6,666 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Streaming Similarity Self-Join

    Full text link
    We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is greater than a given threshold. The simplest formulation of the problem requires unbounded memory, and thus, it is intractable. To make the problem feasible, we introduce the notion of time-dependent similarity: the similarity of two items decreases with the difference in their arrival time. By leveraging the properties of this time-dependent similarity function, we design two algorithmic frameworks to solve the sssj problem. The first one, MiniBatch (MB), uses existing index-based filtering techniques for the static version of the problem, and combines them in a pipeline. The second framework, Streaming (STR), adds time filtering to the existing indexes, and integrates new time-based bounds deeply in the working of the algorithms. We also introduce a new indexing technique (L2), which is based on an existing state-of-the-art indexing technique (L2AP), but is optimized for the streaming case. Extensive experiments show that the STR algorithm, when instantiated with the L2 index, is the most scalable option across a wide array of datasets and parameters

    Network Inference via the Time-Varying Graphical Lasso

    Full text link
    Many important problems can be modeled as a system of interconnected entities, where each entity is recording time-dependent observations or measurements. In order to spot trends, detect anomalies, and interpret the temporal dynamics of such data, it is essential to understand the relationships between the different entities and how these relationships evolve over time. In this paper, we introduce the time-varying graphical lasso (TVGL), a method of inferring time-varying networks from raw time series data. We cast the problem in terms of estimating a sparse time-varying inverse covariance matrix, which reveals a dynamic network of interdependencies between the entities. Since dynamic network inference is a computationally expensive task, we derive a scalable message-passing algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in an efficient way. We also discuss several extensions, including a streaming algorithm to update the model and incorporate new observations in real time. Finally, we evaluate our TVGL algorithm on both real and synthetic datasets, obtaining interpretable results and outperforming state-of-the-art baselines in terms of both accuracy and scalability

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
    • …
    corecore