2 research outputs found

    High-Voltage Integrated Circuits design and validation for automotive applications

    Get PDF
    Electronic Integrated Circuits (ICs) are an important pillar of the automotive market, especially since legal and safety requirements have been introduced to manage vehicles emissions and behaviors. Furthermore, the harsh environment and the tight safety requirements, summed with the market that is pushing to reduce the development lead time and to increase the system complexity, require to develop dedicated ICs for the automotive applications. This thesis presents some peculiar high-power and high-voltage ICs for automotive applications that have been studied, designed and developed taking into account all the requirements that automotive grade ICs have to respect, with emphasis on performance, quality and safety aspects. Particularly the thesis reports the design and validation of power management blocks and output drivers for inductive loads, showing how to fulfill in an effective way the performance, quality and safety targets according to the guidelines and the constraints of the latest automotive standards, like ISO26262 and AEC-Q100. All the designed ICs has been simulated and manufactured, including layout drawings, in a 0.35um HV-CMOS technology from AMS. The effectiveness and robustness of the proposed circuits has been validated on silicon and corresponded measurement results has been reported

    Design and implementation of miniaturised capsule for autofluorescence detection with possible application to the bowel disease

    Get PDF
    Early signs of intestinal cancer may be detected through variations in tissue autofluorescence (AF), however current endoscope-based AF systems are unable to inspect the small intestine. This thesis describes the design, fabrication, implantation, testing and packaging of a wireless pill capable of detecting the autofluorescence from cancerous cells, and able to reach parts of the gastrointestinal tract that are inaccessible to endoscopes. The pill exploits the fact that there is a significant difference in the intensity of autofluorescence emitted by normal and cancerous tissues when excited by a blue or ultra violet light source. The intensity differences are detected using very sensitive light detectors. The pill has been developed in two stages. The first stage starts with using an off-chip multi-pixel photon counter (MPPC) device as a light detector. In the second stage, the light detector is integrated into an application specific integrated circuit (ASIC). The pill comprises of an ASIC, optical filters, an information processing unit and a radio transmission unit, to transmit acquired data to an external base station. Two ASICs have been fabricated, the first stage of this work involved implementing an ASIC that contains two main blocks; the first block is capable of providing a variable DC voltage more than 72 V from a 3 V input to bias the MPPC device. The second main block is a front-end consisting of a high speed transimpedance amplifier (TIA) and voltage amplifiers to capture the very small current pulses produced by the MPPC. The second ASIC contains a high voltage charge pump up to (37.9 V) integrated with a single photon avalanche detector (SPAD). The charge pump is used to bias the SPAD above its breakdown voltage and therefore operate the device in Geiger mode. The SPAD was designed to operate in the visible region where its photon detection efficiency (PDE) peaks at 465 nm, which is near to human tissues autofluorescence peaking region (520±10 nm). The use of the ultra low light detector to detect the autofluorescence permits a lower excitation light intensity and therefore lower overall power consumption. The two ASICs were fabricated using a commercial triple-well high-voltage CMOS process. The complete device operates at 3V and draws an average of 7.1mA, enabling up to 23 hours of continuous operation from two 165mAh SR44 batteries
    corecore