3 research outputs found

    Shaogang Gong

    Get PDF

    Minimising Human Annotation for Scalable Person Re-Identification

    Get PDF
    PhDAmong the diverse tasks performed by an intelligent distributed multi-camera surveillance system, person re-identification (re-id) is one of the most essential. Re-id refers to associating an individual or a group of people across non-overlapping cameras at different times and locations, and forms the foundation of a variety of applications ranging from security and forensic search to quotidian retail and health care. Though attracted rapidly increasing academic interests over the past decade, it still remains a non-trivial and unsolved problem for launching a practical reid system in real-world environments, due to the ambiguous and noisy feature of surveillance data and the potentially dramatic visual appearance changes caused by uncontrolled variations in human poses and divergent viewing conditions across distributed camera views. To mitigate such visual ambiguity and appearance variations, most existing re-id approaches rely on constructing fully supervised machine learning models with extensively labelled training datasets which is unscalable for practical applications in the real-world. Particularly, human annotators must exhaustively search over a vast quantity of offline collected data, manually label cross-view matched images of a large population between every possible camera pair. Nonetheless, having the prohibitively expensive human efforts dissipated, a trained re-id model is often not easily generalisable and transferable, due to the elastic and dynamic operating conditions of a surveillance system. With such motivations, this thesis proposes several scalable re-id approaches with significantly reduced human supervision, readily applied to practical applications. More specifically, this thesis has developed and investigated four new approaches for reducing human labelling effort in real-world re-id as follows: Chapter 3 The first approach is affinity mining from unlabelled data. Different from most existing supervised approaches, this work aims to model the discriminative information for reid without exploiting human annotations, but from the vast amount of unlabelled person image data, thus applicable to both semi-supervised and unsupervised re-id. It is non-trivial since the human annotated identity matching correspondence is often the key to discriminative re-id modelling. In this chapter, an alternative strategy is explored by specifically mining two types of affinity relationships among unlabelled data: (1) inter-view data affinity and (2) intra-view data affinity. In particular, with such affinity information encoded as constraints, a Regularised Kernel Subspace Learning model is developed to explicitly reduce inter-view appearance variations and meanwhile enhance intra-view appearance disparity for more discriminative re-id matching. Consequently, annotation costs can be immensely alleviated and a scalable re-id model is readily to be leveraged to plenty of unlabelled data which is inexpensive to collect. Chapter 4 The second approach is saliency discovery from unlabelled data. This chapter continues to investigate the problem of what can be learned in unlabelled images without identity labels annotated by human. Other than affinity mining as proposed by Chapter 3, a different solution is proposed. That is, to discover localised visual appearance saliency of person appearances. Intuitively, salient and atypical appearances of human are able to uniquely and representatively describe and identify an individual, whilst also often robust to view changes and detection variances. Motivated by this, an unsupervised Generative Topic Saliency model is proposed to jointly perform foreground extraction, saliency detection, as well as discriminative re-id matching. This approach completely avoids the exhaustive annotation effort for model training, and thus better scales to real-world applications. Moreover, its automatically discovered re-id saliency representations are shown to be semantically interpretable, suitable for generating useful visual analysis for deployable user-oriented software tools. Chapter 5 The third approach is incremental learning from actively labelled data. Since learning from unlabelled data alone yields less discriminative matching results, and in some cases there will be limited human labelling resources available for re-id modelling, this chapter thus investigate the problem of how to maximise a model’s discriminative capability with minimised labelling efforts. The challenges are to (1) automatically select the most representative data from a vast number of noisy/ambiguous unlabelled data in order to maximise model discrimination capacity; and (2) incrementally update the model parameters to accelerate machine responses and reduce human waiting time. To that end, this thesis proposes a regression based re-id model, characterised by its very fast and efficient incremental model updates. Furthermore, an effective active data sampling algorithm with three novel joint exploration-exploitation criteria is designed, to make automatic data selection feasible with notably reduced human labelling costs. Such an approach ensures annotations to be spent only on very few data samples which are most critical to model’s generalisation capability, instead of being exhausted by blindly labelling many noisy and redundant training samples. Chapter 6 The last technical area of this thesis is human-in-the-loop learning from relevance feedback. Whilst former chapters mainly investigate techniques to reduce human supervision for model training, this chapter motivates a novel research area to further minimise human efforts spent in the re-id deployment stage. In real-world applications where camera network and potential gallery size increases dramatically, even the state-of-the-art re-id models generate much inferior re-id performances and human involvements at deployment stage is inevitable. To minimise such human efforts and maximise re-id performance, this thesis explores an alternative approach to re-id by formulating a hybrid human-computer learning paradigm with humans in the model matching loop. Specifically, a Human Verification Incremental Learning model is formulated which does not require any pre-labelled training data, therefore scalable to new camera pairs; Moreover, the proposed model learns cumulatively from human feedback to provide an instant improvement to re-id ranking of each probe on-the-fly, thus scalable to large gallery sizes. It has been demonstrated that the proposed re-id model achieves significantly superior re-id results whilst only consumes much less human supervision effort. For facilitating a holistic understanding about this thesis, the main studies are summarised and framed into a graphical abstract as shown in Figur

    Real-world Human Re-identification: Attributes and Beyond.

    Get PDF
    PhDSurveillance systems capable of performing a diverse range of tasks that support human intelligence and analytical efforts are becoming widespread and crucial due to increasing threats upon national infrastructure and evolving business and governmental analytical requirements. Surveillance data can be critical for crime-prevention, forensic analysis, and counter-terrorism activities in both civilian and governmental agencies alike. However, visual surveillance data must currently be parsed by trained human operators and therefore any utility is offset by the inherent training and staffing costs as a result. The automated analysis of surveillance video is therefore of great scientific interest. One of the open problems within this area is that of reliably matching humans between disjoint surveillance camera views, termed re-identification. Automated re-identification facilitates human operational efficiency in the grouping of disparate and fragmented people observations through space and time into individual personal identities, a pre-requisite for higher-level surveillance tasks. However, due to the complex nature of realworld scenes and the highly variable nature of human appearance, reliably re-identifying people is non-trivial. Most re-identification approaches developed so far rely on low-level visual feature matching approaches that aim to match human detections against a known gallery of potential matches. However, for many applications an initial detection of a human may be unavailable or a low-level feature representation may not be sufficiently invariant to photometric or geometric variability inherent between camera views. This thesis begins by proposing a “mid-level” human-semantic representation that exploits expert human knowledge of surveillance task execution to the task of re-identifying people in order to compute an attribute-based description of a human. It further shows how this attribute-based description is synergistic with low-level data-derived features to enhance re-identification accuracy and subsequently gain further performance benefits by employing a discriminatively learned distance metric. Finally, a novel “zero-shot” scenario is proposed in which a visual probe is unavailable but re-identification is still possible via a manually provided semantic attribute description. The approach is extensively evaluated using several public benchmark datasets. One challenge in constructing an attribute-based and human-semantic representation is the requirement for extensive annotation. Mitigating this annotation cost in order to present a realistic and scalable re-identification system, is motivation for the second technical area of this thesis, where transfer-learning and data-mining are investigatedin two different approaches. Discriminative methods trade annotation cost for enhanced performance. Because discriminative person re-identification models operate between two camera views, annotation cost therefore scales quadratically on the number of cameras in the entire network. For practical re-identification, this 4 is an unreasonable expectation and prohibitively expensive. By leveraging flexible multi-source transfer of re-identification models, part of this cost may be alleviated. Specifically, it is possible to leverage prior re-identification models learned for a set of source-view pairs (domains), and flexibly combine those to obtain good re-identification performance for a given target-view pair with greatly reduced annotation requirements. The volume of exhaustive annotation effort required for attribute-driven re-identification scales linearly on the number of cameras and attributes. Real-world operation of an attributeenabled, distributed camera network would also require prohibitive quantities of annotation effort by human experts. This effort is completely avoided by taking a data-driven approach to attribute computation, by learning an effective associated representation by crawling large volumes of Internet data. By training on a larger and more diverse array of examples, this representation is more view-invariant and generalisable than attributes trained on conventional scales. These automatically discovered attributes are shown to provide a valuable representation that significantly improves re-identification performance. Moreover, a method to map them onto existing expert-annotated-ontologies is contributed. In the final contribution of this thesis, the underlying assumptions about visual surveillance equipment and re-identification are challenged and the thesis motivates a novel research area using dynamic, mobile platforms. Such platforms violate the common assumption shared by most previous research, namely that surveillance devices are always stationary, relative to the observed scene. The most important new challenge discovered in this exciting area is that the unconstrained video is too challenging for traditional approaches to applying discriminative methods that rely on the explicit modelling of appearance translations when modelling view-pairs, or even a single view. A new dataset was collected by a remote-operated vehicle using control software developed to simulate a fully-autonomous re-identification unmanned aerial vehicle programmed to fly in proximity with humans until images of sufficient quality for re-identification are obtained. Variations of the standard re-identification model are investigated in an enhanced re-identification paradigm, and new challenges with this distinct form of re-identification are elucidated. Finally, conventional wisdom regarding re-identification in light of these observations is re-examined
    corecore