3 research outputs found

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Scalable Simulation of Electromagnetic Hybrid Codes

    Get PDF
    New discrete-event formulations of physics simulation models are emerging that can outperform models based on traditional time-stepped techniques. Detailed simulation of the Earth s magnetosphere, for example, requires execution of sub-models that are at widely differing timescales. In contrast to time-stepped simulation which requires tightly coupled updates to entire system state at regular time intervals, the new discrete event simulation (DES) approaches help evolve the states of sub-models on relatively independent timescales. However, parallel execution of DES-based models raises challenges with respect to their scalability and performance. One of the key challenges is to improve the computation granularity to offset synchronization and communication overheads within and across processors. Our previous work was limited in scalability and runtime performance due to the parallelization challenges. Here we report on optimizations we performed on DES-based plasma simulation models to significantly improve their parallel performance. The mapping of model to simulation processes is optimized via aggregation techniques, and the parallel runtime engine is optimized for communication and memory efficiency. The net result of the enhancements is the capability to simulate hybrid particle-in-cell (PIC) model configurations containing over 2 billion particles using 512 processors on supercomputing platforms
    corecore