23 research outputs found

    Scalability Analysis of a LoRa Network under Imperfect Orthogonality

    Full text link
    Low-power wide-area network (LPWAN) technologies are gaining momentum for internet-of-things (IoT) applications since they promise wide coverage to a massive number of battery-operated devices using grant-free medium access. LoRaWAN, with its physical (PHY) layer design and regulatory efforts, has emerged as the widely adopted LPWAN solution. By using chirp spread spectrum modulation with qausi-orthogonal spreading factors (SFs), LoRa PHY offers coverage to wide-area applications while supporting high-density of devices. However, thus far its scalability performance has been inadequately modeled and the effect of interference resulting from the imperfect orthogonality of the SFs has not been considered. In this paper, we present an analytical model of a single-cell LoRa system that accounts for the impact of interference among transmissions over the same SF (co-SF) as well as different SFs (inter-SF). By modeling the interference field as Poisson point process under duty-cycled ALOHA, we derive the signal-to-interference ratio (SIR) distributions for several interference conditions. Results show that, for a duty cycle as low as 0.33%, the network performance under co-SF interference alone is considerably optimistic as the inclusion of inter-SF interference unveils a further drop in the success probability and the coverage probability of approximately 10% and 15%, respectively for 1500 devices in a LoRa channel. Finally, we illustrate how our analysis can characterize the critical device density with respect to cell size for a given reliability target

    Analysis of LoRaWAN Uplink with Multiple Demodulating Paths and Capture Effect

    Full text link
    Low power wide area networks (LPWANs), such as the ones based on the LoRaWAN protocol, are seen as enablers of large number of IoT applications and services. In this work, we assess the scalability of LoRaWAN by analyzing the frame success probability (FSP) of a LoRa frame while taking into account the capture effect and the number of parallel demodulation paths of the receiving gateway. We have based our model on the commonly used {SX1301 gateway chipset}, which is capable of demodulating {up to} eight frames simultaneously; however, the results of the model can be generalized to architectures with arbitrary number of demodulation paths. We have also introduced and investigated {three} policies for Spreading Factor (SF) allocation. Each policy is evaluated in terms of coverage {probability}, {FSP}, and {throughput}. The overall conclusion is that the presence of multiple demodulation paths introduces a significant change in the analysis and performance of the LoRa random access schemes

    Extending the Lora modulation to add further parallel channels and improve the LoRaWAN network performance

    Full text link
    In this paper we present a new modulation, called DLoRa, similar in principle to the conventional LoRa modulation and compatible with it in terms of bandwidth and numerology. DLoRa departs from the conventional LoRa modulation as it is using a decreasing instantaneous frequency in the chirps instead of an increasing one as for the conventional LoRa modulation. Furthermore we describe a software environment to accurately evaluate the "isolation" of the different virtual channels created both by LoRa and DLoRa when using different Spreading Factors. Our results are in agreement with the ones present in literature for the conventional LoRa modulation and show that it is possible to double the number of channels by using simultaneously LoRa and DLora. The higher (double) number of subchannels available is the key to improve the network level performance of LoRa based networks.Comment: This work has been submitted on Feb.1 2020 to European Wireless 2020 conference for possible presentation and subsequent publication by the IEE

    LoRa ๋„คํŠธ์›Œํฌ์—์„œ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ์œ„ํ•œ ๋…ธ๋“œ ๊ธฐ๋ฐ˜ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ข…๊ถŒ.Recently, as Internet of Things (IoT) systems have increased and Wireless Sensor Network (WSN) has been expanding, studies related to them are increasing. Among them, the interest in long range communication technologies has increased. In this regard, Low Power Wide Area (LPWA) network technologies such as Long Range (LoRa), Weightless, and Sigfox have emerged. Also, various studies related to LoRa and LoRaWAN, which are available in Industrial Scientific and Medical (ISM) bands, are being conducted. In LoRa networks, the nodes are connected to the gateway by one hop to form a start topology. LoRa nodes use the transmission parameters such as Spreading Factor (SF), Transmission Power (TP), Bandwidth (BW), Coding Rate (CR), and Carrier Frequency (CF) to transmit frames. In this process, the frame losses and the collisions between frames may occur because of the channel condition and transmission timing. To alleviate this problem, LoRaWAN utilizes the ADR mechanism to select appropriate transmission parameters considering the channel condition on the node side. In addition, there is the ADR mechanism for allocating the transmission parameters on the server side. The ADR mechanisms maintain the connection between the server and the nodes, and set appropriate transmission parameters. However, these existing ADR mechanisms have some limitations. First, the server side ADR mechanism increases the overhead of the server in proportion to the transmitted frames. Second, it is difficult to quickly and efficiently respond to dynamic channel. Third, the transmission parameters selected by these ADR mechanisms may not be the optimal transmission parameters for energy efficiency. These problems cause large energy consumption of the battery-powered nodes and decrease performance when the channel condition changes dynamically. In this paper, we propose a Node-based ADR Mechanism (NbADR), which is the ADR mechanism for Class A nodes in confirmed mode to minimize the server load and maximize energy efficiency. The proposed mechanism responds quickly to the channel condition based on the downlink pattern and selects the transmission parameters for efficient energy consumption by utilizing Efficiency of Energy (EoE) metric. We analyze the efficiency of the transmission parameters selected through EoE, and conduct extensive experiments. In conclusion, NbADR is more effective in terms of energy efficiency than the existing ADR mechanisms. Additionally, NbADR guarantees throughput of LoRa networks even in dynamically changing channel environments and improves fairness between the nodes.์ตœ๊ทผ IoT ์‹œ์Šคํ…œ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ๋ฌด์„  ์„ผ์„œ ๋„คํŠธ์›Œํฌ๊ฐ€ ๋„“์–ด์ง€๋ฉด์„œ ์ด์™€ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์žฅ๊ฑฐ๋ฆฌ ํ†ต์‹  ๊ธฐ์ˆ ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ด์™€ ๊ด€๋ จํ•˜์—ฌ LoRa, Weightless, Sigfox์™€ ๊ฐ™์€ LPWA๋„คํŠธ์›Œํฌ ๊ธฐ์ˆ ๋“ค์ด ๋“ฑ์žฅํ•˜๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ISM ๋ฐด๋“œ์—์„œ ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ LoRa์™€ LoRaWAN ๊ด€๋ จ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. LoRa ๋„คํŠธ์›Œํฌ์—์„œ ๋…ธ๋“œ๋“ค์€ ์Šคํƒ€ ํ† ํด๋กœ์ง€๋ฅผ ๊ตฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฒŒ์ดํŠธ์›จ์ด์™€ 1ํ™‰์œผ๋กœ ์—ฐ๊ฒฐ๋˜์–ด ์žˆ๋‹ค. LoRa ๋…ธ๋“œ๋“ค์€ ํ”„๋ ˆ์ž„์„ ์ „์†กํ•˜๊ธฐ ์œ„ํ•˜์—ฌ SF, TP, BW, CR, CF์™€ ๊ฐ™์€ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ์ด ๊ณผ์ •์—์„œ ์ฑ„๋„ ์ƒํƒœ์™€ ์ „์†ก ํƒ€์ด๋ฐ์œผ๋กœ ์ธํ•œ ํ”„๋ ˆ์ž„ ์†์‹ค๊ณผ ํ”„๋ ˆ์ž„ ๊ฐ„ ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ LoRaWAN์—์„œ๋Š” ๋…ธ๋“œ ์ธก์—์„œ ๋„คํŠธ์›Œํฌ ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒํ•˜๊ธฐ ์œ„ํ•œ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์‚ฌ์šฉํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ ์„œ๋ฒ„ ์ธก์—์„œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํ• ๋‹นํ•˜๋Š” ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์กด์žฌํ•œ๋‹ค. ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜๋“ค์€ ์„œ๋ฒ„์™€ ๋…ธ๋“œ์˜ ์—ฐ๊ฒฐ์„ ์œ ์ง€ํ•˜๊ณ  ์ ์ ˆํ•œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๊ธฐ์กด์˜ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜๋“ค์€ ์ผ๋ถ€ ํ•œ๊ณ„์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ, ์„œ๋ฒ„ ์ธก ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ์ „์†กํ•˜๋Š” ํ”„๋ ˆ์ž„์— ๋น„๋ก€ํ•˜์—ฌ ์„œ๋ฒ„์˜ ๋ถ€ํ•˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ๋‘ ๋ฒˆ์งธ, ๋™์ ์ธ ์ฑ„๋„์—์„œ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์œผ๋กœ ๋Œ€์ฒ˜ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ์„ธ ๋ฒˆ์งธ, ์ด๋Ÿฌํ•œ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜๋“ค์—์„œ ์„ ํƒ๋œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์ด ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ์œ„ํ•œ ์ตœ์ ์˜ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๊ฐ€ ์•„๋‹ ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์€ ๋ฐฐํ„ฐ๋ฆฌ๋กœ ๋™์ž‘ํ•˜๋Š” ๋…ธ๋“œ๋“ค์˜ ํฐ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์•ผ๊ธฐํ•˜๊ณ  LoRa ๋„คํŠธ์›Œํฌ์˜ ์ฑ„๋„์ด ๋™์ ์œผ๋กœ ๋ณ€๊ฒฝ๋˜๋Š” ํ™˜๊ฒฝ์—์„œ ์„ฑ๋Šฅ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ์„œ๋ฒ„์˜ ๋ถ€ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๋ฉฐ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋…ธ๋“œ ๊ธฐ๋ฐ˜์˜ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜์ธ NbADR์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์€ ๋…ธ๋“œ ์ธก์—์„œ ์ „์†ก ๋ฐ›์€ ๋‹ค์šด๋งํฌ ํŒจํ„ด์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฑ„๋„ ์ƒํ™ฉ์— ๋น ๋ฅด๊ฒŒ ๋Œ€์‘ํ•˜๊ณ , Efficiency of Energy (EoE) ๋ฉ”ํŠธ๋ฆญ์„ ํ™œ์šฉํ•˜์—ฌ ํšจ์œจ์ ์ธ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์œ„ํ•œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ ํƒํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” EoE ๊ธฐ๋ฐ˜์œผ๋กœ ์„ ํƒํ•œ ์ „์†ก ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ํšจ์œจ์„ฑ์„ ๋ถ„์„ํ•˜๊ณ , ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•œ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, NbADR์€ ๊ธฐ์กด์˜ ADR ๋ฉ”์ปค๋‹ˆ์ฆ˜๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ ์ธก๋ฉด์—์„œ ํšจ๊ณผ์ ์ด๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, NbADR์€ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š” ์ฑ„๋„ ํ™˜๊ฒฝ์—์„œLoRa ๋„คํŠธ์›Œํฌ์˜ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ๋ณด์žฅํ•˜๊ณ  ๋…ธ๋“œ ๊ฐ„ ๊ณตํ‰์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค.Chapter 1 Introduction 1 Chapter 2 Related Work 4 Chapter 3 Preliminaries 7 3.1 LoRa/LoRaWAN 7 3.2 Transmission Parameters 8 3.3 ADR Mechanism 9 Chapter 4 Channel Modeling 10 4.1 Loss 10 4.2 Collision 12 Chapter 5 Node-based ADR Mechanism 14 5.1 Approach for Energy Efficiency 15 5.2 Node-based ADR Mechanism (NbADR) 17 Chapter 6 Evaluation 21 6.1 Simulation Settings 22 6.2 Simulation Results 23 Chapter 7 Conclusion 33 Bibliography 35Maste

    Performance Modelling and Network Monitoring for Internet of Things (IoT) Connectivity

    Get PDF

    LoRa-E: Overview and Performance Analysis

    Get PDF
    International audienceLong Range-Frequency Hopping Spread Spectrum(LR-FHSS) is the new physical layer designed to addressextremely long-range and large-scale communication scenarios,such as satellite IoT. At its core is a fast frequency hoppingtechnique designed to offer higher network capacity whileoffering the same radio link budget as LoRa. Additionally,LR-FHSS finely manages packet transmission thanks to its designprinciples, enabling QoS policies on a per-packet basis. Giventhe notorious adoption of LoRaWAN in the IoT applicationlandscape, this article is a reference for understanding howexactly LR-FHSS works, the performance it can offer, and itslimitations and research opportunities
    corecore