565 research outputs found

    On the conditions for efficient interoperability with threads: An experience with PGAS languages using Cray communication domains

    Get PDF
    Today's high performance systems are typically built from shared memory nodes connected by a high speed network. That architecture, combined with the trend towards less memory per core, encourages programmers to use a mixture of message passing and multithreaded programming. Unfortunately, the advantages of using threads for in-node programming are hindered by their inability to efficiently communicate between nodes. In this work, we identify some of the performance problems that arise in such hybrid programming environments and characterize conditions needed to achieve high communication performance for multiple threads: addressability of targets, separability of communication paths, and full direct reachability to targets. Using the GASNet communication layer on the Cray XC30 as our experimental platform, we show how to satisfy these conditions. We also discuss how satisfying these conditions is influenced by the communication abstraction, implementation constraints, and the interconnect messaging capabilities. To evaluate these ideas, we compare the communication performance of a thread-based node runtime to a process-based runtime. Without our GASNet extensions, thread communication is significantly slower than processes - up to 21x slower. Once the implementation is modified to address each of our conditions, the two runtimes have comparable communication performance. This allows programmers to more easily mix models like OpenMP, CILK, or pthreads with a GASNet-based model like UPC, with the associated performance, convenience and interoperability advantages that come from using threads within a node. © 2014 ACM

    Distributed-Memory Breadth-First Search on Massive Graphs

    Full text link
    This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.Comment: arXiv admin note: text overlap with arXiv:1104.451

    Exascale machines require new programming paradigms and runtimes

    Get PDF
    Extreme scale parallel computing systems will have tens of thousands of optionally accelerator-equiped nodes with hundreds of cores each, as well as deep memory hierarchies and complex interconnect topologies. Such Exascale systems will provide hardware parallelism at multiple levels and will be energy constrained. Their extreme scale and the rapidly deteriorating reliablity of their hardware components means that Exascale systems will exhibit low mean-time-between-failure values. Furthermore, existing programming models already require heroic programming and optimisation efforts to achieve high efficiency on current supercomputers. Invariably, these efforts are platform-specific and non-portable. In this paper we will explore the shortcomings of existing programming models and runtime systems for large scale computing systems. We then propose and discuss important features of programming paradigms and runtime system to deal with large scale computing systems with a special focus on data-intensive applications and resilience. Finally, we also discuss code sustainability issues and propose several software metrics that are of paramount importance for code development for large scale computing systems

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie

    FastMPJ: a scalable and efficient Java message-passing library

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Cluster Computing. The final authenticated version is available online at: http://dx.doi.org/https://doi.org/10.1007/s10586-014-0345-4[Abstract] The performance and scalability of communications are key for high performance computing (HPC) applications in the current multi-core era. Despite the significant benefits (e.g., productivity, portability, multithreading) of Java for parallel programming, its poor communications support has hindered its adoption in the HPC community. This paper presents FastMPJ, an efficient message-passing in Java (MPJ) library, boosting Java for HPC by: (1) providing high-performance shared memory communications using Java threads; (2) taking full advantage of high-speed cluster networks (e.g., InfiniBand) to provide low-latency and high bandwidth communications; (3) including a scalable collective library with topology aware primitives, automatically selected at runtime; (4) avoiding Java data buffering overheads through zero-copy protocols; and (5) implementing the most widely extended MPI-like Java bindings for a highly productive development. The comprehensive performance evaluation on representative testbeds (InfiniBand, 10 Gigabit Ethernet, Myrinet, and shared memory systems) has shown that FastMPJ communication primitives rival native MPI implementations, significantly improving the efficiency and scalability of Java HPC parallel applications.Ministerio de Educación y Ciencia; AP2010-4348Ministerio de Economía y Competitividad; TIN2010-16735Xunta de Galicia; CN2012/211Xunta de Galicia; GRC2013/05

    Synapse: Synthetic Application Profiler and Emulator

    Full text link
    We introduce Synapse motivated by the needs to estimate and emulate workload execution characteristics on high-performance and distributed heterogeneous resources. Synapse has a platform independent application profiler, and the ability to emulate profiled workloads on a variety of heterogeneous resources. Synapse is used as a proxy application (or "representative application") for real workloads, with the added advantage that it can be tuned at arbitrary levels of granularity in ways that are simply not possible using real applications. Experiments show that automated profiling using Synapse represents application characteristics with high fidelity. Emulation using Synapse can reproduce the application behavior in the original runtime environment, as well as reproducing properties when used in a different run-time environments

    Quantifying the Performance Benefits of Partitioned Communication in MPI

    Full text link
    Partitioned communication was introduced in MPI 4.0 as a user-friendly interface to support pipelined communication patterns, particularly common in the context of MPI+threads. It provides the user with the ability to divide a global buffer into smaller independent chunks, called partitions, which can then be communicated independently. In this work we first model the performance gain that can be expected when using partitioned communication. Next, we describe the improvements we made to \mpich{} to enable those gains and provide a high-quality implementation of MPI partitioned communication. We then evaluate partitioned communication in various common use cases and assess the performance in comparison with other MPI point-to-point and one-sided approaches. Specifically, we first investigate two scenarios commonly encountered for small partition sizes in a multithreaded environment: thread contention and overhead of using many partitions. We propose two solutions to alleviate the measured penalty and demonstrate their use. We then focus on large messages and the gain obtained when exploiting the delay resulting from computations or load imbalance. We conclude with our perspectives on the benefits of partitioned communication and the various results obtained
    corecore