131 research outputs found

    Anti‐windup controller design for singularly perturbed systems subject to actuator saturation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166157/1/cth2bf00153.pd

    Design of a 4D Trajectory Tracking Controller with Anti-Windup Protection for Fixed-Wing Aircraft

    Get PDF
    23rd International Conference on System Theory, Control and Computing, ICSTCC (2019: Sinaia; Romania)This work contains the design and test of a control scheme for a fixed-wing aircraft to track 4-dimensional waypoints. The controller scheme is a multi-loop design that consists of an inner controller synthesized with the h-infinity loop-shaping method and an outer controller synthesized with the PID method. Multiple inner-loop controllers are synthesized in a state-machine configuration as a measure against saturation windup. © 2019 IEEE

    Performance analysis of switching systems

    Get PDF
    Performance analysis is an important aspect in the design of dynamic (control) systems. Without a proper analysis of the behavior of a system, it is impossible to guarantee that a certain design satisfies the system’s requirements. For linear time-invariant systems, accurate performance analyses are relatively easy to make and as a result also many linear (controller) design methods have appeared in the past. For nonlinear systems, on the other hand, such accurate performance analyses and controller design methods are in general not available. A main reason hereof is that nonlinear systems, as opposed to linear time-invariant systems, can have multiple steady-state solutions. Due to the coexistence of multiple steady-state solutions, it is much harder to define an accurate performance index. Some nonlinear systems, i.e. the so-called convergent nonlinear systems, however, are characterized by a unique steady-state solution. This steady-state solution may depend on the system’s input signals (e.g. reference signals), but is independent of the initial conditions of the system. In the past, the notion of convergent systems has already been proven to be very useful in the performance analysis of nonlinear systems with inputs. In this thesis, new results in the field of performance analysis of nonlinear systems with inputs are presented, based on the notion of convergent systems. One part of the thesis is concerned with the question "how to analyse the performance for a convergent system?" Since the behavior of a convergent system is independent of the initial conditions (after some transient time), simulation can be used to find the unique steady-state solution that corresponds to a certain input signal, but this can be very time-consuming. In this thesis, a computationally more efficient approach is presented to estimate the steady-state performance of harmonically forced Lur’e systems, in terms of nonlinear frequency response functions (nFRFs). This approach is based on the method of harmonic linearization. It provides both a linear approximation of the nFRF and an upper bound on the error between this linear approximation and the true nFRF. It is shown in several examples that the approximation of the nFRF is accurate, and that it provides more detailed information on the considered system than the often used ‘L2 gain’ performance index. An additional observation that is made, is that the method of harmonic linearization can sometimes be ‘misleading’ for Lur’e systems with a saturation-like nonlinearity: for the case that the harmonic balance equation has a unique solution, it is shown that the corresponding nonlinear system can have multiple distinct steady-state solutions. Another part of the thesis is concerned with the question "under what conditions is a system with inputs guaranteed to be convergent?" In particular two types of systems were investigated: switched linear systems and Lur’e systems with a saturation nonlinearity and marginally stable linear part. For the switched linear systems, it is assumed that the dynamics of all the separate linear modes are given. For this setting, it was investigated if it is possible to find a switching rule (which defines when to switch between the available modes) such that the closed-loop system is convergent. Both a state-based, an observer-based, and a time-based switching rule are presented that guarantee a convergent system, assuming some conditions on the linear dynamics are met. The second type of systems that are discussed, are Lur’e systems with a saturation nonlinearity and marginally stable linear part. For this type of systems, the goal was to find sufficient conditions under which the closed-loop system is convergent. Because of the marginally stable linear part, however, a quadratically convergent system cannot be obtained. Instead, sufficient conditions are discussed that guarantee uniform convergency of the system. The obtained theory is shown to be also applicable to a class of anti-windup systems with a marginally stable plant. For this class of systems, the results of the convergency-based performance analysis are compared with the analysis results of existing anti-windup methods. It is shown that the convergency-based performance analysis can in some cases provide more detailed information on the steady-state behavior of the system. The results of uniform convergency for anti-windup systems are shown to be also applicable in the field of production and inventory control of discrete-event manufacturing systems. Since a manufacturing machine has a certain production capacity and cannot produce at a negative rate, it can be seen as an integrator plant (input: production rate, output: amount of finished products) preceded by a saturation function. For this marginally stable plant, a controller was constructed in such a way that the closed-loop system is uniformly convergent. The controller was also implemented in the discrete-event domain and the results from discrete-event simulations were compared with those of continuous-time simulations. Similarly, the controller was also applied for the production and inventory control of a line of four manufacturing machines. For both the single machine and the line of four machines, the resulting controlled discrete-event systems are shown to have the desired tracking properties. Besides these theoretical and numerical results, also experimental results are presented in this thesis. By means of an electromechanical construction, several experimental results were obtained, and used to validate the theoretical results for both the switched linear systems and the anti-windup systems

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    Regulation Theory

    Full text link
    This paper reviews the design of regulation loops for power converters. Power converter control being a vast domain, it does not aim to be exhaustive. The objective is to give a rapid overview of the main synthesis methods in both continuous- and discrete-time domains.Comment: 23 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Control System Design, Analysis, and Simulation of a Photovoltaic Inverter for Unbalanced Load Compensation in a Microgrid

    Get PDF
    This thesis presents a control scheme for a single-stage three-phase Photovoltaic (PV) converter with negative sequence load current compensation. In this thesis a dual virtual impedance active damping technique for an LCL filter is proposed to address the issue of LCL filter resonance. Both inverter-side current and the capacitor current are used in the feedback loop. Using both signals provides higher DC rejection than using capacitor current alone. The proposed active damping scheme results in a faster transient response and higher damping ratio than can be obtained using inverter-side current alone. The feedback gains can be calculated to achieve a specified damping level. A method of determining the gains of the Proportional and Resonant current controller based on frequency response characteristics is presented. For a specified set of gain and phase margins, the controller gains can be calculated explicitly. Furthermore, a modification is proposed to prevent windup in the resonator. A numerically compensated Half-Cycle Discrete Fourier Transform (HCDFT) method is developed to calculate the negative sequence component of the load current. The numerical compensation allows the HCDFT to accurately estimate the fundamental component of the load current under off-nominal frequency conditions. The proposed HCDFT method is shown to have a quick settling time that is comparable to that obtained with conventional sequence compensation techniques as well as immunity to harmonics in the input signal. The effect of unbalance compensation on the PV power output depending on the irradiance and the operational region on the power-voltage curve is examined. Analysis of the DC link voltage ripple shows the region of operation on the P-V curve affects the amplitude of the DC link voltage ripple during negative sequence compensation. The proposed control scheme is validated by simulation in the Matlab/SimulinkÂź environment. The proposed control scheme is tested in the presence of excessive current imbalance, unbalanced feeder impedances, and non-linear loads. The results have shown that the proposed control scheme can improve power quality in a hybrid PV-diesel microgrid by reducing both voltage and current imbalance while simultaneously converting real power from a PV array
    • 

    corecore