232 research outputs found

    Exploring Scientific Application Performance Using Large Scale Object Storage

    Full text link
    One of the major performance and scalability bottlenecks in large scientific applications is parallel reading and writing to supercomputer I/O systems. The usage of parallel file systems and consistency requirements of POSIX, that all the traditional HPC parallel I/O interfaces adhere to, pose limitations to the scalability of scientific applications. Object storage is a widely used storage technology in cloud computing and is more frequently proposed for HPC workload to address and improve the current scalability and performance of I/O in scientific applications. While object storage is a promising technology, it is still unclear how scientific applications will use object storage and what the main performance benefits will be. This work addresses these questions, by emulating an object storage used by a traditional scientific application and evaluating potential performance benefits. We show that scientific applications can benefit from the usage of object storage on large scales.Comment: Preprint submitted to WOPSSS workshop at ISC 201

    Evaluation of Storage Systems for Big Data Analytics

    Get PDF
    abstract: Recent trends in big data storage systems show a shift from disk centric models to memory centric models. The primary challenges faced by these systems are speed, scalability, and fault tolerance. It is interesting to investigate the performance of these two models with respect to some big data applications. This thesis studies the performance of Ceph (a disk centric model) and Alluxio (a memory centric model) and evaluates whether a hybrid model provides any performance benefits with respect to big data applications. To this end, an application TechTalk is created that uses Ceph to store data and Alluxio to perform data analytics. The functionalities of the application include offline lecture storage, live recording of classes, content analysis and reference generation. The knowledge base of videos is constructed by analyzing the offline data using machine learning techniques. This training dataset provides knowledge to construct the index of an online stream. The indexed metadata enables the students to search, view and access the relevant content. The performance of the application is benchmarked in different use cases to demonstrate the benefits of the hybrid model.Dissertation/ThesisMasters Thesis Computer Science 201

    Optimizations for Energy-Aware, High-Performance and Reliable Distributed Storage Systems

    Get PDF
    With the decreasing cost and wide-spread use of commodity hard drives, it has become possible to create very large-scale storage systems with less expense. However, as we approach exabyte-scale storage systems, maintaining important features such as energy-efficiency, performance, reliability and usability became increasingly difficult. Despite the decreasing cost of storage systems, the energy consumption of these systems still needs to be addressed in order to retain cost-effectiveness. Any improvements in a storage system can be outweighed by high energy costs. On the other hand, large-scale storage systems can benefit more from the object storage features for improved performance and usability. One area of concern is metadata performance bottleneck of applications reading large directories or creating a large number of files. Similarly, computation on big data where data needs to be transferred between compute and storage clusters adversely affects I/O performance. As the storage systems become more complex and larger, transferring data between remote compute and storage tiers becomes impractical. Furthermore, storage systems implement reliability typically at the file system or client level. This approach might not always be practical in terms of performance. Lastly, object storage features are usually tailored to specific use cases that makes it harder to use them in various contexts. In this thesis, we are presenting several approaches to enhance energy-efficiency, performance, reliability and usability of large-scale storage systems. To begin with, we improve the energy-efficiency of storage systems by moving I/O load to a subset of the storage nodes with energy-aware node allocation methods and turn off the unused nodes, while preserving load balance on demand. To address the metadata performance issue associated with large creates and directory reads, we represent directories with object storage collections and implement lazy creation of objects. Similarly, in-situ computation on large-scale data is enabled by using object storage features to integrate a computational framework with the existing object storage layer to eliminate the need to transfer data between compute and storage silos for better performance. We then present parity-based redundancy using object storage features to achieve reliability with less performance impact. Finally, unified storage brings together the object storage features to meet the needs of distinct use cases; such as cloud storage, big data or high-performance computing to alleviate the unnecessary fragmentation of storage resources. We evaluate each proposed approach thoroughly and validate their effectiveness in terms of improving energy-efficiency, performance, reliability and usability of a large-scale storage system

    Security features using a distributed file system

    Get PDF
    Tese de mestrado em Segurnaça Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011Informação sensível como por exemplo dados provenientes the firewalls ou sistemas de detecção de intrusões, é preciso que seja armazenada durante longos períodos de tempo por razões legais ou para fins de análise forense. Com o crescimento das fontes geradores deste tipo de dados dentro de uma empresa, torna-se imperioso encontrar uma solução que cumpra os requisitos de escalabilidade, segurança, disponibilidade, performance e baixa manutenção com custos controlados. Na sequência desta necessidade, este projecto visa fazer uma análise sobre vários sistemas de ficheiros distribuídos por forma a encontrar uma solução que responda aos requisitos de performance e segurança de uma aplicação interna da Portugal Telecom. Para validar a solução, o projecto inclui a concepção de um protótipo que pretende simular as condições de execução dessa aplicação.Sensitive information such as firewall logs or data from intrusion detection systems, has to be stored for long periods of time for legal reasons or for later forensic analysis. With the growth of the sources generating this type of data within a company, it is imperative to find a solution that meets the requirements of scalability, security, availability, performance and low maintenance while keeping the costs under control. Following this need, this project aims to make an analysis of several distributed file systems in order to find a solution that meets both the performance and security requirements of an internal application of Portugal Telecom. To validate the solution, the project includes the design of a prototype that aims to simulate the execution environment of that application
    corecore