18,695 research outputs found

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer

    Salience and Market-aware Skill Extraction for Job Targeting

    Full text link
    At LinkedIn, we want to create economic opportunity for everyone in the global workforce. To make this happen, LinkedIn offers a reactive Job Search system, and a proactive Jobs You May Be Interested In (JYMBII) system to match the best candidates with their dream jobs. One of the most challenging tasks for developing these systems is to properly extract important skill entities from job postings and then target members with matched attributes. In this work, we show that the commonly used text-based \emph{salience and market-agnostic} skill extraction approach is sub-optimal because it only considers skill mention and ignores the salient level of a skill and its market dynamics, i.e., the market supply and demand influence on the importance of skills. To address the above drawbacks, we present \model, our deployed \emph{salience and market-aware} skill extraction system. The proposed \model ~shows promising results in improving the online performance of job recommendation (JYMBII) (+1.92%+1.92\% job apply) and skill suggestions for job posters (−37%-37\% suggestion rejection rate). Lastly, we present case studies to show interesting insights that contrast traditional skill recognition method and the proposed \model~from occupation, industry, country, and individual skill levels. Based on the above promising results, we deployed the \model ~online to extract job targeting skills for all 2020M job postings served at LinkedIn.Comment: 9 pages, to appear in KDD202

    Diverse Weighted Bipartite b-Matching

    Full text link
    Bipartite matching, where agents on one side of a market are matched to agents or items on the other, is a classical problem in computer science and economics, with widespread application in healthcare, education, advertising, and general resource allocation. A practitioner's goal is typically to maximize a matching market's economic efficiency, possibly subject to some fairness requirements that promote equal access to resources. A natural balancing act exists between fairness and efficiency in matching markets, and has been the subject of much research. In this paper, we study a complementary goal---balancing diversity and efficiency---in a generalization of bipartite matching where agents on one side of the market can be matched to sets of agents on the other. Adapting a classical definition of the diversity of a set, we propose a quadratic programming-based approach to solving a supermodular minimization problem that balances diversity and total weight of the solution. We also provide a scalable greedy algorithm with theoretical performance bounds. We then define the price of diversity, a measure of the efficiency loss due to enforcing diversity, and give a worst-case theoretical bound. Finally, we demonstrate the efficacy of our methods on three real-world datasets, and show that the price of diversity is not bad in practice

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers
    • …
    corecore