1,121 research outputs found

    Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets

    Full text link
    Bayesian inference via standard Markov Chain Monte Carlo (MCMC) methods is too computationally intensive to handle large datasets, since the cost per step usually scales like Θ(n)\Theta(n) in the number of data points nn. We propose the Scalable Metropolis-Hastings (SMH) kernel that exploits Gaussian concentration of the posterior to require processing on average only O(1)O(1) or even O(1/n)O(1/\sqrt{n}) data points per step. This scheme is based on a combination of factorized acceptance probabilities, procedures for fast simulation of Bernoulli processes, and control variate ideas. Contrary to many MCMC subsampling schemes such as fixed step-size Stochastic Gradient Langevin Dynamics, our approach is exact insofar as the invariant distribution is the true posterior and not an approximation to it. We characterise the performance of our algorithm theoretically, and give realistic and verifiable conditions under which it is geometrically ergodic. This theory is borne out by empirical results that demonstrate overall performance benefits over standard Metropolis-Hastings and various subsampling algorithms

    Patterns of Scalable Bayesian Inference

    Full text link
    Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward

    Subsampling MCMC - An introduction for the survey statistician

    Full text link
    The rapid development of computing power and efficient Markov Chain Monte Carlo (MCMC) simulation algorithms have revolutionized Bayesian statistics, making it a highly practical inference method in applied work. However, MCMC algorithms tend to be computationally demanding, and are particularly slow for large datasets. Data subsampling has recently been suggested as a way to make MCMC methods scalable on massively large data, utilizing efficient sampling schemes and estimators from the survey sampling literature. These developments tend to be unknown by many survey statisticians who traditionally work with non-Bayesian methods, and rarely use MCMC. Our article explains the idea of data subsampling in MCMC by reviewing one strand of work, Subsampling MCMC, a so called pseudo-marginal MCMC approach to speeding up MCMC through data subsampling. The review is written for a survey statistician without previous knowledge of MCMC methods since our aim is to motivate survey sampling experts to contribute to the growing Subsampling MCMC literature.Comment: Accepted for publication in Sankhya A. Previous uploaded version contained a bug in generating the figures and reference

    Accelerated Parallel Non-conjugate Sampling for Bayesian Non-parametric Models

    Full text link
    Inference of latent feature models in the Bayesian nonparametric setting is generally difficult, especially in high dimensional settings, because it usually requires proposing features from some prior distribution. In special cases, where the integration is tractable, we could sample new feature assignments according to a predictive likelihood. However, this still may not be efficient in high dimensions. We present a novel method to accelerate the mixing of latent variable model inference by proposing feature locations from the data, as opposed to the prior. First, we introduce our accelerated feature proposal mechanism that we will show is a valid Bayesian inference algorithm and next we propose an approximate inference strategy to perform accelerated inference in parallel. This sampling method is efficient for proper mixing of the Markov chain Monte Carlo sampler, computationally attractive, and is theoretically guaranteed to converge to the posterior distribution as its limiting distribution.Comment: Previously known as "Accelerated Inference for Latent Variable Models

    Variational Hamiltonian Monte Carlo via Score Matching

    Full text link
    Traditionally, the field of computational Bayesian statistics has been divided into two main subfields: variational methods and Markov chain Monte Carlo (MCMC). In recent years, however, several methods have been proposed based on combining variational Bayesian inference and MCMC simulation in order to improve their overall accuracy and computational efficiency. This marriage of fast evaluation and flexible approximation provides a promising means of designing scalable Bayesian inference methods. In this paper, we explore the possibility of incorporating variational approximation into a state-of-the-art MCMC method, Hamiltonian Monte Carlo (HMC), to reduce the required gradient computation in the simulation of Hamiltonian flow, which is the bottleneck for many applications of HMC in big data problems. To this end, we use a {\it free-form} approximation induced by a fast and flexible surrogate function based on single-hidden layer feedforward neural networks. The surrogate provides sufficiently accurate approximation while allowing for fast exploration of parameter space, resulting in an efficient approximate inference algorithm. We demonstrate the advantages of our method on both synthetic and real data problems
    • …
    corecore