1,203 research outputs found

    Robust Camera Location Estimation by Convex Programming

    Full text link
    33D structure recovery from a collection of 22D images requires the estimation of the camera locations and orientations, i.e. the camera motion. For large, irregular collections of images, existing methods for the location estimation part, which can be formulated as the inverse problem of estimating nn locations t1,t2,,tn\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n in R3\mathbb{R}^3 from noisy measurements of a subset of the pairwise directions titjtitj\frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|}, are sensitive to outliers in direction measurements. In this paper, we firstly provide a complete characterization of well-posed instances of the location estimation problem, by presenting its relation to the existing theory of parallel rigidity. For robust estimation of camera locations, we introduce a two-step approach, comprised of a pairwise direction estimation method robust to outliers in point correspondences between image pairs, and a convex program to maintain robustness to outlier directions. In the presence of partially corrupted measurements, we empirically demonstrate that our convex formulation can even recover the locations exactly. Lastly, we demonstrate the utility of our formulations through experiments on Internet photo collections.Comment: 10 pages, 6 figures, 3 table

    Distributed human 3D pose estimation and action recognition.

    Get PDF
    In this paper, we propose a distributed solution for3D human pose estimation using a RGBD camera network. Thekey feature of our method is a dynamic hybrid consensus filter(DHCF) is introduced to fuse the multiple view informationof cameras. In contrast to the centralized fusion solution,the DHCF algorithm can be used in a distributed network,which requires no central information fusion center. Therefore,the DHCF based fusion algorithm can benefit from manyadvantages of distributed network. We also show that theproposed fusion algorithm can handle the occlusion problemseffectively, and achieve higher action recognition rate comparedto the ones using only single view information

    D2-Net: A Trainable CNN for Joint Detection and Description of Local Features

    Full text link
    In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simultaneously a dense feature descriptor and a feature detector. By postponing the detection to a later stage, the obtained keypoints are more stable than their traditional counterparts based on early detection of low-level structures. We show that this model can be trained using pixel correspondences extracted from readily available large-scale SfM reconstructions, without any further annotations. The proposed method obtains state-of-the-art performance on both the difficult Aachen Day-Night localization dataset and the InLoc indoor localization benchmark, as well as competitive performance on other benchmarks for image matching and 3D reconstruction.Comment: Accepted at CVPR 201

    Efficient Many-Light Rendering of Scenes with Participating Media

    Get PDF
    We present several approaches based on virtual lights that aim at capturing the light transport without compromising quality, and while preserving the elegance and efficiency of many-light rendering. By reformulating the integration scheme, we obtain two numerically efficient techniques; one tailored specifically for interactive, high-quality lighting on surfaces, and one for handling scenes with participating media

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI
    corecore