START). This is calculated by the computing the prefix sum of total number of processors 

along each bus as they are ranked. All the processors need to know is the beginning of the slot as 

they are ranked; the new index is easily calculated. The table shown below describes in detail the 

variables and values received by processors during the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

 

 

Table 1 : Values received by Processors during the Algorithm 1(a) 

            PROCESSORS ON LARPBS 
Steps Variables 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Flag      1     1  1 1 1 1 
3 BRANK      0     1  2 3 4 5 
5.b NR   0   4    8   12  14  
5.c HSEG             1  1  
5.c BRANK             2  5  

5.d 
PPIVOT-NODE 
& HSEG   & 
BRANK 

2 
& 
0 

2 
& 
0 

  

5
&
1
&
0

   
9
&
0

       

5.e Flag 1 1   1    1        
5.f PRANK 0 1   0    0        
5.g NRow-Sum   2       1       
6.b NC           2   9  3 
6.c HSEG   1 1      1   1  1  
6.d PHEAD   10 15   10 15  13  15    15
6.d BRANK   1 5   1 5  3  5 2 3 4 5 

6.e Flag   1 1   1 1  1  1    1 

6.f PRANK   0 0   1 1  0  2  1  3 
6.g NCol-Sum   3       2       
7.a.ii NCol-Sum 3 3       2        
7.a.iii PRANK 5 4       3        
8. PTOTAL      2     5  1 3 1 4 
8. NSLOT-START      0     2  7 8 11 12

9. 
BRANK & 
NSLOT-START 
& index 

1 
& 
2 
& 
2 

1 
& 
2 
& 
3 

1 
& 
2 
& 
4 

5 
& 
12
& 
12

0
&
0
&
0

0
&
0
&
1

1 
& 
2 
& 
5 

5 
& 
12
& 
13

3
&
8
&
8

3 
& 
8 
& 
9 

1 
& 
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4.1.2 Complexity Analysis 
 
The following section describes in detail the complexity analysis of the algorithm discussed in 

this section. The steps discussed below take into account complexity of each and every step of 

the algorithm and give a final value based on the summation of these steps. The complexity 

analysis is this section as well as the others is based on the algorithms designed for the LARPBS. 

The sources are sited for each and every step. 

The complexity of steps in the simulation algorithm is as follows: 

1. Compression algorithm takes O(1) time [2]. 

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time 

[rank = index of head of segment – index of the processor computing its rank] [2]. 

3. Arranging the processors in row major order as well as column major order to identify 

processors along each row and column segment takes O(1) time [2]. 

4. All communication between processors [this includes communication between two 

processors, multicasting or broadcasting] takes O(1) time [2]. 

5.  All the internal functions that the processors perform for example adjusting their ranks once 

the other processors along the bus have been identified, finding number of processors along 

their segments etc takes O(1) time [2].  

6. The prefix sum is computed for the head of the segments. For integers with bounded 

magnitude algorithm for prefix sum computation, takes O(log log N) time using N processors 

[12]. 

7. The permutation routing of the processors in LARPBS takes O(1) time [11]. 

It is to be noted that the efficiency of this simulation lies in the efficiency of computing the 

prefix sum of integers with bounded magnitude. Hence in the future, the efficiency of the 
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simulation is likely to improve if the prefix sum computation algorithm can be made to work in a 

more efficient way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 1: Each step of an M x M processor PR-Mesh, in which each processor is 

connected to at most one bus and the bus can have at most one bend, can be simulated 

by an N (where N = M x M ) processor LARPBS in O(log log N) time. 
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4.2 Simulating a PR-Mesh model on an LARPBS – Case 1(b) 
 
From the diagrams shown in Figure 8(a) it can be seen that all the buses run in the same direction 

and the index of the head is always higher than the other processors along a bus. Hence on 

implementing the algorithm Case 1(a) for cases where the buses run in opposite directions and 

with a head processor with lower index than the other processors; the algorithm does not work 

any more as shown in Figure 10.  

 

 

      Figure 10 :  Need for Refinement for case 1(a) 

From the Figure 10 it can be seen that processors zero to three lie on the same row bus, but since 

the pivot node‘s index is lower than rest of the processors in that row bus, the segmentation 

causes processor P9 alone to lie on the row bus and the other two processors are separated. Hence 

the algorithm had to be improved to accommodate the aforementioned conditions.  It can be seen 

that the problem lies only in the identifying the row and column segments. Hence once this is 
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overcome the algorithm can function as before. The identification and ranking of the bus is 

similar to the previous case, Case 1(a)) Steps 1 to 3. The model, input, output and assumptions 

are same as the previous case. The following steps outline the procedure for identifying 

row/column segments. 

Begin 

1. Arrange the processors in row major order 

2. Forming row segments 

a. All processors whose East-West ports are not connected as shown in Figure 5(f) set 

their segment switches. 

b. All processors who segmented in previous step send their index to its left/right 

neighbor processor as shown in the Figure 11(a). The messages are denoted by the 

arrows below the processors. [The left neighbor is the processor sending its index – 1, 

and right neighbor is processor sending its index +1]. All disconnected processors 

also do the same.  

c. If a processor receives a message, it must set its segment switch. Received processor 

now knows that processor on its left/right had set its segment switch since it did not 

lie on a row bus therefore it cannot also lie on the row bus that the receiving 

processor lies on.  

d. Now the algorithm can proceed as before. 

End 
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        Figure 11 : Simulation Steps for case 1(b) 

3. Forming column segments. 

a. All processors whose North South ports are not connected as shown in Figure 5(b) set 

their segment switches. 

b. All processors who segmented in previous step send their index to its left/right 

neighbor processor. [Left neighbor is processor sending its index – M for the 

processor above on the column and right neighbor is processor sending its index + M 

for the processor below on the column]. All disconnected processors also do the same. 

c. If a processor receives a message, it must set its segment switch. Received processor 

now knows that processor on its left/right had set its segment switch since it did not 

lie on a column bus therefore it cannot also lie on the column bus that the receiving 

processor lies on.  
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d. Now the algorithm can proceed as before. 

End 

4.2.1 Complexity Analysis 
 
The only changes made to the algorithm lie in the communication between the processors and 

therefore bear no effect on the complexity. Thus there is no change in Lemma 1.  
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4.3     Simulating a PR-Mesh model on an LARPBS – Case 1(c) 
 
In the simulations in the previous sections it is not realistic to neither assume that the buses in the 

PR-Mesh are one dimensional nor have only one bend between a horizontal and a vertical 

direction. It is reasonable to assume that the bus will be bent multiple times, indicating that the 

directionality of the bus changes many times. This makes it difficult to preserve the order in 

which the processors lie on the bus. This case modifies the assumption in the previous case. It is 

still assumed that the processors are still connected to at most one bus as shown in Figure 12.  

 

Figure 12  : Processors on PR-Mesh on Bus with Multiple Bends 
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Overview:  

This section describes the high level operations needed to be performed for this simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin 
  Perform Bus Ranking 

   Compress heads of a segments and disconnected processors. 

   Compute the prefix sum on these processors 

  Identify Row Segments  

  Arrange processors in row major order 

  Group processors lying on same bus  

  Pivot nodes hold total number of processors in row segment 

   Identify Column Segments  

  Arrange processors in column major order 

  Group processors lying on same bus  

  Pivot nodes hold total number of processors in column segment 

 Rank Processors  

  Repeat on pivot nodes until prefix sum is computed 

 { 

   Perform ranking using binary prefix sum algorithm  

    Pivot processor send index to pivot ahead of it 

    Pivot receiving index send prefix sum 

    Pivot receiving index also send next pivot index 

   Pivots newly learning index of head of segment 

    Send their index to head 

   } 

  After ranking tail send rank to head (denotes total processors on bus) 



44 

 

 

 

 

 

 

 

 

 

    Pseudocode - Case 1 (c) 
 

Simulation: 

The following section describes the actual simulation process with details about each step 

described in the overview. 

Model: An N processor LARPBS, where N = M x M. 

Input: An M x M PR-Mesh  

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh  

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made 

1. Each Processor on PR-Mesh is connected to at most one bus. 

2. Each bus can have multiple bends. 

Steps: 

Begin 

1. Processors which are the head of a segment and processors that are completely disconnected; 

set flag as 1. 

2. Compress all processors holding flag value as 1. 

Compute Slot start value 

 Compress heads of segments and disconnected processors 

   Compute prefix sum on total number of processors  

   Broadcast slot start value to all pivots on the bus 

   Pivots broadcast slot start to processors in their segment 

Each processor compute new index 

 Arrange each processor based on new index 

End 
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3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor 

(BRANK).  

4. Arrange the processors in row major order 

5. Forming row segments 

a. All processors whose East-West ports are not connected as shown in Figure 5(f) set 

their segment switches. 

b. All processors who segmented in previous step send their index to its left/right 

neighbor processor as shown in the Figure 11(a).The messages are denoted by the 

arrows below the processors. [The left neighbor is processor sending its index – 1, 

and the right neighbor is processor sending its index +1]. All disconnected processors 

also do the same. 

c. If a processor receives a message, it must set its segment switch. Received processor 

now knows that processor on its left/right had set its segment switch since it did not 

lie on a row bus therefore it cannot also lie on the row bus that the receiving 

processor lies on.  

d. The head and tail segment processors exchange their indices and also the head 

informs all the processors between itself and the tail the head and the tail processor 

index.   

4. Forming column segments. 

a. All processors whose North South ports are not connected as shown in Figure 5(b) set 

their segment switches. 

b. All processors who segmented in previous step send their index to its left/right 

neighbor processor. [The left neighbor is processor sending its index – M and the 
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right neighbor is processor sending its index + M]. All disconnected processors also 

do the same. 

c. If a processor receives a message, it must set its segment switch. The receiving 

processor now knows that processor on its left/right had set its segment switch since it 

did not lie on a column bus therefore it cannot also lie on the column bus that the 

receiving processor lies on.  

d. The head and tail segment processors exchange their indices and also the head 

informs all the processors between itself and the tail the head and the tail processor 

index. 

5. Ranking processors on the bus 

a. After forming row and column segments it can be seen that at each pivot processor, in 

order to rank the processors in its segment, it needs the number of processors ahead of 

it and hence this problem in simple terms boils down to calculating the prefix  sum of 

the number of processors lying ahead of it.  Rank processors (PRANK) on the bus. 

Detailed working of the ranking process is provided in the explanation section. 

b. All new pivot processors learning the identity of the head of the bus must 

communicate with the head, to convey their IDs. This is vital since the ID is used by 

the head to convey the beginning slot value (NSLOT-START) to all pivot processors. 

6. All disconnected and head of segments holds the total number of processors (PTOTAL) on that 

bus and then a prefix sum (NSLOT-START) is computed for each bus. 

7. The NSLOT-START value is then sent to each pivot processors so that it can be broadcasted to all 

processors on the bus. 

8. Form Row and column segments again and broadcast the NSLOT-START value. 
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9. Each processor computes its new index as NSLOT-START + PRANK. 

10. Each processor then arranges itself according to the new index. 

End 

4.3.1 Explanation 
 
The initial steps of the simulation are same as the previous sections. For detailed explanation for 

these steps refer to Section 4.1.Here a detailed explanation of the prefix sum computation using a 

binary tree-like method is furnished. It can  be observed that after forming row and column 

segments each pivot processor becomes aware of the number of processors ahead and behind it 

and also of the next pivot processor that it might need to communicate with in order to find the 

number of processors in that segment. Here the bus that runs through processors P7, P0, P1, P8, 

P15, P16, P17, P18, P25, P26, P33 and P34 of Figure 12 is considered for explanation purposes. On first 

forming the row bus, both processors lying on the row buses ( for example P0 - P1, P15 through 

P18, P25 - P26 and P33 - P34 ) become aware of the pivot processors that they might need to 

communicate with in order to know the number of processors ahead of them. At this point it has 

to be noted that the head of the bus is not known. 

After forming the column segments, the pivot processors gain knowledge of another set 

of pivot processors and also the number of processors in their segment. For example, after 

forming column segments processor P0 becomes aware that there is just one processor ahead of it 

processor P7 and it is the head of the bus. Now the directionality of the bus is learned by a new 

processor and must be passed on to other processors. This can be done only by the pivot 

processors. And ranking the processors in their segments can be done only after learning the 

number of processors ahead of them. This has now become a prefix sum computation on the 
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number of processors held in each segment. The binary tree structure that is ideally used for the 

prefix sum computation for the bus is as shown. 

 

  Figure 13 : Prefix Sum Computation for the Pivot Processors 

 

The main problem why the traditional binary tree method cannot be used here can be 

seen from the diagram. Unlike the traditional binary tree method, the index of the processor in 

the next step is not known. For example if there were processors ranked P0 to P5  for which the 

prefix sum is to be computed then it is known that in first stages processors communicate in pairs 

like P0- P1 , P2 –P3, P4 -P5. In the next stage processors P1 -P3 know they have to communicate 

since the indices are increasing in a uniform manner. But here that is not the case.  

Hence in order to solve that problem, row and column segments are formed and the new 

processor that has learnt of the directionality and the bus rank steps up and has to proceed to the 

next stage so as to provide information. After the first communication step P0 learns of the 

identity of the head of the segment and computes its rank based on the prefix sum. Each 

processor computes the rank by adding the prefix sum to the number of processors held in its 

own segment. For example, the prefix sum of P0 is 1 and it computes its rank by adding 1 to the 
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number of processors held in its segment which is 1 and subtracting 1 as rank starts with 0. So 

the rank of P0 is 1+1-1 = 1. In the second stage the row segments are formed again. Now 

processor P1 is the processor that knows the prefix sum of pivot processors ahead of it as it 

communicates with P0 again and can becomes the processor ahead of which prefix sums are 

already computed. Subsequent pivot nodes have to communicate with this node to get the 

information on the bus.  

For segments where the processor has not yet learned of the identity of the rank and ID of 

the head of the bus, it must be informed by processors that have this information farther in the 

direction of transmission. For communication purposes all the set segment switches are now set 

straight. During the formation of row/column segments each pivot node must provide the index 

as well as the sum computed so far to the processor communicating with it. For example in the 

first step processor P15 communicates with P18 and informs it the id of P1. The detailed 

communication between processors on the bus for prefix sum computation is as shown in Figure 

14. 
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Figure 14 : Communication among Pivot Processors 

 Taking the example of processor P34 from the Figure 14 in the first stage of the row 

formation communicates with processor P33. After the column segments are formed and 

processor P33 becomes aware of processor P26. Now the prefix sum computation phase begins 

and it is indicated by the blue arrow mark. The arrow also is representative of the number of 

steps required for this operation. During the prefix sum computation phase again processor P34 

communicates with processor P33. During this step three important actions take place processor 

P34 must provide processor P33 its index for communication purposes. In the second step 

processor P33 sends the prefix sum it has computed so far to processor P34 and during the final 

step processor P33 provides the index of processor P26 to processor P34. During the next phase 
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processor P34 communicates with processor P26 which provides it with the index of processor P18 

and so on. 

This is continued until the prefix sums are computed. In addition each pivot node that 

newly learns the identity of the head of the segment must send its index to the head of the bus. 

The head of the segment becomes aware of all the pivot nodes at the end of the prefix sum 

computation. [This becomes vital because after the processors are ranked, the next step is to find 

the slot which this bus needs to occupy depending on the rank.] This is continued until the last 

step in which the final node posses prefix sum of all the pivot nodes in front of it. Prefix sum is 

then used compute the rank of the other processors on the same bus. Once the ranking is done 

rest of simulation is similar to the previous section. 

4.3.2 Complexity Analysis 
 
The following section describes in detail the complexity analysis of the algorithm discussed in 

this section. The steps discussed below take into account complexity of each and every step of 

the algorithm and give a final value based on the summation of these steps.  

The complexity of steps in the simulation algorithm is as follows: 

1. Compression algorithm takes O(1) time [2]. 

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time 

[rank = index of head of segment – index of the processor computing its rank] [2]. 

3. Arranging the processors in row major order as well as column major order to identify 

processors along each row and column segment takes O(1) time [2]. 

4. All communication between processors [this includes communication between two 

processors, multicasting or broadcasting] takes O(1) time [2]. 
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5.  All the internal functions that the processors perform for e.g. adjusting their ranks once the 

other processors along the bus, finding number of processors along their segments etc takes 

O(1) time [2].  

6. Prefix sum computation using the binary tree method takes about O(log b) time using N 

processors where b denotes the number of bends in the bus [1]. 

7. For integers with bounded magnitude algorithm for prefix sum computation takes O(log log 

N) time using N processors. This is done to find the prefix sum of processors in each bus to 

find the slot which the next ranked processors needs to occupy [12]. 

8. The permutation routing of the processors in LARPBS takes O(1) time [11]. 

9. The total time taken to run the simulation is O(log log N + log b) where b denotes the number 

of bends in the bus. 

 

  

 

 

4.3.3 Calculating Worst Case Complexity  
 
From the previous section it can be noticed that the number of bends that are present in the bus 

are vital in the complexity analysis. Hence it becomes necessary to compute the worst case 

scenario. The architecture of the PR-Mesh allows the buses to bend at every opportunity and 

form a meandering structure as shown in Figure 15. At each processor the bus can be bent twice 

at the most. Hence allowing the maximum number of bends, the bus across an 8 x 8 mesh of 

processors looks as shown in Figure 15. 

Lemma 2: Each step of an M x M processor PR-Mesh, in which each processor is connected to 

at most one bus and the bus can have more than one bend, can be simulated by an N (where N

= M x M ) processor LARPBS in O(log log N + log b) time. 
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      Figure 15 : Maximum Bends in an 8 x 8 Processor PR-Mesh 

From the Figure 15 it can be noticed that there are about 58 bends in a 64 processor PR-

Mesh which can be roughly thought of as O(N2) bends. But it should be noted that it is highly 

unlikely that the bus is bent so many times. The number of bends will typically be much less 

than the worst case as defined. In simpler terms, b <<< O(N2) where b denotes the number of 

bends the bus can have. 

Hence the worst case complexity of Simulating a PR-Mesh model on LARPBS (bus with 

multiple bends) is O(log log N + log N2). 

 

 

 

 

Lemma 3: Each step of an M x M processor PR-Mesh, in which each processor is connected 

to at most one bus and the bus can have more than one bend, can be simulated by an N

( where N = M x M) processor LARPBS in O(log log N + log N2) time. 
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4.4 A note on simulating processors on multiple buses 
 
In the following section the underlying assumption is that the processors can be on multiple 

buses or can be the head of multiple buses as shown in the following Figure 16. 

 

           Figure 16 : Processors on PR-Mesh on Multiple Buses 
 

From Figures 16 and 17, it is evident that unlike the simulation of processors on a single 

bus simulating processors that are on multiple buses is much more complicated by the fact that 

there are many more possible bus configurations that are possible as shown in Figure 17 and 

hence cannot be simulated by the same number of processors. It will further be explained why 

the simulation of such processors cannot be equivalent within a constant factor of processors.  
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 Figure 17 : Bus and Port Configurations of Processors on Multiple Buses 
 

This kind of assumption for an increase in the number of processors where there is a large 

bus configuration due to multiple dimensions is already done in the simulation of cycle free 

linear reconfigurable mesh (CF-LR) Mesh - LR-Mesh, between the PR-Mesh - APPBS and 

relation between the PR-Mesh and the AROB [14], and hence is permissible. In the simulation of 

a two dimensional PR-Mesh on an LARPBS the increase in the number of processors is constant 

instead of the polynomial increase as in the simulations in [14].  

Elaborating on the reason why there is a need for an increase in the number of processors 

from Figure 16 it can be seen that the processor P26 is the head of two buses and many other 

processors are on multiple buses. Hence within a single bus cycle, these processors might have to 



56 

 

function as members of different components which is not possible. This can be visualized as 

seen in Figure 18. 

 

Figure 18  :  Separating Processors on Multiple Buses 
 

There has to be an increase in the number of processors so that they can be 

accommodated on as many as four buses [which is the maximum] like processor P13 at the same 

time. Hence the increase in the number of processors is constant, i.e. each processor has four 

copies rather than a polynomial increase. A notation has to be introduced prior to the presenting 

of results of the simulation [14]. For a model Z, let F= Z (T, Constant (N)) denote the class of 

problems solved by the model Z in O(T) steps with a constant increase in the number of 

processors. Here the LARPBS is the model represented by Z and the two parameters of F are to 

be found. But from the configuration of the PR-Mesh it is known that at the most each processor 

can be on four buses and hence the value of the constant with which N has to be multiplied is 
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four. The equation is now modified as F= Z (T, 4 (N)). Now all that is to be done is to determine 

the time needed to simulate processors that are on multiple buses on a PR-Mesh using an 

LARPBS.  

For the simulation of processors on multiple buses on PR-Mesh the number of processors 

simulating them on the LARPBS has quadrupled. Hence the first step in the simulation is the 

indexing of processors and then arrangement or mapping on the LARPBS. The four copies of the 

processor Pi have indices Pia, Pib, Pic and Pid respectively. For example P5   on the PR-Mesh has 

four copies on the LARPBS with indices P5a, P5b, P5c and P5d respectively.  Processor with index 

Pia, is deemed as the “master processor” which holds the port and switch configurations of 

Processor Pi and the rest of the three processors are the slave processors at the beginning of the 

simulation. All processors with Pix index are grouped together in ascending order of i as shown 

in the Figure 19 assuming there were three processors on the PR-Mesh. 

 

Figure 19 : Pre-Processing Phase of Simulation of Processors on Multiple Buses 
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During the pre-processing phase (which is the phase before the start of simulation) if the 

processor Pia notices that it is on multiple buses it allows itself to simulate the bus segment in 

which the transmission is from left to right, it makes processor Pib to simulate the bus segment in 

which the transmission is from right to left, it makes processor Pic to simulate the bus segment in 

which the transmission is from north to south and it makes processor Pid to simulate the bus 

segment in which the transmission is south to north. That is respective port and switch 

configurations are passed on to these processors in constant time. After this step the processors 

can independently operate in each step of the simulation and need not pass on any information to 

the master processor. An additional point to be noted is that when a processor is a head of 

multiple buses those buses should be ranked consecutively. For example processor P26c and P26d 

should be ranked consecutively. 
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4.5 Simulating a PR-Mesh model on an LARPBS – Case 2(a) 
 
In this case the simulation is complicated by the fact that processors are on multiple buses. But 

during the preprocessing phase all those clusters have been separated out into individual 

segments. Here the main problem involves the elimination of duplicate processors that are 

present in certain segments. In this simulation the elimination process is discussed in detail while 

the rest of the simulation remains the same as in case 1(a).  

Overview:  

This section describes the high level operations needed to be performed for this simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin 
  Perform Bus Ranking 

   Compress heads of a segments and disconnected processors. 

   Compute the prefix sum on these processors 

  Identify Row Segments  

  Arrange processors in row major order 

  Group processors lying on same bus  

  Rank processors in along row segments 

  Pivot nodes hold total number of processors in row segment 

   Identify Column Segments  

  Arrange processors in column major order 

  Group processors lying on same bus  

  Rank processors in along column segments 

  Pivot nodes hold total number of processors in column segment 

 Elimination of Mirror Pivots 

  If pivot node gets bus rank from column segment  

   Preserve and rank pivot in column segment 

   Eliminate pivot in row segment 
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     Pseudocode - Case 2(a) 
Simulation: 

The following section describes the actual simulation process with details about each step 

described in the overview. 

Model: A 4N processor LARPBS [where N = M x M] after the pre-processing phase has been 

completed. 

Input: An M x M PR-Mesh  

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh  

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made 

1. Each Processor on PR-Mesh is connected to any number of the four buses. 

If pivot node gets bus rank from row segment  

   Preserve and rank pivot in row segment 

   Eliminate pivot in column segment 

Re-Rank Processors  

  If pivot node gets bus rank from column segment  

   Processors in the column segment retain rank 

   Processor in row segments adjust ranks  

  If pivot node gets bus rank from row segment  

   Processors in the row segment retain rank 

   Processor in column segments adjust ranks 
  Compute Slot start value 

Compress heads of segments and disconnected processors 

   Compute prefix sum on total number of processors  

  Broadcast slot start values to all processors on the bus  

  Each processor compute new index 

 Arrange each processor based on new index 
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2. Each bus has just one bend. 

Steps: 

Begin 

1. All processors which are the head of a segment set flag as 1. 

2. Compress all processors holding flag value as 1. 

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor 

(BRANK).  

4. Forming Bus Sections 

a. Arrange all Pia processors together in the increasing order of i such that they form 

Group-a. Similarly group Pib processors, Pic processors and Pid processors to form 

Group-b, Group-c and Group-d respectively in row major order. In other words, 

Group-a consists of processors with index Pia only where i ranges between 0 and N. 

And all the Nth processors with in the group set their segment switches to form 4 

different sub-arrays which will be named Group-a, Group-b, Group-c and Group-d. 

b. Processors in Group-c and Group-d are then arranged in column major format. Now 

two among the four sub-arrays is in row major order and other two in column major 

order. 

c. Processors in Group-a simulate bus segments in which the transmission is from west 

to east. Processors in Group-b simulate bus segment in which the transmission is from 

east to west. Processors in Group-c simulate bus segments in which the transmission 

is from north to south and Processors in Group-d simulate bus segments in which the 

transmission is south to north. 

5.  Forming row  and column segments and ranking row/column only bus 
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a. All the processors in Group-a and Group-b, whose East-West ports are not connected 

as shown in Figure 5(f) set their segment switches to cross. All processors in Group-c 

and Group-d whose North South ports are not connected as shown in Figure 5(b) set 

their segment switches to cross. 

b. All the processors in Group-a and Group-b, that segmented in the previous step send 

their index to its left/right neighbor processor as shown in the Figure 11(a). The 

messages are denoted by the arrows below the processors. [Left neighbor is processor 

sending its index – 1, and right neighbor is processor sending its index +1]. All 

disconnected processors also do the same in these two groups. All processors in 

Group-c and Group-d who segmented in the previous step send their index to its 

left/right neighbor processor. [Left neighbor is processor sending its index – M and 

right neighbor is processor sending its index + M]. All disconnected processors also 

do the same in these two groups.  

c. If a processor receives a message, it must set its segment switch. A receiving 

processor now knows that the processor on its left/right had set its segment switch 

since it did not lie on a row bus or a column bus therefore it cannot also lie on the row 

or a column bus that the receiving processor lies on.  

d. The head and tail segment processors with in each segment of each group exchange 

their indices and also the head of the segment informs all the processors between 

itself and the tail of the head and the tail processor indices. 

e.  One of the processors on either end of the segment is head of the bus. It sends a value 

of 1 as (HSEG) to the other processor that lies on the other end of the segment and also 

the BRANK.  
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f. All processors find their temporary ranks based on the direction of transmission. For 

segments where the head of the bus has been identified, this is the final rank of the 

processors. For example the processors P10 to P14, P16 to P26, and P26 to P31 from 

Figure 16 find their ranks and also the bus rank at the end of this step.  For other 

processors the following steps are continued. 

6. Ranking Processors on buses with a bend 

a. All Processors straighten their segment switches to form a single LARPBS. 

b. Since the bus has only one bend the bus is divided into two parts with a mirror image 

of the same pivot processor in both the segments as seen in Figure 20. It can be said 

with certainty that one among the two mirror pivots will definitely be in a segment 

where the identity of the head of the segment is known. So the pivot processor that 

knows the identity of the head of the segment and rank of the bus contacts the mirror 

pivot to rank processors in the other segment. It must be noted that all processors 

know the id as well as index (when arranged in terms of groups a, b, c and d) of the 

processor simulating its pivot. Thus multiple one-to-one communications can take 

place in a single step. 
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Figure 20 : Simulation of Processors on Multiple Buses 
 

c. Only one among the two mirror pivot possessors is ranked and it is the 

communicating processor that knows the bus rank is ranked while the other one 

becomes idle after passing on the information. 

d. The adjustment of the ranks is similar to case 1(a). 

7. All disconnected processors, idle processors and head of segments holds flag value of 1 and 

are compressed. 

8. Head of segments hold total number of processors in their segments (PTOTAL), while the 

disconnected processors and  idle processors that do not belong on a bus hold a value of one 

(as they are a single entity within their segments) and a prefix sum (NSLOT-START) is computed 

for each segment. 

9. Form row and column segments again and broadcast the NSLOT-START value. 

10. Each processor computes its new index as NSLOT-START + PRANK. 

11. Each processor then arranges itself according to the new index. 

End 
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4.5.1 Complexity Analysis 
 
The following section describes in detail the complexity analysis of the algorithm discussed in 

this section. The steps discussed below take into account the complexity of every step of the 

algorithm and give a final value based on the summation of these steps.  

The complexity of steps in the simulation algorithm is as follows: 

1. Compression algorithm takes O(1) time [2]. 

2. For processors to compute their temporary ranks along a row or column bus takes O(1) time 

[rank = index of head of segment – index of the processor computing its rank] [2]. 

3. Arranging the processors in row major order as well as column major order to identify 

processors along each row and column segment takes O(1) time [2]. 

4. All communication between processors [this includes communication between two 

processors, multicasting or broadcasting] takes O(1) time [2]. 

5.  All the internal functions that the processors perform for e.g. adjusting their ranks once the 

other processors along the bus, finding number of processors along their segments, etc. takes 

O(1) time [2].  

6. The prefix sum is computed for the head of the segments. For integers with bounded 

magnitude algorithm for prefix sum computation, takes O(log log N) time using N processors 

[12]. 

7. The permutation routing of the processors in LARPBS takes O(1) time [11]. 

This proves that PR-Mesh (T, M x M) ⊆  LARPBS (O(log log N), 4N) 

From the notation above it is to be understood that any class of problems solved by the PR-Mesh 

in O(T) time steps using M x M processors can be solved by an LARPBS in O(log log N) time 

using 4N processors. 
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Lemma 4: Each step of an M x M processor PR-Mesh, in which each processor can be 

connected to multiple buses where the bus can have at most one bend can be simulated by 

an LARPBS  in O(log log N) time using 4N (where N =M x M) processors. 
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4.6 Simulating processors on multiple buses with multiple bends 
 
In this section the more general scenario that many processors can be on multiple buses and the 

buses are likely to have multiple bends is simulated. An example is as shown in Figure 21. 

 

  Figure 21 : Processors on Multiple Buses with Multiple Bends 
 

Figure 21 shows in detail how the processors can exist on multiple buses. For example 

processor P26 is a pivot processor for two separate buses which are shown in different colors. 

Since the preprocessing phase of the simulation already separates out the processors into 

different segments based on the directionality of the simulation the pivots can communicate with 

different processors with in the same bus cycle. From the figure above and the simulation of 

processors on multiple buses as discussed in case 2(a) we can summarize the problem of 

simulating this scenario into two main steps. Namely, the identification and elimination of mirror 

pivots to concatenate the separate bus segments into one and then ranking processors on the bus. 

Since after the identification and elimination of the mirror pivots makes the problem same as 

processors on single bus with multiple bends the rest of the simulation is done as discussed in 

Case 1(c). Hence only the first part of the algorithm is discussed here. 
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4.7 Simulating a PR-Mesh model on an LARPBS – Case 2(b) 
 
This scenario of the simulation is the most probable and realistic scenario to be considered. 

Similar to case 2(a) it is assumed that the processors are on multiple buses which are bent 

multiple times. Again all those clusters have been separated out into individual segments during 

the preprocessing phase. Here again the main problem involves the elimination of duplicate 

processors that are present in multiple segments. In this simulation the elimination process is 

discussed in detail while the rest of the simulation remains the same as in case 1(c).  

Overview:  

This section describes the high level operations needed to be performed for this simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin  
  Perform Bus Ranking 

   Compress heads of a segments and disconnected processors. 

   Compute the prefix sum on these processors 

  Identify Row Segments  

  Arrange processors in row major order 

  Group processors lying on same bus  

  Pivot nodes hold total number of processors in row segment 

   Identify Column Segments  

  Arrange processors in column major order 

  Group processors lying on same bus  

  Pivot nodes hold total number of processors in column segment 

Elimination of Mirror Pivots 

  If pivot node gets bus rank from column segment  

   Preserve and rank pivot in column segment 

   Eliminate pivot in row segment 
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Pseudocode - Case 2(b) 
 
  

If pivot node gets bus rank from row segment  

   Preserve and rank pivot in row segment 

   Eliminate pivot in column segment 

  In segments where bus rank not know 

   Preserve and rank pivot farther in direction of transmissi

 Rank Processors  

  Repeat on pivot nodes until prefix sum is computed 

 { 

   Perform ranking using binary prefix sum algorithm  

    Pivot processor send index to pivot ahead of it 

    Pivot receiving index send prefix sum 

    Pivot receiving index also send next pivot index 

   Pivots newly learning index of head of segment 

    Send their index to head 

   } 

After ranking tail send rank to head (denotes total processors on bus) 
 
Compute Slot start value 

 Compress heads of segments and disconnected processors 

   Compute prefix sum on total number of processors  

  Broadcast slot start value to all pivots on the bus 

  Pivots broadcast slot start to processors in their segment  

  Each processor compute new index 

 Arrange each processor based on new index 

End 
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Model: A 4N processor LARPBS [where N = M x M] after the pre-processing phase has been 

completed. 

Input: An M x M PR-Mesh  

Output: Processors in a bus grouped together in the order in which they lie on PR-Mesh  

Assumptions: For simulating the PR-Mesh on LARPBS the following assumptions are made 

1. Each Processor on PR-Mesh is connected to any or all or none of the four buses. 

2. Each bus can have multiple bends. 

Steps: 

Begin  

1. All processors which are the head of a segment set flag as 1. 

2. Compress all processors holding flag value as 1. 

3. Compute the prefix sum of each of these processors; this denotes the ranks of each processor 

(BRANK).  

4. Forming Bus Sections 

a. Arrange all Pia processors together in the increasing order of i such that they form 

Group-a. Similarly group Pib processors, Pic processors and Pid processors to form 

Group-b, Group-c and Group-d respectively in row major order. In other words, 

Group-a consists of processors with index Pia only where i ranges between 0 and N. 

And all the Nth processors with in the group set their segment switches to form 4 

different sub-arrays which will be named Group-a, Group-b, Group-c and Group-d.  

b. Processors in Group-c and Group-d are then arranged in column major format. Now 

two among the four sub-arrays is in row major order and other two in column major 

order. 
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c. Processors in Group-a simulate bus segments in which the transmission is from west 

to east. Processors in Group-b simulate bus segment in which the transmission is from 

east to west. Processors in Group-c simulate bus segments in which the transmission 

is from north to south and Processors in Group-d simulate bus segments in which the 

transmission is south to north. 

5.  Forming row  and column segments and ranking row/column only bus 

a. All the processors in Group-a and Group-b, whose East-West ports are not 

connected as shown in Figure 5(f) set their segment switches. All processors in 

Group-c and Group-d whose North South ports are not connected as shown in 

Figure 5(b) set their segment switches. 

b. All processors in Group-a and Group-b who segmented in the previous step send 

their index to its left/right neighbor processor .The messages are denoted by the 

arrows below the processors. [Left neighbor is processor sending its index – 1, 

and right neighbor is processor sending its index +1]. All disconnected processors 

also do the same in these two groups. All processors in Group-c and Group-d who 

segmented in the previous step send their index to its left/right neighbor processor. 

[Left neighbor is processor sending its index – M and right neighbor is processor 

sending its index + M]. All disconnected processors also do the same in these two 

groups. 

c. If a processor receives a message, it must set its segment switch. A receiving 

processor now knows that the processor on its left/right had set its segment switch 

since it did not lie on a row bus or a column bus therefore it cannot also lie on the 

row or a column bus that the receiving processor lies on.  
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d. The head and tail segment processors with in each segment of each group, 

exchange their indices and also the head of the segment informs all the processors 

between itself and the tail of the head and the tail processor indices. 

e.  One of the processors on either end of the segment is head of the bus. It sends a 

value of 1 as (HSEG) to the other processor that lies on the other end of the 

segment and also the BRANK.  

f. All processors find their temporary ranks based on the direction of transmission. 

Segments where the head of the bus has been identified this is the final rank of the 

processors.  For other processors the following steps are continued. 

6. Identification and Elimination of Mirror Pivots 

a. All processors straighten their segment switches to form a single LARPBS. 

b. In the case that the bus has multiple bends, the bus with mirror image of the same 

pivot processor is present in two of the bus segments. Hence one among the two 

needs to be eliminated. Elimination here means not ranking one of the processors. 

So the pivot processor that knows the identity of the head of the segment and rank 

of the bus contacts the mirror pivot to rank processors in the other segment. Since 

the direction of the transmission is known the mirror-pivot farther in the direction 

of transmission is always chosen and the other pivot informs the chosen one the 

number of processors in its segment and also the identity of the pivot that it needs 

to communicate in the next steps. For example on the red bus processor P1 will 

have mirror pivots in P1b and P1d and P1d is chosen as its farther in the direction of 

communication 



73 

 

c. After this step all the segments have been joined together and now the simulation 

for the ranking is similar to Case 1(c). Once ranking of the components has been 

completed the rest of the simulation is the same as Case 2(a) for ranking the idle 

and disconnected processors and finally computing the slots to be occupied. 

End 

4.7.1 Complexity Analysis 
 
The following section describes in detail the complexity analysis of the algorithm discussed in 

this section. For this simulation the first few steps are common to the previous sections. The 

elimination of the mirror pivot processors is just a communication step and takes O(1) time [2]. 

The prefix sum is computed for the head of the segments. For integers with bounded magnitude 

algorithm for prefix sum computation, takes O(log log N) time using N processors [12] while the 

ranking of the processors takes O(log b) steps [1] where b denotes the number of bends in the 

bus. The worst case is similar to Case 1(c). Hence the total simulation time takes O(log log N + 

log b) steps. 

This proves that PR-Mesh (T, M x M) ⊆  LARPBS O(log log N + log b), 4N) 

From the notation above it is to be understood that any class of problems solved by the PR-Mesh 

in O(T) time steps using M x M processors can be solved by an LARPBS in O(log log N + log b) 

time using 4N processors. 
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Lemma 5: Each step of an M x M processor PR-Mesh, in which each processor is 

connected to multiple buses where the buses can have multiple bends (b) , can be 

simulated by an 4N (where N = M x M) processor LARPBS in O(log log N +log b)

time or O(log log N +log N2) in worst case. 
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5 CONCLUSION AND FUTURE RESEARCH DIRECTION 
 
From the simulation it is established that a two dimensional M x M PR-Mesh can be simulated 

on an N or 4N (depending on the bus configuration) processor LARPBS (where N = M x M). It 

has to be noted that the PR-Mesh is slightly more powerful model than the LARPBS due to the 

much richer configurations that are possible due to a higher dimension. 

The results are presented below in Table 2 for the different cases that were considered for 

our simulations. The results are tabulated based on different cases that were considered and on 

the assumptions that were made for each of those cases. The table also lists the number of 

processors that were needed for that particular case and the time taken for the simulation. The 

“WC” in the table indicates the worst case scenario where the bus bends (b) multiple times. 

    Table 2 : Results of Simulation 
 

 Assumptions No. of 
Processors 

Time Taken 

I. Processors on a Single Bus 
with Single Bend 

N O(log log N) 

II. Processors on a Single Bus 
with Multiple Bends 

N O(log log N + log b) 
WC: O(log log N + log N2) 

 
III. Processors on  Multiple Bus 

with Single Bend 
4N O(log log N) 

IV. Processors on a Multiple Bus 
with Multiple Bends 

4N O(log log N + log b) 
WC: O(log log N + log N2) 

 
 
 

Instead of just considering one general scenario for the simulation we have considered 

different cases. These scenarios or cases differ based on the varying complexity of bus structures. 

Since the number of processors needed for the simulation differ based on the complexity of the 

bus structure and so does the time taken to perform the simulation, choosing an appropriate case 
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will yield better and efficient simulation performance. Another point worth mentioning at this 

point is that the efficiency of the simulation directly depends on the efficiency of the prefix sum 

computation for integers with bounded magnitude. 

This simulation is first of its kind to establish a relationship between a one dimensional 

optical model and a two dimensional optical model. It is also shown that the move in fact, has 

caused no overhead in the volume of communication. The mapping of processors from the PR-

Mesh to the LARPBS was done successfully by preserving the order in which the processors 

appeared on the two dimensional PR-Mesh. The aim of the simulation was achieved by making 

the processors communicate on a linear bus instead of a two dimensional bus. The complexity in 

reconfigurable architecture is due to two main factors. One is due to the functionalities provided 

by the models and another due to the complexity of the bus structure. In this case the 

functionalities provided by both the models are the same. The complexity of the PR-Mesh is due 

to the latter aspect. In order to handle the bus complexity the number of processors was increased. 

This is due to the fact that each bus is represented as separate sub-arrays in the LARPBS, a 

processor that is a part of multiple buses may have to communicate with processors in different 

sub – arrays with in a single bus cycle.  

Since the PR-Mesh is a two dimensional extension of the LARPBS there was a natural 

correspondence between them that was exploited, but there are many other models which have 

much richer switch and port configurations or due to the functionalities that they provide. Hence 

there should be attempts to study the relationships of these models with respect to the LARPBS 

as well as their one dimensional counterparts (for example the AROB and the LAROB] and so 

on. Similar to the PR-Mesh, the LR-Mesh allows no branching and forms linear buses and hence 

it is possible to simulate the LR-Mesh on the LARPBS.  
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On a different note, it has to be remembered that the PR-Mesh is in fact a k-dimensional   

model as depicted in the Figure 22. Figure 22 represents the structure of a two dimensional PR-

Mesh that was utilized in this simulation and the three dimensional structure that is to be 

considered for the future simulation purposes. This can then lead to future work in expanding the 

simulation to the k – dimensional PR-Mesh model. The simplicity of the two dimensional model 

is that there are only two axes to be considered. But with an increase in the number of 

dimensions the complexity of the bus structure will increase. 

 

       Figure 22 : PR-Mesh (a) Two Dimensional PR-Mesh (b) Three Dimensional PR-Mesh 
 

The simulation that we completed so far on the LARPBS is only for the two dimensional 

version of this model. Hence a much more generalized version of algorithm that is capable of 

simulating for any value of k is to be developed. Some of the areas where some thought needs to 

be put in are the mapping from different dimensions of the PR-Mesh to the LARPBS, the 

placement of ports and how the processors on different dimensions are connected.  Similar to this 
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simulation, the identification of different buses, ranking of the buses, identification, ranking of 

the processors on the different buses needs to be found. But the process of identification of 

different bus segments is complicated by the presence of multiple dimensions. Similarly a 

simulation involving models in which cycles are permissible should be looked into as well. 

From this thesis, we can now easily relate the complexity of the LARPBS to that of the PR-

Mesh. This provides us with a better understanding of the overhead required for simulating the 

PR-Mesh on the LARPBS. The overhead involved in the simulation is mainly due to the increase 

in the number of processors. Thus in simulations involving higher dimensions though a constant 

or a polynomial increase in the number of processors is permissible, it would be a challenge to 

keep the number of processor the same as the simulated model and investigate the time taken. 
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APPENDIX  

Optical Reconfigurable Models 

1. Model of POB [3] 

 

2. Model of one dimensional APPB [6] 

 

 

3. Model of LPB and LARPBS [11] 
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4. Segment Switches on an LARPBS [11] 

 

5. Model of LARPBS with Switch Connections [12] 

 

6. Model of LAROB [1] 
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7. Model of AROB [6] 

 

(a) Two-Dimensional Reconfigurable Network (b) Switch Configurations 

8. Model of PR-Mesh [5] 

 

9. Model of APPBS with Switches [1] [14] 

 

(a) switch connections at each APPBS processor (b) switch configurations at each processor 



85 

 

10. Model of RASOB 

 

(a) RASOB architecture (b) Switch connecting row and column bus 
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