4 research outputs found

    Enabling sustainable power distribution networks by using smart grid communications

    Get PDF
    Smart grid modernization enables integration of computing, information and communications capabilities into the legacy electric power grid system, especially the low voltage distribution networks where various consumers are located. The evolutionary paradigm has initiated worldwide deployment of an enormous number of smart meters as well as renewable energy sources at end-user levels. The future distribution networks as part of advanced metering infrastructure (AMI) will involve decentralized power control operations under associated smart grid communications networks. This dissertation addresses three potential problems anticipated in the future distribution networks of smart grid: 1) local power congestion due to power surpluses produced by PV solar units in a neighborhood that demands disconnection/reconnection mechanisms to alleviate power overflow, 2) power balance associated with renewable energy utilization as well as data traffic across a multi-layered distribution network that requires decentralized designs to facilitate power control as well as communications, and 3) a breach of data integrity attributed to a typical false data injection attack in a smart metering network that calls for a hybrid intrusion detection system to detect anomalous/malicious activities. In the first problem, a model for the disconnection process via smart metering communications between smart meters and the utility control center is proposed. By modeling the power surplus congestion issue as a knapsack problem, greedy solutions for solving such problem are proposed. Simulation results and analysis show that computation time and data traffic under a disconnection stage in the network can be reduced. In the second problem, autonomous distribution networks are designed that take scalability into account by dividing the legacy distribution network into a set of subnetworks. A power-control method is proposed to tackle the power flow and power balance issues. Meanwhile, an overlay multi-tier communications infrastructure for the underlying power network is proposed to analyze the traffic of data information and control messages required for the associated power flow operations. Simulation results and analysis show that utilization of renewable energy production can be improved, and at the same time data traffic reduction under decentralized operations can be achieved as compared to legacy centralized management. In the third problem, an attack model is proposed that aims to minimize the number of compromised meters subject to the equality of an aggregated power load in order to bypass detection under the conventionally radial tree-like distribution network. A hybrid anomaly detection framework is developed, which incorporates the proposed grid sensor placement algorithm with the observability attribute. Simulation results and analysis show that the network observability as well as detection accuracy can be improved by utilizing grid-placed sensors. Conclusively, a number of future works have also been identified to furthering the associated problems and proposed solutions

    Estabelecimento de redes de comunidades sobreponíveis

    Get PDF
    Doutoramento em Engenharia InformáticaUma das áreas de investigação em Telecomunicações de interesse crescente prende-se com os futuros sistemas de comunicações móveis de 4a geração e além destes. Nos últimos anos tem sido desenvolvido o conceito de redes comunitárias, no qual os utilizadores se agregam de acordo com interesses comuns. Estes conceitos têm sido explorados de uma forma horizontal em diferentes camadas da comunicação, desde as redes comunitárias de comunicação (Seattle Wireless ou Personal Telco, p.ex.) até às redes de interesses peer-to-peer. No entanto, estas redes são usualmente vistas como redes de overlay, ou simplesmente redes de associação livre. Na prática, a noção de uma rede auto-organizada, completamente orientada ao serviço/comunidade, integralmente suportada em termos de arquitetura, não existe. Assim este trabalho apresenta uma realização original nesta área de criação de redes comunitárias, com uma arquitetura subjacente orientada a serviço, e que suporta integralmente múltiplas redes comunitárias no mesmo dispositivo, com todas as características de segurança, confiança e disponibilização de serviço necessárias neste tipo de cenários (um nó pode pertencer simultaneamente a mais do que uma rede comunitária). Devido à sua importância para os sistemas de redes comunitárias, foi dado particular atenção a aspetos de gestão de recursos e controlo de acessos. Ambos realizados de uma forma descentralizada e considerando mecanismos dotados de grande escalabilidade. Para isso, é apresentada uma linguagem de políticas que suporta a criação de comunidades virtuais. Esta linguagem não é apenas utilizada para o mapeamento da estrutura social dos membros da comunidade, como para, gerir dispositivos, recursos e serviços detidos pelos membros, de uma forma controlada e distribuída.One of the research areas with increasing interest in the field of telecommunications, are the ones related to future telecommunication systems, both 4th generation and beyond. In parallel, during the last years, several concepts have been developed related to clustering of users according to their interested, in the form of community networks. Solutions proposed for these concepts tackle the challenges horizontally, for each layer of the communication stack, ranging from community based communication networks (e.g. Seattle Wireless, or Personal Telco), to interest networks based on peer-to-peer protocols. However, these networks are presented either as free joining, or overlay networks. In practice, the notion of a self-organized, service and community oriented network, with these principles embedded in its design principles, is yet to be developed. This work presents an novel instantiation of a solution in the area of community networks, with a underlying architecture which is fully service oriented, and envisions the support for multiple community networks in the same device. Considerations regarding security, trust and service availability for this type of environments are also taken. Due to the importance of resource management and access control, in the context of community driven communication networks, a special focus was given to the support of scalable and decentralized management and access control methods. For this purpose, it is presented a policy language which supports the creation and management of virtual communities. The language is not only used for mapping the social structure of the community members, but also to, following a distributed approach, manage devices, resources and services owned by each community member

    Voice and rural wireless mesh community networks: a framework to quantify scalability and manage end-user smartphone battery consumption

    Get PDF
    Philosophiae Doctor - PhDCommunity wireless mesh initiatives are a pioneering option to cheap ‘last-mile’ access to network services for rural low-income regions primarily located in Sub-Saharan Africa and Developing Asia. However, researchers have criticized wireless mesh networks for their poor scalability; and scalability quantification research has mostly consisted of modularization of per-node throughput capacity behaviour. A scalability quantification model to design wireless mesh networks to provide adequate quality of service is lacking. However, scalability quantification of community mesh networks alone is inadequate because rural users need affordable devices for access; and they need to know how best to use them. Low-cost low-end smartphones offer handset affordability solutions but require smart management of their small capacity battery. Related work supports the usage of Wi-Fi for communication because it is shown to consume less battery than 2G, 3G or Bluetooth. However, a model to compare Wi-Fi battery consumption amongst different low-end smartphones is missing, as is a comparison of different over-the-top communication applications

    Scalability and performance evaluation of hierarchical hybrid wireless networks

    No full text
    Abstract—This paper considers the problem of scaling ad hoc wireless networks now being applied to urban mesh and sensor network scenarios. Previous results have shown that the inherent scaling problems of a multihop “flat ” ad hoc wireless network can be improved by a “hybrid network ” with an appropriate proportion of radio nodes with wired network connections. In this work, we generalize the system model to a hierarchical hybrid wireless network with three tiers of radio nodes: low-power end-user mobile nodes (MNs) at the lowest tier, higher power radio forwarding nodes (FNs) that support multihop routing at intermediate level, and wired access points (APs) at the highest level. Scalability properties of the proposed three-tier hierarchical hybrid wireless network are analyzed, leading to an identification of the proportion of FNs and APs as well as transmission range required for linear increase in end-user throughput. In particular, it is shown analytically that in a three-tier hierarchical network with APs, FNs, and MNs, the low-tier capacity increases linearly with, and the high-tier capacity increases linearly with when = ( ) and =O (). This analytical result is validated via ns-2 simulations for an example dense network scenario, and the model is used to study scaling behavior and performance as a function of key parameters such as AP and FN node densities for different traffic patterns and bandwidth allocation at each tier of the network. Index Terms—Ad hoc network, hierarchical wireless network, hybrid network, mesh network, multihop routing, performance analysis, scalability, sensor network, simulation models
    corecore