35 research outputs found

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019

    Adversarial Directed Graph Embedding

    Full text link
    Node representation learning for directed graphs is critically important to facilitate many graph mining tasks. To capture the directed edges between nodes, existing methods mostly learn two embedding vectors for each node, source vector and target vector. However, these methods learn the source and target vectors separately. For the node with very low indegree or outdegree, the corresponding target vector or source vector cannot be effectively learned. In this paper, we propose a novel Directed Graph embedding framework based on Generative Adversarial Network, called DGGAN. The main idea is to use adversarial mechanisms to deploy a discriminator and two generators that jointly learn each node's source and target vectors. For a given node, the two generators are trained to generate its fake target and source neighbor nodes from the same underlying distribution, and the discriminator aims to distinguish whether a neighbor node is real or fake. The two generators are formulated into a unified framework and could mutually reinforce each other to learn more robust source and target vectors. Extensive experiments show that DGGAN consistently and significantly outperforms existing state-of-the-art methods across multiple graph mining tasks on directed graphs.Comment: 8 pages, 5 figure

    Embedding Directed Graphs in Potential Fields Using FastMap-D

    Full text link
    Embedding undirected graphs in a Euclidean space has many computational benefits. FastMap is an efficient embedding algorithm that facilitates a geometric interpretation of problems posed on undirected graphs. However, Euclidean distances are inherently symmetric and, thus, Euclidean embeddings cannot be used for directed graphs. In this paper, we present FastMap-D, an efficient generalization of FastMap to directed graphs. FastMap-D embeds vertices using a potential field to capture the asymmetry between the pairwise distances in directed graphs. FastMap-D learns a potential function to define the potential field using a machine learning module. In experiments on various kinds of directed graphs, we demonstrate the advantage of FastMap-D over other approaches.Comment: 9 pages, Published in Symposium on Combinatorial Search(SoCS-2020). Erratum with updated Result
    corecore