5 research outputs found

    Scalable Quality Assessment of Linked Data

    Get PDF
    In a world where the information economy is booming, poor data quality can lead to adverse consequences, including social and economical problems such as decrease in revenue. Furthermore, data-driven indus- tries are not just relying on their own (proprietary) data silos, but are also continuously aggregating data from different sources. This aggregation could then be re-distributed back to “data lakes”. However, this data (including Linked Data) is not necessarily checked for its quality prior to its use. Large volumes of data are being exchanged in a standard and interoperable format between organisations and published as Linked Data to facilitate their re-use. Some organisations, such as government institutions, take a step further and open their data. The Linked Open Data Cloud is a witness to this. However, similar to data in data lakes, it is challenging to determine the quality of this heterogeneous data, and subsequently to make this information explicit to data consumers. Despite the availability of a number of tools and frameworks to assess Linked Data quality, the current solutions do not aggregate a holistic approach that enables both the assessment of datasets and also provides consumers with quality results that can then be used to find, compare and rank datasets’ fitness for use. In this thesis we investigate methods to assess the quality of (possibly large) linked datasets with the intent that data consumers can then use the assessment results to find datasets that are fit for use, that is; finding the right dataset for the task at hand. Moreover, the benefits of quality assessment are two-fold: (1) data consumers do not need to blindly rely on subjective measures to choose a dataset, but base their choice on multiple factors such as the intrinsic structure of the dataset, therefore fostering trust and reputation between the publishers and consumers on more objective foundations; and (2) data publishers can be encouraged to improve their datasets so that they can be re-used more. Furthermore, our approach scales for large datasets. In this regard, we also look into improving the efficiency of quality metrics using various approximation techniques. However the trade-off is that consumers will not get the exact quality value, but a very close estimate which anyway provides the required guidance towards fitness for use. The central point of this thesis is not on data quality improvement, nonetheless, we still need to understand what data quality means to the consumers who are searching for potential datasets. This thesis looks into the challenges faced to detect quality problems in linked datasets presenting quality results in a standardised machine-readable and interoperable format for which agents can make sense out of to help human consumers identifying the fitness for use dataset. Our proposed approach is more consumer-centric where it looks into (1) making the assessment of quality as easy as possible, that is, allowing stakeholders, possibly non-experts, to identify and easily define quality metrics and to initiate the assessment; and (2) making results (quality metadata and quality reports) easy for stakeholders to understand, or at least interoperable with other systems to facilitate a possible data quality pipeline. Finally, our framework is used to assess the quality of a number of heterogeneous (large) linked datasets, where each assessment returns a quality metadata graph that can be consumed by agents as Linked Data. In turn, these agents can intelligently interpret a dataset’s quality with regard to multiple dimensions and observations, and thus provide further insight to consumers regarding its fitness for use

    A More Decentralized Vision for Linked Data

    Get PDF
    In this deliberately provocative position paper, we claim that ten years into Linked Data there are still (too?) many unresolved challenges towards arriving at a truly machine-readable and decentralized Web of data. We take a deeper look at the biomedical domain - currently, one of the most promising "adopters" of Linked Data - if we believe the ever-present "LOD cloud" diagram. Herein, we try to highlight and exemplify key technical and non-technical challenges to the success of LOD, and we outline potential solution strategies. We hope that this paper will serve as a discussion basis for a fresh start towards more actionable, truly decentralized Linked Data, and as a call to the community to join forces.Series: Working Papers on Information Systems, Information Business and Operation

    Exploiting Context-Dependent Quality Metadata for Linked Data Source Selection

    Get PDF
    The traditional Web is evolving into the Web of Data which consists of huge collections of structured data over poorly controlled distributed data sources. Live queries are needed to get current information out of this global data space. In live query processing, source selection deserves attention since it allows us to identify the sources which might likely contain the relevant data. The thesis proposes a source selection technique in the context of live query processing on Linked Open Data, which takes into account the context of the request and the quality of data contained in the sources to enhance the relevance (since the context enables a better interpretation of the request) and the quality of the answers (which will be obtained by processing the request on the selected sources). Specifically, the thesis proposes an extension of the QTree indexing structure that had been proposed as a data summary to support source selection based on source content, to take into account quality and contextual information. With reference to a specific case study, the thesis also contributes an approach, relying on the Luzzu framework, to assess the quality of a source with respect to for a given context (according to different quality dimensions). An experimental evaluation of the proposed techniques is also provide

    Social Data Mining for Crime Intelligence

    Get PDF
    With the advancement of the Internet and related technologies, many traditional crimes have made the leap to digital environments. The successes of data mining in a wide variety of disciplines have given birth to crime analysis. Traditional crime analysis is mainly focused on understanding crime patterns, however, it is unsuitable for identifying and monitoring emerging crimes. The true nature of crime remains buried in unstructured content that represents the hidden story behind the data. User feedback leaves valuable traces that can be utilised to measure the quality of various aspects of products or services and can also be used to detect, infer, or predict crimes. Like any application of data mining, the data must be of a high quality standard in order to avoid erroneous conclusions. This thesis presents a methodology and practical experiments towards discovering whether (i) user feedback can be harnessed and processed for crime intelligence, (ii) criminal associations, structures, and roles can be inferred among entities involved in a crime, and (iii) methods and standards can be developed for measuring, predicting, and comparing the quality level of social data instances and samples. It contributes to the theory, design and development of a novel framework for crime intelligence and algorithm for the estimation of social data quality by innovatively adapting the methods of monitoring water contaminants. Several experiments were conducted and the results obtained revealed the significance of this study in mining social data for crime intelligence and in developing social data quality filters and decision support systems

    Scalable Quality Assessment of Linked Data

    No full text
    In a world where the information economy is booming, poor data quality can lead to adverse consequences, including social and economical problems such as decrease in revenue. Furthermore, data-driven indus- tries are not just relying on their own (proprietary) data silos, but are also continuously aggregating data from different sources. This aggregation could then be re-distributed back to “data lakes”. However, this data (including Linked Data) is not necessarily checked for its quality prior to its use. Large volumes of data are being exchanged in a standard and interoperable format between organisations and published as Linked Data to facilitate their re-use. Some organisations, such as government institutions, take a step further and open their data. The Linked Open Data Cloud is a witness to this. However, similar to data in data lakes, it is challenging to determine the quality of this heterogeneous data, and subsequently to make this information explicit to data consumers. Despite the availability of a number of tools and frameworks to assess Linked Data quality, the current solutions do not aggregate a holistic approach that enables both the assessment of datasets and also provides consumers with quality results that can then be used to find, compare and rank datasets’ fitness for use. In this thesis we investigate methods to assess the quality of (possibly large) linked datasets with the intent that data consumers can then use the assessment results to find datasets that are fit for use, that is; finding the right dataset for the task at hand. Moreover, the benefits of quality assessment are two-fold: (1) data consumers do not need to blindly rely on subjective measures to choose a dataset, but base their choice on multiple factors such as the intrinsic structure of the dataset, therefore fostering trust and reputation between the publishers and consumers on more objective foundations; and (2) data publishers can be encouraged to improve their datasets so that they can be re-used more. Furthermore, our approach scales for large datasets. In this regard, we also look into improving the efficiency of quality metrics using various approximation techniques. However the trade-off is that consumers will not get the exact quality value, but a very close estimate which anyway provides the required guidance towards fitness for use. The central point of this thesis is not on data quality improvement, nonetheless, we still need to understand what data quality means to the consumers who are searching for potential datasets. This thesis looks into the challenges faced to detect quality problems in linked datasets presenting quality results in a standardised machine-readable and interoperable format for which agents can make sense out of to help human consumers identifying the fitness for use dataset. Our proposed approach is more consumer-centric where it looks into (1) making the assessment of quality as easy as possible, that is, allowing stakeholders, possibly non-experts, to identify and easily define quality metrics and to initiate the assessment; and (2) making results (quality metadata and quality reports) easy for stakeholders to understand, or at least interoperable with other systems to facilitate a possible data quality pipeline. Finally, our framework is used to assess the quality of a number of heterogeneous (large) linked datasets, where each assessment returns a quality metadata graph that can be consumed by agents as Linked Data. In turn, these agents can intelligently interpret a dataset’s quality with regard to multiple dimensions and observations, and thus provide further insight to consumers regarding its fitness for use
    corecore