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Summary

Performance analysis of switching systems

Performance analysis is an important aspect in the design of dynamic (control) systems. With-
out a proper analysis of the behavior of a system, it is impossible to guarantee that a certain
design satisfies the system’s requirements. For linear time-invariant systems, accurate perfor-
mance analyses are relatively easy to make and as a result also many linear (controller) design
methods have appeared in the past. For nonlinear systems, on the other hand, such accurate per-
formance analyses and controller design methods are in general not available. A main reason
hereof is that nonlinear systems, as opposed to linear time-invariant systems, can have multi-
ple steady-state solutions. Due to the coexistence of multiple steady-state solutions, it is much
harder to define an accurate performance index. Some nonlinear systems, i.e. the so-called con-
vergent nonlinear systems, however, are characterized by a unique steady-state solution. This
steady-state solution may depend on the system’s input signals (e.g. reference signals), but is
independent of the initial conditions of the system. In the past, the notion of convergent systems
has already been proven to be very useful in the performance analysis of nonlinear systems with
inputs.

In this thesis, new results in the field of performance analysis of nonlinear systems with inputs
are presented, based on the notion of convergent systems. One part of the thesis is concerned
with the question “how to analyse the performance for a convergent system?” Since the behav-
ior of a convergent system is independent of the initial conditions (after some transient time),
simulation can be used to find the unique steady-state solution that corresponds to a certain in-
put signal, but this can be very time-consuming. In this thesis, a computationally more efficient
approach is presented to estimate the steady-state performance of harmonically forced Lur’e
systems, in terms of nonlinear frequency response functions (nFRFs). This approach is based
on the method of harmonic linearization. It provides both a linear approximation of the nFRF
and an upper bound on the error between this linear approximation and the true nFRF. It is
shown in several examples that the approximation of the nFRF is accurate, and that it provides
more detailed information on the considered system than the often used ‘L2 gain’ performance
index. An additional observation that is made, is that the method of harmonic linearization can
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viii SUMMARY

sometimes be ‘misleading’ for Lur’e systems with a saturation-like nonlinearity: for the case
that the harmonic balance equation has a unique solution, it is shown that the corresponding
nonlinear system can have multiple distinct steady-state solutions.

Another part of the thesis is concerned with the question “under what conditions is a system
with inputs guaranteed to be convergent?” In particular two types of systems were investigated:
switched linear systems and Lur’e systems with a saturation nonlinearity and marginally stable
linear part.

For the switched linear systems, it is assumed that the dynamics of all the separate linear modes
are given. For this setting, it was investigated if it is possible to find a switching rule (which
defines when to switch between the available modes) such that the closed-loop system is con-
vergent. Both a state-based, an observer-based, and a time-based switching rule are presented
that guarantee a convergent system, assuming some conditions on the linear dynamics are met.

The second type of systems that are discussed, are Lur’e systems with a saturation nonlinear-
ity and marginally stable linear part. For this type of systems, the goal was to find sufficient
conditions under which the closed-loop system is convergent. Because of the marginally stable
linear part, however, a quadratically convergent system cannot be obtained. Instead, sufficient
conditions are discussed that guarantee uniform convergency of the system. The obtained the-
ory is shown to be also applicable to a class of anti-windup systems with a marginally stable
plant. For this class of systems, the results of the convergency-based performance analysis
are compared with the analysis results of existing anti-windup methods. It is shown that the
convergency-based performance analysis can in some cases provide more detailed information
on the steady-state behavior of the system.

The results of uniform convergency for anti-windup systems are shown to be also applicable in
the field of production and inventory control of discrete-event manufacturing systems. Since a
manufacturing machine has a certain production capacity and cannot produce at a negative rate,
it can be seen as an integrator plant (input: production rate, output: amount of finished products)
preceded by a saturation function. For this marginally stable plant, a controller was constructed
in such a way that the closed-loop system is uniformly convergent. The controller was also
implemented in the discrete-event domain and the results from discrete-event simulations were
compared with those of continuous-time simulations. Similarly, the controller was also applied
for the production and inventory control of a line of four manufacturing machines. For both the
single machine and the line of four machines, the resulting controlled discrete-event systems
are shown to have the desired tracking properties.

Besides these theoretical and numerical results, also experimental results are presented in this
thesis. By means of an electromechanical construction, several experimental results were ob-
tained, and used to validate the theoretical results for both the switched linear systems and the
anti-windup systems.
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Chapter 1

Introduction

Abstract In this chapter, a general introduction is given to the performance
analysis of externally forced nonlinear systems. First, a picture is sketched of the
problems that arise in the performance analysis of nonlinear systems with external
inputs. Then, a brief introduction is presented to the notion of convergent systems,
which is used as a cornerstone in this thesis to study nonlinear performance anal-
ysis. The second part of this chapter gives an overview of the contributions to the
field that are made in this thesis, and presents an outline of the remainder of this
thesis. In addition to the literature that is reviewed in this chapter, a more detailed
overview of relevant literature is given in the introduction of each chapter for the
research discussed in that chapter.

1.1 Performance analysis of nonlinear systems with ex-

ternal inputs

Performance analysis is an important aspect in decision-making and control, and is present in
daily life in many different forms. For example, one can ask oneself: “am I still driving on
the (correct) road and is this really the fastest way from Eindhoven to Amsterdam?” or “is the
isolation of my house good enough to keep out the noise of the neighbors?” Every time such a
question is asked, one is in fact analysing the performance of some system. Once the question
has been answered, i.e. the performance has been analysed, one can decide to do nothing (if the
result is satisfactory) or to take action to improve the performance.

1



2 CHAPTER 1. INTRODUCTION

In the field of design and control of dynamic systems, performance analysis is also very rele-
vant. The (controller) design of such a system is often directly coupled to the performance of
that system. That is, a controller is designed in such a way that the closed-loop system satisfies
certain performance conditions. Or, if a certain task needs to be executed and several dynamic
systems are available for this goal, then (probably) the dynamic system is selected which has
the best performance with respect to that task.

But what is performance exactly? The notion of performance is not rigorously defined, but
is often expressed by means of some performance indices that are selected to describe rele-
vant behavior. In the field of dynamics and control the performance indices that are used to
express the performance of a system can be roughly divided into three groups: performance
indices for transient behavior (e.g. convergence rate), for steady-state behavior (e.g. how good
is the reference tracking or disturbance rejection?), and for more general properties of a sys-
tem (e.g. reachable set using certain inputs, or domain of attraction for a certain solution). For
example, consider a manufacturing machine. Once warmed up, this machine is able to pro-
cess 100 items per hour, which is an indication of the steady-state performance of the system.
Furthermore, this machine requires 15 minutes to ramp up from idle to full production speed,
which falls within the category of transient performance. A more general property of the system
is for example that the machine can process three different types of items.

For linear time-invariant (LTI) systems, it is often easy to find performance indices that de-
scribe the exact behavior of the system. This is due to the property that all dynamics of this
system are linear, and therefore (in a stable setting) solutions with different initial conditions
eventually converge to a unique steady-state solution, which may depend on external inputs
but is independent of the initial conditions of the system. As a result it is possible to uniquely
describe both the transient and steady-state response of a system to a certain input signal in
the time domain, or the steady-state response to a certain input signal in the frequency domain,
see e.g. [21]. Due to the superposition principle for linear systems not only system responses
to harmonic input signals can be determined, but also systems responses to all other input sig-
nals that can be written as a Fourier series can be constructed. Furthermore, as a result of this
ease of analysis, many controller design methods have become available for linear systems, see
e.g. [21, 87]. These design methods are also widely used in industry.

An important reason why nonlinear (control) systems are currently not popular in industry, even
though they can provide a wider range of dynamics than linear systems, is the lack of proper
performance analyses and controller design methods for nonlinear systems. A main reason why
it is less straightforward to define performance indices for nonlinear systems, is that multiple
steady-state solutions may coexist and the dynamics may depend on the initial condition of
the system. For nonlinear systems with constant (or zero) inputs, one can in some cases still
determine stability and (approximative) domain of attraction of equilibrium points, e.g. using
Lyapunov theory, see [40, 81]. However, for nonlinear systems with time-varying inputs, it is
much harder to describe the exact system behavior using performance indices. In literature,
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an often used performance index for the description of input-output behavior of such systems
is the Lp gain for some 1 ≤ p ≤ ∞. A disadvantage of this performance index is that it only
provides a rough estimate on the ‘worst-case’ input-output behavior of the system. That is,
since multiple steady-state solutions may coexist, the Lp gain only indicates the ‘worst-case’
behavior (i.e. the steady-state solution with the largest Lp norm), and provides no knowledge
at all on whether or not other (more desirable) steady-state solutions exist as well. Also, a
disadvantage of the Lp gain is that in the computation of this gain no specific properties of the
input signal are involved except for its Lp norm. As a consequence, completely different input
signals (e.g. a harmonic signal vs. white noise) with an identical Lp norm, result in the same
estimate for the Lp norm of the output.

The main reason that the nonlinear system response to some input signal cannot be uniquely
described in general, is that this response may depend on the initial conditions of the system. In
view of this problem, it is interesting to note that there exists a subclass of nonlinear systems,
i.e. the class of convergent systems, for which the steady-state solution does not depend on the
initial conditions of the system. As a result of this property it is easier to describe the exact
behavior, and hence to accurately evaluate the performance of such a system. In this thesis, the
notion of convergent systems is therefore used as a cornerstone for the performance analysis of
nonlinear systems with external inputs. This notion of convergent systems is discussed in the
following section.

1.2 Notion of convergent systems

The most striking property that distinguishes convergent systems from general nonlinear sys-
tems is that the solutions of a convergent system ‘forget’ their initial conditions, and after some
transient time the dynamics of the system only depends on the system’s input signal(s). This
property, which is a natural property for all asymptotically stable linear systems, is very attrac-
tive in the field of dynamics and control. It guarantees that the system has only one steady-state
solution, and hence performance analysis of these convergent systems is much easier than for
general nonlinear systems. Furthermore, it is also a useful property in synchronization prob-
lems, observer design, and reference tracking problems, see e.g. [64, 70] and references therein.
In these cases, the system or controller is designed mainly to get rid of the solution’s depen-
dency on initial conditions.

The property that a solution of a nonlinear system ‘forgets’ its initial conditions has been ad-
dressed several times in literature. The notion of convergent systems was introduced in the
1960’s by Demidovich, Pliss and Yakubovich [11, 12, 69, 109], see also [63]. In the same pe-
riod, the idea of solutions that converge to each other, was also investigated by LaSalle and Lef-
schetz [43], and Yoshisawa [110]. In the 1990’s, the interest in the convergent system property
revived, and similar notions appeared, such as incremental stability and contraction analysis,
see e.g. [3, 23, 52] and references therein. In recent years, new results in this field were obtained
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on so-called ‘quadratic convergency’ of piecewise affine (PWA) systems [65], and on perfor-
mance analysis for convergent systems using nonlinear frequency response functions [66]. In
this thesis, new results on convergent systems and performance analysis of nonlinear systems
are presented, as explained in the following section. Formal definitions and properties of con-
vergent systems are presented later on in this thesis.

In the past, the notion of convergent systems has already been shown to be useful in the per-
formance analysis of nonlinear systems. However, more research on this subject is required to
fully understand the possibilities of this notion. It may be used to ‘fill the gap’ between nonlin-
ear (control) systems and well-understood linear (control) systems, such that in the future the
rich dynamics of nonlinear systems can be exploited to the fullest.

1.3 Contribution of the thesis

The general objective of the research that is described in this thesis is to extend the results in the
ongoing investigation on performance analysis of externally forced nonlinear systems, based on
the notion of convergent systems. In line with this objective, four problems are considered in
particular

• Under what conditions is a system guaranteed to be convergent?

• In what way can the performance of a convergent nonlinear system with inputs be evalu-
ated?

• For what applications can the results that are obtained during the research be used?

• Can the theoretical results be validated using simulation and real-time experiments?

In this thesis, contributions are made to each of these problems. In the remainder of this section
the specific contributions of this thesis are presented. Furthermore, at the introduction of each
chapter (Chapters 3-6), the relationship of each contribution with existing results in literature is
discussed in more detail.

In literature, already several results are available that provide sufficient conditions to guarantee
convergency for several types of systems, see e.g. [63–65] and references therein. In this thesis,
two types of externally forced ‘switching’ systems are investigated for which such a proof
of convergency did not yet exist, i.e. switched linear systems and ‘marginally stable’ Lur’e
systems with a saturation nonlinearity (the latter system can be seen as a ‘switching’ system, as
it switches between a linear mode and saturated modes).

The considered switched linear systems consist of two or more linear subsystems and a switch-
ing rule that governs the switching between those subsystems. These systems are widely studied
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in literature, see e.g. [48, 59, 60, 82, 89], and have been shown to be especially useful in adap-
tive and robust control problems. Furthermore, it has been shown for these systems that by
appropriate switching between the available linear subsystems, the performance (e.g. transient
response) of the closed-loop system can be improved in comparison with the performance of
the linear subsystems, see e.g. [16]. In this thesis, the dynamics of all separate linear modes are
assumed to be given, and it is investigated if it is possible to find a switching rule such that the
closed-loop system is convergent for a wide class of external inputs. If the system can be made
convergent by proper switching, then also the steady-state performance of such systems with
inputs can be evaluated and compared to the performance of the corresponding linear systems.
In order to find a proof for convergency, both a state-based, an observer-based, and a time-
based switching rule are considered. For each type of switching rule, sufficient conditions are
sought under which the closed-loop system is convergent. A property of the considered switch-
ing rules is that they allow infinitely fast switching (sliding mode). In order to investigate how
these switching rules behave in a real-time environment (with only a finite sample rate), the
results of real-time experiments (performed on an experimental setup) are analysed.

The second class of systems that is discussed in this thesis is the class of externally forced Lur’e
systems with a saturation nonlinearity and marginally stable linear part. Most results on general
convergent systems in literature are aimed on proving quadratic convergency, see e.g. [63, 65],
however, these results are not applicable for a system that is marginally stable. Therefore, in
this thesis, sufficient conditions are sought for a weaker form of convergency, i.e. ‘uniform’
convergency.

An application area in which this uniform convergency property can be useful is the anti-windup
design for linear control systems with actuator saturation and a marginally stable plant. Actua-
tor saturation is a phenomenon that is ubiquitous in control systems, since actuators have only a
limited range of operation, and can have disastrous consequences, such as the fighter crashes in
1992 [14] and 1993 [86]. The research on anti-windup compensation, see e.g. [21, 22, 41, 90],
is focussed on preventing these consequences and restoring the original (linear) dynamics as
much as possible. In this thesis, the obtained theory on uniform convergency is applied to these
systems with anti-windup compensation, and the steady-state performance of the systems is
analysed. Since several anti-windup methods exist in literature, see e.g. [39, 90], a comparison
is made to clarify the exact differences between this convergent systems approach and existing
anti-windup methods. Furthermore, simulations and real-time experiments (on an experimental
setup) are performed to support the theoretical results.

Another application field that is considered, is the production and inventory control of man-
ufacturing systems. These systems are often characterized by discrete-event behavior, which
makes it difficult to construct a proper controller, especially for large systems. If, however, the
system is approximated by a continuous flow model [2], then standard control theory can be
applied to control the production and inventory of the system, see e.g. [28, 85, 105]. Since a
manufacturing machine has a certain production capacity and cannot have a negative produc-
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tion rate, such a machine can be seen as an integrator preceded by a saturation nonlinearity.
Using the obtained results on convergent anti-windup design for systems with a marginally sta-
ble plant, a controller is constructed for this machine in such a way that the closed-loop system
is uniformly convergent. The controller is also implemented in the discrete-event domain and
the results from discrete-event simulations are compared with those of continuous-time simula-
tions. Similarly, the controller is also applied for the production and inventory control of a line
of manufacturing machines.

With respect to the performance analysis of convergent nonlinear systems, some results are
currently available in literature. For example, it is already known that for convergent systems,
simulation can be used as a reliable analysis tool, and that by means of simulation also nonlinear
frequency response functions (nFRFs) can be constructed, see e.g. [66]. This is a quite useful
result, since it allows a performance analysis of nonlinear systems, which is very similar to a
common performance analysis of linear systems, i.e. investigation of a system’s steady-state
response to harmonic excitations with different frequencies. A disadvantage, however, of this
simulation-based analysis is that it can be very time-consuming. In this thesis, therefore, a more
time-efficient alternative to the simulation-based analysis is investigated for the construction of
nFRFs. This alternative is based on the method of harmonic linearization and results in an
approximative nFRF together with an upper bound on the error between the approximative
nFRF and the true nFRF. This alternative is applied together with the existing simulation-based
analysis to evaluate the performance in terms of nFRFs of all considered systems in this thesis.

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 contains the preliminaries that are used through-
out the thesis. It recalls several concepts of stability of solutions and ultimate boundedness. It
also recalls the S-procedure and the definition of L2 gain, and provides a way of computing
this gain using linear matrix inequalities. Furthermore, it presents several definitions and prop-
erties of convergent systems. Finally, it gives a short description of the method of harmonic
linearization for autonomous nonlinear systems of Lur’e type. This method is discussed further
in Chapter 3.

Chapters 3-6 contain the main results of this thesis. These chapters all start with an introduction
that gives a motivation for the research presented in that chapter and a comparison with related
literature. Furthermore, each of these chapters ends with a ‘Discussion’-section, in which the
results presented in that chapter are summarized and final comments on these results are made.

In Chapter 3, the method of harmonic linearization is applied to analyse harmonically forced
Lur’e systems in the frequency domain. For this purpose, the method of harmonic linearization
as summarized in Chapter 2 is extended, and both the well-posedness and the accuracy of the
resulting harmonic linearization are discussed. The presented theory is illustrated by means of
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three examples, in which it becomes clear that the nonlinear frequency response functions can
often be accurately approximated using harmonic linearization. The results as presented in this
chapter are also used for performance analysis in the remaining chapters.

In Chapter 4, a theorem is derived to establish uniform convergency for externally forced Lur’e
systems with a saturation nonlinearity and marginally stable linear part. The result is also
applied to the field of anti-windup systems with a marginally stable plant, where it is used to
analyse the steady-state performance of such systems. After a discussion on the differences
between this convergent systems approach and existing anti-windup methods, two case-studies
are performed to illustrate the obtained theoretical result. The case-studies are supported by
both simulation and experimental results.

In Chapter 5, the results of Chapter 4 on convergent anti-windup design are used for another
application, i.e. for the production control of a discrete-event manufacturing system. Here, a
manufacturing machine is interpreted as an integrator plant preceded by a saturation nonlinear-
ity. An anti-windup controller is constructed that guarantees a convergent closed-loop system.
The controller is also implemented in the discrete-event domain and simulations in both the
continuous-time and discrete-event domain are compared. Finally, the controller is applied for
the production rate control of a manufacturing line.

A different kind of ‘switching’ system is considered in Chapter 6. This chapter deals with
switched linear systems, for which it is assumed that the dynamics of the separate linear modes
are fixed. It is discussed if for such systems a switching rule and some accompanying condi-
tions can be found so that the closed-loop system is guaranteed to be convergent. Both state-
dependent, (observer-based) output-dependent, and time-dependent switching rules are consid-
ered. The theoretical results are supported by means of a case-study, in which both simulation
and experimental results are presented.

Chapter 7 contains the conclusions of this thesis and recommendations for future research.

1.5 Summary of publications

This thesis is mostly based on conference and journal papers, either published or submitted.
This section summarizes the relationship between the papers and the chapters in this thesis.
Note that some papers are used in more than one chapter.

Chapter 3 contains results presented in:

• [71]: A.Y. Pogromsky, R.A. van den Berg, and J.E. Rooda. Performance analysis of
harmonically forced nonlinear systems. Proceedings of 3rd IFAC Workshop Periodic
Control Systems, St.Petersburg, Russia, 2007.



8 CHAPTER 1. INTRODUCTION

• [96]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. Well-posedness and accuracy
of harmonic linearization for Lur’e systems. Proceedings of the 46th IEEE Conference
on Decision and Control, New Orleans, USA, 2007.

• [99]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. Frequency domain perfor-
mance analysis of marginally stable LTI systems with saturation. Proceedings of the 6th
EUROMECH Nonlinear Oscillations Conference (ENOC), St.Petersburg, Russia, 2008.

Chapter 4 contains results presented in:

• [93]: R.A. van den Berg, A.Y. Pogromsky, G.A. Leonov, and J.E. Rooda. Design of
convergent switched systems. In Lecture Notes in Control and Information Sciences 336:
Group Coordination and Cooperative Control, pages 291-311. Springer Verlag, 2006.

• [94]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. Convergent systems design:
Anti-windup for marginally stable plants. Proceedings of the 45th IEEE Conference on
Decision and Control, San Diego, USA, 2006.

• [100]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. A new perspective on anti-
windup design based on experimental results. Proceedings of 17th IFAC World Congress,
Seoul, Korea, 2008.

• [98]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. Uniform convergency for
anti-windup systems with a marginally stable plant. Submitted to a journal, 2008.

Chapter 5 contains results presented in:

• [102]: W.A.P. van den Bremer, R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda.
Anti-windup based approach to the control of manufacturing machines. Proceedings of
17th IFAC World Congress, Seoul, Korea, 2008.

• [72]: A.Y. Pogromsky, R.A. van den Berg, and J.E. Rooda. On cascade interconnections
of convergent systems with application to control of manufacturing systems. Submitted
to the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008.

Chapter 6 contains results presented in:

• [93]: R.A. van den Berg, A.Y. Pogromsky, G.A. Leonov, and J.E. Rooda. Design of
convergent switched systems. In Lecture Notes in Control and Information Sciences 336:
Group Coordination and Cooperative Control, pages 291-311. Springer Verlag, 2006.

• [95]: R.A. van den Berg, A.Y. Pogromsky, and J.E. Rooda. Convergent design of switched
linear systems. Proceedings of 2nd IFAC Conference on Analysis and Design of Hybrid
System, Alghero, Sardinia, 2006.



Chapter 2

Mathematical Preliminaries

Abstract In this chapter, several mathematical notions and results are presented
that are used throughout this thesis. Section 2.1 deals with the definition of stability
for solutions and the definition of ultimate boundedness. Section 2.2 introduces the
S-procedure. Section 2.3 gives a definition of L2 gain and describes how such
an L2 gain can be computed for some systems using linear matrix inequalities
(LMIs). Section 2.4 introduces the notion of convergent systems and describes
several properties of such systems. Finally, Section 2.5 presents the basic concept
of harmonic linearization.

2.1 Stability concepts

Consider the following nonlinear time-varying system

ẋ = f (x, t) (2.1)

where x ∈ Rn represents the state of the system, t ∈ R represents time, and f (x, t) satisfies
some regularity assumptions to guarantee the existence of local solutions. In Definition 2.1,
stability of a particular (or all) solution(s) of this system is defined. In this definition, and in the
remainder of this thesis, | · | represents the Euclidean norm.

Definition 2.1 ([40]). Solution x̄ of system (2.1), defined for all t ∈ (t∗,+∞), is said to be

• stable if for any t0 ∈ (t∗,+∞) and ε > 0 there exists a δ = δ (ε, t0) > 0 such that |x(t0)−
x̄(t0)|< δ implies |x(t)− x̄(t)|< ε for all t ≥ t0;

9
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• uniformly stable if it is stable and the number δ in the definition of stability can be chosen
independently of t0;

• asymptotically stable if it is stable and for any t0 > t∗ there exists a δ = δ (t0) > 0 such
that |x(t0)− x̄(t0)|< δ implies limt→∞ |x(t)− x̄(t)|= 0;

• uniformly asymptotically stable if it is uniformly stable and there exists a δ > 0 (indepen-
dent of t0) such that for any ε > 0 there exists a T = T (ε) > 0 such that |x(t0)− x̄(t0)|< δ

implies |x(t)− x̄(t)|< ε for all t ≥ t0 +T ;

• exponentially stable if there exist positive constants δ ,C,β such that |x(t0)− x̄(t0)| < δ

implies
|x(t)− x̄(t)| ≤Ce−β (t−t0)|x(t0)− x̄(t0)|;

• globally (uniformly/ asymptotically/ exponentially) stable if it is (uniformly/ asymptot-
ically/ exponentially) stable and attracts all solutions x(t) starting in (x0, t0) ∈ Rn ×
(t∗,+∞).

Furthermore, global uniform ultimate boundedness of solutions is defined as follows.

Definition 2.2 ([40]). The solutions of system (2.1) are globally uniformly ultimately bounded
with ultimate bound b if there exist a positive constant b, independent of t0 > t∗, and for every
a≥ 0 there is a T = T (a,b)≥ 0, independent of t0 > t∗, such that |x(t0)| ≤ a implies

|x(t)| ≤ b, ∀t ≥ t0 +T.

For simplicity, in this thesis a system is called uniformly ultimately bounded, if its solutions are
globally uniformly ultimately bounded.

2.2 S-procedure

The S-procedure is a method that is often used in the area of nonlinear control. A general
description of the S-procedure can for example be found in [68]. In this section, the method is
briefly recalled.

Let G0(x),G1(x), . . . ,Gk(x) be real-valued functionals that are defined on an abstract space X
(here, X can be Rn [6, 18], Cn [18, 19], or L2([0,∞),Rn) [58, 83, 108]). Furthermore, let
τ = [ τ1 . . . τk ] be a vector of real numbers and define

S(τ,x) = G0(x)−
k

∑
j=1

τ jG j(x).

Now, consider the following two conditions
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1. G0(x)≥ 0 for all x ∈ X that satisfy the constraints G1(x)≥ 0, . . . ,Gk(x)≥ 0.

2. There exist constants τ1≥ 0, . . . ,τk ≥ 0 such that ∑
k
j=1 τ j > 0 and S(τ,x)≥ 0 for all x∈X.

The term S-procedure refers to the procedure of replacing condition 1 with the stronger con-
dition 2. Condition 2 clearly implies condition 1. However, the reverse is not always true:
one can find examples were condition 1 does not imply condition 2. Nevertheless, if one
imposes certain additional constraints on G0(x),G1(x), . . . ,Gk(x), then condition 1 may also
imply condition 2. In this case, the S-procedure is called lossless. For example, if X = Rn

and G0(x),G1(x) are quadratic forms on Rn satisfying condition 1 (with k = 1), then there ex-
ist constants τ0 ≥ 0 and τ1 ≥ 0 such that τ0 + τ1 > 0 and τ0G0(x)− τ1G1(x) ≥ 0 holds for all
x∈Rn, i.e. the S-procedure is lossless [107]. Note that the S-procedure can be similarly applied
to strict inequalities, i.e. G0(x) > 0 or G1(x) > 0, . . . ,Gk(x) > 0.

2.3 L2 gain

Consider the following system

ẋ = f (x,w), x(0) = 0
z = h(x,w)

(2.2)

where state x, input w, and performance output z take respectively values in Rn, Rm, and Rp.
Furthermore, assume that w, f (x,w) and h(x,w) satisfy some regularity conditions to guarantee
the existence of local solutions and local square-integrability of z(t).

For each square-integrable vector-valued function x ∈L2([0,∞),Rn), let ||x||2 denote the usual
L2 norm

||x||2 =
(∫

∞

0
|x(t)|2dt

)1/2

.

Definition 2.3 ([40]). If there exists a nonnegative constant γ such that for any w∈L2([0,∞),Rm),
solution z of (2.2) satisfies

||z||2 ≤ γ||w||2,

then system (2.2) has L2 gain (from w to z) less than or equal to γ . The smallest value of γ for
which the above inequality holds, is called the L2 gain from w to z.

In the remainder of this section, it is shown how an upper bound on the L2 gain can be computed
for some systems using linear matrix inequalities (LMIs), see e.g. [6]. For this purpose, consider
a system of Lur’e type

ẋ = Ax+Bφ(y)+Fw
y = Cx+Dw
z = Hx

(2.3)
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where x ∈ Rn is the state, w ∈ R is the input, y ∈ R is the output (for feedback), z ∈ R is
the performance output, and φ is a continuous scalar nonlinearity, which satisfies the sector
condition

0≤ φ(y)
y
≤ µ, ∀y 6= 0, (2.4)

for some finite constant µ . A more general result that also includes µ = +∞ can be derived
using the standard results of passivity theory.

First note that if a differentiable storage function V (x) with V (0) = 0 can be found for sys-
tem (2.3) such that

V̇ (x)≤ γ
2wT w− zT z (2.5)

for some finite γ , then γ is an upper bound for the L2 gain of the system. To show this, (2.5) is
integrated ∫ T

0
V̇ (x)dt = V (x(T ))−V (x(0))≤

∫ T

0
γ

2w(t)T w(t)dt−
∫ T

0
z(t)T z(t)dt,

where V (x(0)) = 0. Since V (x) is a nonnegative function, V (x(T ))≥ 0 so that

0≤
∫ T

0
γ

2w(t)T w(t)dt−
∫ T

0
z(t)T z(t)dt

or, equivalently ∫ T

0
z(t)T z(t)dt ≤ γ

2
∫ T

0
w(t)T w(t)dt.

If w ∈L2([0,∞),R), then one can prove that the limit

lim
T→∞

∫ T

0
z(t)T z(t)dt

also exists, i.e. z ∈L2([0,∞),R). Taking the square root then results in

||z||2 ≤ γ||w||2

which implies that γ is an upper bound on the L2 gain of the system.

Now, for system (2.3) consider a quadratic storage function V (x) = xT Px with P = PT > 0, such
that inequality (2.5) becomes

xT (PA+AT P)x+2xT PBφ(y)+2xT PFw− γ
2wT w+ xT HT Hx≤ 0.

In order to find an upper bound on the L2 gain, this inequality should hold for (at least) all y
that satisfy sector condition (2.4). To incorporate the sector condition in the above inequality,
the S-procedure (see Section 2.2) is used. By rewriting the sector condition into

φ(y)2−µφ(y)y≤ 0
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and applying the S-procedure, the resulting inequality is

xT (PA+AT P)x+2xT PBφ(y)+2xT PFw−2τφ(y)2 +2τµφ(y)y− γ
2wT w+ xT HT Hx≤ 0.

This inequality can be written asx
φ

w


T PA+AT P+HT H PB+ τµCT PF

BT P+ τµC −2τ τD
FT P τDT −γ2


x

φ

w

≤ 0

and is satisfied if the following LMI holdsPA+AT P+HT H PB+ τµCT PF
BT P+ τµC −2τ τD

FT P τDT −γ2

≤ 0 (2.6)

for some P = PT > 0, τ ≥ 0 and γ > 0. Computationally efficient LMI solvers, as present in
numerical toolboxes such as Yalmip [51], SeDuMi [84], and Matlab’s LMI-lab [50], can be
used to determine if this LMI is feasible, and to compute the minimal value of γ for which the
LMI is still feasible. This minimal value of γ is an upper bound on the L2 gain of system (2.3).

Note that besides a quadratic storage function V (x), other storage functions can be considered
as well for the computation of such an upper bound, see e.g. [49, 75]. This, however, falls
outside the scope of this thesis.

2.4 Convergent systems

In this section, first some basic definitions and properties of convergent systems are given that
are used in the remainder of this thesis. Subsequently, it is explained why for convergent sys-
tems (in contrast to nonlinear systems in general) simulation can be used as a reliable analysis
tool. Finally, the results of [66] on nonlinear frequency response functions for convergent sys-
tems are briefly discussed.

Consider the following system
ẋ(t) = f (x,w(t)) (2.7)

with state x ∈ Rn and input w ∈ PCm. Here, PCm is the class of bounded piecewise continuous
inputs w(t) : R→ Rm. Furthermore, assume that f (x,w) satisfies some regularity conditions to
guarantee that, for any input w ∈ PCm, system (2.7) has well-defined solutions in the sense of
Filippov.

Definition 2.4. System (2.7) is said to be

• uniformly convergent for a class of inputs W ⊂ PCm if for every input w(t) ∈W there is
a solution x̄(t) = x(t, t0, x̄0) satisfying the following conditions:
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1. x̄(t) is defined and bounded for all t ∈ (−∞,+∞),

2. x̄(t) is globally uniformly asymptotically stable.

• exponentially convergent for a class of inputs W ⊂ PCm if

1. it is uniformly convergent,

2. x̄(t) is globally exponentially stable.

Solution x̄(t) is called a limit solution. As follows from the above definition, any solution of a
uniformly or exponentially convergent system ‘forgets’ its initial condition and converges to a
limit solution which is independent of the initial conditions. The following statements describe
some properties of this limit solution.

Property 2.5 ([109]). Consider system (2.7) with a given input w(t) defined for all t ∈ R. Let
D ⊂ Rn be a compact set which is positively invariant with respect to system (2.7). Then there
is at least one solution x̄(t), such that x̄(t) ∈D for all t ∈ (−∞,+∞).

Note that in general, if there exists a globally asymptotically stable limit solution x̄(t) it may be
non-unique, in the sense that there can exist another solution x̃(t) bounded for all t ∈ (−∞,+∞)
that is also globally asymptotically stable. For any two such solutions it obviously follows
that ||x̄(t)− x̃(t)|| → 0 as t → ∞. At the same time for uniformly convergent systems the limit
solution is unique, as formulated in the following property.

Property 2.6 ([65]). For a uniformly convergent system, the limit solution is unique, i.e. it is
the only solution bounded for all t ∈ (−∞,+∞).

The following property of uniformly convergent systems provides insight in the behavior of the
limit solution for systems with constant or periodic input signals.

Property 2.7 ([64]). Suppose system (2.7) is uniformly convergent. Then, if input w(t) is
constant, the corresponding limit solution x̄(t) is also constant. If input w(t) is periodic with
period T , then the corresponding limit solution x̄(t) is also periodic with the same period T .

Since any exponentially convergent system is also uniformly convergent, the above properties
also hold for exponentially convergent systems.

Now consider a scalar continuously differentiable function V (x) for system (2.7). The time
derivative of this function along solutions of system (2.7) is defined as follows

V̇ =
∂V (x)

∂x
ẋ(t).
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Since V is continuously differentiable and solution x(t) is an absolutely continuous function of
time, V̇ exists almost everywhere. The upper derivative for function V (x) is defined as follows

V̇ ∗(x, t) = sup
ξ∈F(x,t)

(
∂V (x)

∂x
ξ

)
with F(x, t) a set-valued function, for which ẋ ∈ F(x, t) is called a Filippov solution for sys-
tem (2.7). For almost all t it holds that

V̇ (x(t))≤ V̇ ∗ (x(t), t) .

According to Filippov ([17], p.155), if V (x) is continuously differentiable and V̇ (x) ≤ 0 is
satisfied in the domains of continuity of F(x, t), then inequality V̇ ∗(x)≤ 0 holds for all (x, t) ∈
Rn+1. This leads to the following definition.

Definition 2.8. System (2.7) is called quadratically convergent if for any input w ∈ PCm there
exists a positive definite matrix P = PT > 0 and a scalar α > 0 such that for function V (x1,x2) =
(x1− x2)T P(x1− x2) it holds that

V̇ ∗(x1,x2, t)≤−αV (x1,x2).

Quadratic convergency is a useful tool for establishing exponential convergency, as follows
from the following property.

Property 2.9 ([65]). If system (2.7) is quadratically convergent, then it is exponentially con-
vergent.

An important advantage of convergent nonlinear systems over general nonlinear systems is that,
due to the fact that the limit solution of a convergent system only depends on the input and is
independent of the initial conditions, simulation can be used to determine the limit solution of
the system. That is, evaluation of one solution (one arbitrary initial state) suffices, whereas for
general nonlinear systems all (i.e. an infinite number of) initial conditions need to be evaluated
to obtain a reliable analysis. This means that for convergent systems simulation is a reliable
tool for the analysis of the limit solution.

Furthermore, whereas steady-state performance evaluation for general nonlinear systems can
be difficult due to the possibility of multiple steady-state solutions, convergent systems have
a unique limit solution and therefore steady-state performance can also be defined in a unique
way. Since for every input signal there is only one limit solution — as is the case for linear
systems — it is for example possible to make a frequency domain analysis using nonlinear
frequency response functions [66]. For example, for a uniformly (exponentially) convergent
system with some T -periodic scalar input w and scalar limit output ȳ, the nonlinear comple-
mentary sensitivity function is defined as

T =

√ ∫ T
0 ȳ2(t)dt∫ T
0 w2(t)dt
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and the nonlinear sensitivity function is defined as

S =

√∫ T
0 (w(t)− ȳ(t))2dt∫ T

0 w2(t)dt
.

Note that for linear systems with a harmonic input signal the nonlinear complementary sensi-
tivity function is equal to the magnitude of the complementary sensitivity function as defined
for linear systems. This equivalence, however, does not hold for the nonlinear sensitivity func-
tion and the magnitude of the ‘linear’ sensitivity function. The nonlinear sensitivity function is
also affected by phase differences between w and ȳ, whereas in the ‘linear’ sensitivity function,
gain and phase are separated.

The nonlinear frequency response functions as defined above can be derived using simulation,
but this can become time-consuming, if the limit solution has to be determined for many dif-
ferent input signals (e.g. different frequencies for harmonic input signals). In Section 2.5 and
Chapter 3 an alternative analysis method is presented for harmonically forced Lur’e systems.

2.5 Harmonic linearization

Generally speaking, the method of harmonic linearization (also known as the describing func-
tion method or the method of harmonic balance) is used to gain insight in the existence and dy-
namics of periodic solutions of nonlinear systems. Although it may provide a good impression
about whether or not a certain nonlinear system has a periodic solution and what this solution
looks like, it is only an approximative method, and cannot give conclusive results whether or
not this periodic solution actually exists. Of course if, in addition to this method, convergent
systems theory is used, stronger conclusions can be obtained.

The method of harmonic linearization is founded in the 1930s on work of Galerkin (see e.g. [61]),
Van der Pol [103], Krylov and Bogoliubov [42]. Since the 1960s the method received a lot of
attention in literature, see e.g. [27, 31, 55, 56] and references therein. The method has since
then also been included in many textbooks, such as [33, 38, 40, 78].

In this section, the method of harmonic linearization is presented for autonomous nonlinear
systems, following the line of [40]. In Chapter 3 the method as presented here is extended for
analysis of nonlinear systems of Lur’e type with forced harmonic excitation.

Consider the nonlinear system given by the feedback connection in Figure 2.1 represented by

ẋ = Ax+Bu
y = Cx
u = φ(y)

(2.8)

where x∈Rn, u,y∈R, matrices A,B,C are of corresponding dimensions, (A,B) is controllable,
(A,C) is observable, and G(s) = C(sI−A)−1B is a strictly proper, rational transfer function.
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G(s)

φ(·)

yu

Figure 2.1: Autonomous nonlinear system.

Furthermore φ is a continuous scalar nonlinearity which is time-invariant and memoryless1, i.e.
φ(y) depends only on the current value of y.

In order to find out if system (2.8) has a periodic solution, the following reasoning is used. If
there exists a periodic solution, then it should satisfy y(t +T ) = y(t) for some period T = 2π/ω .
The idea of the method of harmonic linearization is to represent this periodic solution by a
Fourier series

y(t) =
a0

2
+

∞

∑
k=1

ak cos(kωt)+
∞

∑
k=1

bk sin(kωt)

and seek a frequency ω and set of Fourier coefficients a0,ak,bk such that they satisfy system
equations (2.8). Since nonlinearity φ is time-invariant and memoryless, φ(y(t)) is also T -
periodic and can be written as

φ(y(t)) =
c0

2
+

∞

∑
k=1

ck cos(kωt)+
∞

∑
k=1

dk sin(kωt).

Note that Fourier coefficients ck and dk can also be written as a function of φ(y(t))

ck =
ω

π

∫ 2π/ω

0
φ(y(t))cos(kωt)dt, (2.9)

dk =
ω

π

∫ 2π/ω

0
φ(y(t))sin(kωt)dt. (2.10)

If y(t) is a solution of (2.8) it must satisfy the following equation

y(t) = G(s)φ(y(t)) (2.11)

where s = d
dt . Using the Fourier series of y(t) and φ(y(t)) this can be written as

a0

2
+

∞

∑
k=1

ak cos(kωt)+
∞

∑
k=1

bk sin(kωt) = G(s)

(
c0

2
+

∞

∑
k=1

ck cos(kωt)+
∞

∑
k=1

dk sin(kωt)

)
.

From the above equation, one can deduce that (2.11) can only be satisfied if

a0− c0G(0) = 0
ak− ckG(ikω) = 0
bk−dkG(ikω) = 0

(2.12)

1For harmonic linearization of time-varying nonlinearities or nonlinearities with memory, such as hysteresis
and backlash, see [4, 35].
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for all integers k > 0. Unfortunately, (2.12) is an infinite-dimensional equation, which is prac-
tically impossible to solve. Therefore, in the process of harmonic linearization, (2.12) is ap-
proximated by a finite-dimensional problem, in which it is required that (2.12) is only satisfied
for k < q, where q > 0 is some finite integer. If the transfer function G(s) has a sharp low-pass
filter characteristic, then it is reasonable to approximate G(ikω) by 0 for high values of k, and
hence to make this finite-dimensional approximation of (2.12). However, since the frequency of
oscillation ω is unknown, one can still not judge if this is a good approximation, even if G(s) is
a priori known. In the classical method of harmonic linearization one chooses ỹ(t) = asin(ωt),
i.e. q = 1 and a0 = a1 = ak = bk = 0 for all k > 1. If in addition it is assumed that the nonlinear-
ity φ is an odd function2, i.e. φ(ỹ) =−φ(−ỹ), then a0 = 0 implies c0 = 0, and the Fourier series
of φ(ỹ) cannot contain cosines since they are even functions, i.e. c1 = 0. This simplifies (2.12)
to the following equation

a−d1G(iω) = 0. (2.13)

Coefficient d1 is the amplitude of the first harmonic of φ(ỹ(t)) when ỹ(t) = asin(ωt). Us-
ing (2.10) this coefficient can be described by

d1 =
ω

π

∫ 2π/ω

0
φ(asin(ωt))sin(ωt)dt.

Now a function K(a), called the describing function of nonlinearity φ , is defined by

K(a) =
d1

a
=

2
πa

∫
π

0
φ(asinθ)sinθdθ

such that (2.13) can be rewritten as

[1−K(a)G(iω)]a = 0.

Since a solution with a = 0 is not of interest, this simplifies to

1−K(a)G(iω) = 0. (2.14)

Equation (2.14) is known as the (first-order) harmonic balance equation. Solving this equation
gives all possible combinations of (a,ω) for ỹ(t) = asin(ωt) as approximative periodic solution
of nonlinear system (2.8). Note however that the method of harmonic linearization states that
if (2.14) has a solution (a∗,ω∗), then there is probably a periodic solution of (2.8) with am-
plitude and frequency close to (a∗,ω∗), but it cannot guarantee this. Conversely, if (2.14) has
no solutions, then the system probably has no periodic solution. On the other hand, there exist
rigorous conditions, see e.g. Theorem 7.4 in [40], that are able to guarantee the (non)existence
of periodic solutions as found by the method of harmonic linearization.

Using the describing function K(a), one can also formulate the system equations of the quasi-
linear system

ξ̇ = Aξ +BK(a)ζ
ζ = Cξ

2A generalization for the case in which φ is not odd can be found in [81].
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that produces the periodic solution ζ (t) = ỹ(t) = asin(ωt) as approximation for the solution
of the nonlinear system. Note that the only difference between these system equations and the
equations of nonlinear system (2.8) is that nonlinear function φ is replaced by linear gain K(a).

In Chapter 3 the method of harmonic linearization is discussed further for the case in which the
system under consideration is a nonlinear system of Lur’e type with forced harmonic excitation.
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Chapter 3

Harmonic Linearization for Harmonically Forced

Lur’e Systems

Abstract In this chapter, a method is provided that can be used to analyse har-
monically forced nonlinear systems of Lur’e type in the frequency domain. This
method is based on harmonic linearization, and is an extension to the harmonic
linearization method as summarized in Section 2.5. Both the well-posedness and
the accuracy of the harmonic linearization are discussed. A frequency domain con-
dition is provided that guarantees a unique positive real solution to the harmonic
balance equation for a certain class of nonlinearities. Furthermore, an upper bound
is found for the L2 norm of the error between the periodic solution of the Lur’e
system and the corresponding harmonic linearization. The presented theory is il-
lustrated by means of three examples. The examples show for three different Lur’e
systems how this harmonic linearization approach can be used to obtain a frequency
domain performance analysis of these systems. The results are compared to the of-
ten used L2 gain performance index.

3.1 Introduction

For asymptotically stable linear time-invariant (LTI) systems with a harmonic input signal, any
solution converges to a unique harmonic solution, that only depends on the input signal and not
on the initial conditions. Due to this property, it is possible to analyse the performance (in terms
of gain and phase) of such a system in the frequency domain. Such an analysis can provide

21
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valuable insight in how good the system can follow a certain periodic reference signal, and how
it reacts on disturbances of a certain frequency. For nonlinear systems with a harmonic input
signal, a similar frequency domain analysis would be useful as well to evaluate the behavior
of the system. However, such a frequency domain analysis is virtually impossible to perform
for nonlinear systems in general, due to specific properties of a nonlinear system, such as the
possibility of having multiple periodic solutions, or non-harmonic responses to harmonic input
signals. Furthermore, whereas for LTI systems the periodic solution can be easily derived
(e.g. by determining the transfer function of the system), for nonlinear systems this problem
can be hard to tackle. Nonetheless, for some nonlinear systems a frequency domain analysis is
possible. Here, a harmonic linearization method is used to obtain a frequency domain analysis
for these nonlinear systems.

For already more than 70 years the method of harmonic linearization (or describing function
method, see also Section 2.5) has been used to predict existence and dynamics of periodic
solutions of mainly autonomous nonlinear systems (such as the Van der Pol equation), although
it has also been used for analysis of periodically forced nonlinear systems (such as the Duffing
equation), see e.g. [38].

In this chapter, harmonic linearization for Lur’e systems with forced harmonic excitation is
investigated further. Well-posedness of this harmonic linearization is discussed and an upper
bound is found for the L2 norm of the error between the unique T -periodic solution (T being
the period of the harmonic excitation) of the Lur’e system and the corresponding harmonic lin-
earization, using the notion of contraction. Ideas used in this chapter are similar to those in [33].
An alternative method, based on the circle criterion, which deals with existence and stability
of periodic motions for periodically forced nonlinear systems and can provide some L∞ bound
on the system’s periodic solution, is system analysis via (incremental) integral quadratic con-
straints, see e.g. [37, 57, 76]. This analysis, however, is not considered further here.

The remainder of this chapter is organized as follows. Section 3.2 introduces the considered
Lur’e system and the extension of the existing harmonic linearization method. Sections 3.3
and 3.4, respectively, deal with the well-posedness and accuracy of this harmonic linearization.
Section 3.5 provides three examples that illustrate the presented theory. Finally, Section 3.6
gives a discussion on the results obtained in this chapter.

3.2 Harmonic linearization

Consider a nonlinear system of Lur’e type (see Figure 3.1) that can be described by the follow-
ing equations

{
ẋ = Ax+Bφ(y)+Fw
y = Cx+Dw

(3.1)
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where x ∈ Rn is the state, w ∈ R is the input, y ∈ R is the output, φ is a continuous scalar
nonlinear function and matrices A,B,C,D,F are of corresponding dimensions. It is assumed
that nonlinear function φ satisfies the following incremental sector condition

0≤ φ(y1)−φ(y2)
y1− y2

≤ µ, ∀y1,y2, y1 6= y2 (3.2)

for some positive and finite µ . A more general result that also includes µ = +∞ can be derived
using the standard methods of absolute stability theory. Note that condition (3.2) implies well-
posedness (i.e. local existence and continuous dependence on initial conditions) of solutions
to (3.1) for all essentially bounded measurable w(t).

Let x̄ be some solution of (3.1) with harmonic input w. In order to learn more about this solution,
nonlinear system (3.1) is approximated by a linear system using harmonic linearization and the
corresponding harmonic solution is evaluated.

Linear
dynamics

φ(·)

w y

Figure 3.1: A Lur’e system.

The method of harmonic linearization for a Lur’e system with forced harmonic excitation is
applied as follows. Solution x̄ (resp. ȳ) of nonlinear system (3.1) is approximated by a periodic
solution ξ̄ (resp. ζ̄ ) of the linear system{

ξ̇ = Aξ +BKζ +Fw
ζ = Cξ +Dw

(3.3)

in which the scalar nonlinear function φ is replaced by a linear gain K. Here, gain K is to be
determined. If matrix A + BKC does not have eigenvalues on the imaginary axis then for a
harmonic input w(t) = bsin(ωt), with amplitude b > 0 and frequency ω > 0, the linear system
has a unique harmonic steady-state solution ξ̄ (t), and thus a unique harmonic output ζ̄ (t),
which can be described by

ζ̄ (t) = asin(ωt +ψ), (3.4)

with amplitude a = |H(iω)| and phase ψ = tan−1 Im H(iω)
Re H(iω) , where H(iω) is the transfer function

of system (3.3). In the process of harmonic linearization gain K is chosen to minimize the
following criterion

J :=
1
T

∫ T

0
[φ(ζ̄ (t))−Kζ̄ (t)]2dt,
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where ζ̄ (t) = Cξ̄ (t)+Dw(t) and T = 2π/ω is the period of input w. The optimal gain can be
found by solving the condition

dJ
dK

= 0

and is given by

K =
(∫ T

0
ζ̄

2(t)dt
)−1 ∫ T

0
φ(ζ̄ (t))ζ̄ (t)dt.

If, in addition, nonlinear function φ is known to be an odd function, then K(a) is its describing
function

K(a) =
2

πa

∫
π

0
φ(asinθ)sinθdθ . (3.5)

Many examples of calculations of K(a) for various φ can be found in many textbooks on the
describing function method. For example, for the case that the nonlinear function is a saturation
function φ(·) = sat(·) = sign(·)min(1, | · |), the describing function is given by

K(a) =

{
1, a≤ 1

2
π

(
sin−1 (1

a

)
+ 1

a

√
1− 1

a2

)
, a > 1

Note that for the computation of describing function K(a) no knowledge of solution x̄ is re-
quired. That is, an arbitrary solution x̄ of nonlinear system (3.1) is approximated by a harmonic
solution of linear system (3.3), and only this harmonic solution is used for the computation of
K(a). Later on in this chapter, the existence of a 2π/ω periodic solution x̄ is proven for the
nonlinear system with input w(t) = bsin(ωt), and the difference between this periodic solution
and its harmonic approximation ξ̄ is discussed.

So far, the described method of harmonic linearization for harmonically forced Lur’e systems
is identical to the standard method as described in many textbooks. The extension lies in the
following steps.

Once the describing function is known, amplitude a of the harmonic output ζ̄ (t) can be de-
termined as a function of input amplitude b and frequency ω . Under the assumption that A
does not have eigenvalues ±iω , the value of amplitude a can be determined by solving the
so-called harmonic balance equation, which for system (3.3) is computed as follows. Consider
system (3.3) and let s = d

dt :

sξ (t) = Aξ (t)+BKζ (t)+Fw(t),

ζ (t) = Cξ (t)+Dw(t).

After elimination of ξ (s) this results in

ζ (t) = C(sI−A)−1BK(a)ζ (t)+(C(sI−A)−1F +D)w(t),

where I is an identity matrix of appropriate size. Since ζ̄ (t) is a harmonic signal of frequency
ω and amplitude a, and the amplitude of w(t) is b, the following harmonic balance equation is
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Figure 3.2: Left hand side of (3.6) for some Lur’e system with G(iω) = (8iω + 20)/ω2, φ(·) = sat(·)
and ω = 1.

obtained

|1−K(a)G(iω)|2a2 = |C(iωI−A)−1F +D|2b2 (3.6)

where G(iω) = C(iωI−A)−1B. For an autonomous system as usually considered for harmonic
linearization, the right-hand side of (3.6) is equal to zero, as described in Section 2.5. For a
Lur’e system with forced harmonic excitation, however, the right-hand side of (3.6) depends on
the input amplitude b and input frequency ω . The left-hand side of (3.6) is a nonlinear function
of a. Therefore, if this equation is solved for a, there may exist multiple solutions of a for one
pair of (b,ω), see e.g. Figure 3.2. In this figure the left-hand side of (3.6) is plotted as a function
of a, and if for example |1−K(a)G(iω)|2a2 = |C(iωI−A)−1F + D|2b2 = 300 for some pair
of (b,ω), then multiple solutions of a exist. If, on the other hand, there is a unique positive real
solution a(b,ω) for a given pair of (b,ω), the steady-state solution ξ̄ (t) can easily be computed
by filling in K(a(b,ω)) into (3.3) and applying standard analysis tools for linear systems.
If solution a(b,ω) is not unique positive and real for some pair of (b,ω), e.g. there are multiple
solutions for a, then this approach is not applicable for finding a unique steady-state solution
ξ̄ (t) for this pair of (b,ω). Note however, that for other pairs of (b,ω) the approach may still be
applicable.

In the remainder of this thesis, the harmonic linearization is called well-posed if there exists
a unique positive real solution a(b,ω) to the harmonic balance equation (3.6). That is, if the
harmonic linearization of a certain Lur’e system with forced harmonic linearization is well-
posed, it is possible to find a unique linear approximation system with a unique steady-state
solution ξ̄ (t), which in turn can be used to find an approximative description of the frequency
domain behavior of the Lur’e system. In Section 3.3 conditions are presented under which
well-posedness of the harmonic linearization is guaranteed. Section 3.4 deals with the accuracy
of this well-posed harmonic linearization and how this can be used to give a detailed bound on
the frequency domain behavior of the Lur’e system.
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3.3 Well-posedness

In order to find out whether a unique positive real solution a(b,ω) to the harmonic balance
equation (3.6) does or does not exist for certain harmonic input signals, one can of course fill
in all system data and determine graphically (e.g. using plots like Figure 3.2) or numerically
if the solution is unique positive real for a given pair of (b,ω). However, this approach can be
very time-consuming, especially when evaluating a large set of input signals. In this section a
more time-efficient alternative is given, that is, a frequency domain condition is presented under
which a unique positive real solution a(b,ω) is guaranteed.

Before presenting the theorem that introduces the frequency domain condition, first some char-
acteristics of function K(a) are specified. If nonlinear function φ(·) is odd and satisfies either
the sector or the incremental sector condition, then it is possible to characterize function K(a)
as given in the following lemmata.

Lemma 3.1. Assume that the continuous scalar nonlinear function φ is odd and for some µ > 0
satisfies

0≤ φ(y)
y
≤ µ, ∀y ∈ R/{0}.

Then
0≤ K(a)≤ µ, ∀a≥ 0.

Proof. ([40], p285) Describing function K(a) satisfies the lower bound

K(a) =
2

πa

∫
π

0
φ(asinθ)sinθdθ =

2
π

∫
π

0

φ(asinθ)
asinθ

sin2
θdθ ≥ 2

π

∫
π

0
0dθ = 0

and the upper bound

K(a) =
2

πa

∫
π

0
φ(asinθ)sinθdθ =

2
π

∫
π

0

φ(asinθ)
asinθ

sin2
θdθ ≤ 2µ

π

∫
π

0
sin2

θdθ = µ.

Similarly:

Lemma 3.2. Assume that the continuous scalar nonlinear function φ is odd and that for all
y1,y2 ∈ R there is a µ > 0 such that

0≤ φ(y1)−φ(y2)
y1− y2

≤ µ, ∀y1,y2, y1 6= y2.

Then

0≤ K(a1)a1−K(a2)a2

a1−a2
≤ µ, ∀a1,a2 ≥ 0,a1 6= a2. (3.7)



CHAPTER 3. HARMONIC LINEARIZATION FOR HARMONICALLY FORCED LUR’E . . . 27

Proof. Denote

LK :=
K(a1)a1−K(a2)a2

a1−a2
.

Then

LK =
1

a1−a2

(
1
π

∫ 2π

0
φ(a1 sinθ)sinθdθ − 1

π

∫ 2π

0
φ(a2 sinθ)sinθdθ

)
=

1
π

∫ 2π

0

(φ(a1 sinθ)−φ(a2 sinθ))sin2
θdθ

a1 sinθ −a2 sinθ

≤ µ

π

∫ 2π

0
sin2

θdθ = µ

The left inequality is proven in the same way.

Now consider again harmonic balance equation (3.6). The following result holds.

Theorem 3.3. Suppose matrix A does not have eigenvalues ±iω on the imaginary axis and the
frequency domain inequality

Re G(iω) <
1
µ

(3.8)

is fulfilled for a given ω . Then for any function K(a) satisfying (3.7) and for any b > 0 there is
a unique positive real solution a(b,ω) to harmonic balance equation (3.6).

Proof. Consider the left hand side of equation (3.6)

π(a) = |a−K(a)aG(iω)|2

The idea of the proof is to show that if frequency inequality (3.8) holds then π(a) is a strictly
increasing function. Condition (3.7) implies that π(a) is a (Lipschitz) continuous function.
Since π(0) = 0 and π(∞) = ∞, existence and uniqueness of the positive real solution a(b,ω)
of (3.6) follow.

For the sake of simplicity, the theorem is only proven under the assumption that K(a)a is a
differentiable function of a. The general case can be deduced from (3.7), taking into account
that

0≤ liminf
a1→a2

K(a1)a1−K(a2)a2

a1−a2
≤ limsup

a1→a2

K(a1)a1−K(a2)a2

a1−a2
≤ µ.

Differentiating π(a) with respect to a yields

π(a)′

a
= (1− (Ka)′G)(1−KG∗)+(1−KG)(1− (Ka)′G∗)

≥ 2
(
1−
(
K +(Ka)′

)
ReG+K(Ka)′[ReG]2

)
= 2(1−KReG)(1− (Ka)′ReG) (3.9)

Here G∗ stands for the complex conjugate of G. According to (3.7), 0 ≤ K(a) ≤ µ and 0 ≤
(K(a)a)′ ≤ µ . Together with (3.8) this implies that the right-hand side of expression (3.9) is
positive. Thus, π(a) is strictly increasing.
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Remark 3.4. Although the frequency domain inequality in Theorem 3.3 is a necessary con-
dition to ensure a unique solution a(b,ω) to the harmonic balance equation for the class of
functions K(a) satisfying (3.7), it is possible that there exists a unique positive real solution
a(b,ω) for a given nonlinearity φ while the frequency domain inequality is not met.

Remark 3.5. Condition (3.8) needs only to be satisfied for a given frequency ω , in contrast to
the well-known circle criterion, see e.g. [40]. It is therefore possible that for a given system
there exists a unique positive real solution a(b,ω) for some range of frequencies, while for
another range of frequencies it does not exist. This is illustrated further in Example 3.11 in
Section 3.5.

Remark 3.6. If condition (3.8) is satisfied for all frequencies, and in addition A is Hurwitz and
{A,B,C,D} is a minimal realization of G, i.e. the circle criterion holds, then system (3.1), (3.2)
is quadratically convergent (as defined in Section 2.4).

The previous result allows one to complete the procedure of harmonic linearization for sys-
tem (3.1). Indeed, if frequency condition (3.8) holds, there is a unique positive real solution
a(b,ω), given the pair of (b,ω). Then substituting K(a(b,ω)) in (3.3) gives a system that is
linear in ξ . For this system one can calculate the unique harmonic solution ξ̄ (t) using only
algebraic calculations. Like in the harmonic linearization method, one can expect that ξ̄ (t) is
sufficiently close to x̄(t). In Section 3.4 a bound is derived that estimates the difference between
the two solutions with an L2 norm.

3.4 Accuracy

In this section the accuracy of the harmonic linearization procedure is discussed. After the con-
sidered definition of accuracy is given, a theorem is derived that provides sufficient conditions
to find the accuracy of the harmonic linearization.

To formulate the desired definition of accuracy it is assumed that for a given harmonic input
w(t) = bsinωt system (3.1) has a 2π/ω-periodic solution x̄(t). Later on, this assumption is ver-
ified, i.e. sufficient conditions are given that ensure a unique 2π/ω-periodic solution of (3.1).
Now consider together with system (3.1) and the corresponding linear system (3.3) the perfor-
mance outputs

z̄(t) = Hx̄(t), z̄ ∈ R (3.10)

η̄(t) = Hξ̄ (t), η̄ ∈ R (3.11)

with an appropriate matrix H. In order to describe the accuracy of the harmonic linearization,
an upper bound is sought for the following L2 norm(

ω

2π

∫ 2π/ω

0
[z̄(t)− η̄(t)]T [z̄(t)− η̄(t)]dt

) 1
2

. (3.12)
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Note that in order to investigate the entire state instead of an arbitrary one-dimensional perfor-
mance output, matrix H can be replaced by the identity matrix I, although in this case some
small but straightforward adaptations have to be made in the following approach.

Let e be the difference x̄− ξ̄ . Then

ė = Ae+B
[
φ(ȳ)−φ(ζ̄ )

]
−B∆(t)

ȳ = Cx̄+Du (3.13)

ζ̄ = Cξ̄ +Du

where
∆(t) = K(a(b,ω))ζ̄ (t)−φ(ζ̄ (t)).

Substituting (3.4) in the previous expression gives

∆(t) = K(a(b,ω))asin(ωt +ψ)−φ(asin(ωt +ψ)),

where a(b,ω) is the solution of (3.6). Let

v(a(b,ω)) =
(

ω

2π

∫ 2π/ω

0
∆

2(t)dt
) 1

2

.

Filling in ∆(t) and (3.5) results in

v(a) =

(
1

2π

∫ 2π

0

[
2
π

∫
π

0
φ(asinθ)sinθdθ · sinϑ −φ(asinϑ)

]2

dϑ

) 1
2

,

of which the value can be computed if φ and a(b,ω) are known.

Denote
ρ1 := sup

k=±3,±5,...
|C(ikωI−A− µ

2
BC)−1B|

ρ2 := sup
k=±3,±5,...

|H(ikωI−A− µ

2
BC)−1B|

and
γ =

2ρ2

2−µρ1

to be used in the following theorem.

Theorem 3.7. Consider system (3.1) with periodic input w(t) = bsin(ωt) and assume the fol-
lowing conditions are met

1. (A,B) is controllable, (A,C) is observable,

2. harmonic balance equation (3.6) has a unique positive real solution a(b,ω),
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3. frequency domain condition Re G(ikω) < 1/µ is satisfied for k =±3,±5,±7, . . .,

4. φ is an odd function.

Then system (3.1) has a unique 2π/ω-periodic solution x̄(t) and the error between the 2π/ω-
periodic output z̄(t) and η̄(t) is bounded by:

(
ω

2π

∫ 2π/ω

0
[z̄(t)− η̄(t)]T [z̄(t)− η̄(t)]dt

) 1
2

≤ γv(a(b,ω)). (3.14)

Proof. The proof of this result for the case H = C goes along the lines of proof of Lemma 7.1
in [40].

Consider the space S of all half-wave symmetric periodic signals of fundamental frequency
ω , which have finite energy. A signal y ∈S can be represented by its Fourier series

y(t) = ∑
k odd

ak exp(ikωt), ∑
k odd
|ak|2 < ∞.

Let Sh ⊂S be a set of signals y represented by its Fourier series

y(t) = ∑
k odd,|k|6=1

ak exp(ikωt).

The harmonic balance equation has a unique positive solution a, therefore any periodic solution
of the nonlinear system, if it exists, should satisfy

ȳ = ζ̄ +Ce, Ce ∈Sh

where, as before e = x̄− ξ̄ .

First, it is proven that under the given conditions the linear approximation system (3.3) has a
unique solution ξ̄ (t), and that the nonlinear system (3.1) has a unique 2π/ω-periodic solution
x̄(t).

Since the harmonic balance equation has a nonzero solution a it follows that

1−K(a(b,ω))G(iω) 6= 0,

with as before G(iω) = C(iωI−A)−1B. This implies that the closed-loop transfer function
of (3.3), i.e. G/(1−KG), has no poles ±iω on the imaginary axis. Since system (3.3) can be
rewritten as ξ̇ = (A+BKC)ξ +(F +BKD)w and (A,B) is controllable and (A,C) is observable
(i.e. {A,B,C,D} is a minimal realization of G), this also implies that matrix A + BKC has
no eigenvalues ±iω on the imaginary axis. Therefore, the linear approximation system has a
unique solution ξ̄ (t), which has the same period T = 2π/ω as the input signal.
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In order to prove that the nonlinear system (3.1) also has a unique 2π/ω-periodic solution,
consider the nonlinear operator T , defined on space S

T y = G(iω)φ(y) = W (iω)(φ(y)− µ

2
y),

where W = G/(1− µG/2). Let y1,y2 ∈S be two periodic functions such that y1− y2 ∈Sh.
Taking the L2 norm of T y1−T y2 gives

||T y1−T y2||2 = ||W (iω)(φ(y1)−
µ

2
y1)−W (iω)(φ(y2)−

µ

2
y2)||2

≤ ||W (iω)||2 · ||φ(y1)−
µ

2
y1−φ(y2)+

µ

2
y2||2

and, since φ(y1)− µ

2 y1−φ(y2)+ µ

2 y2 belongs to Sh this simplifies to

||T y1−T y2||2 ≤ sup
k=±3,±5,...

|W (ikω)| · ||φ(y1)−
µ

2
y1−φ(y2)+

µ

2
y2||2.

Applying the incremental sector condition (3.2) gives

||T y1−T y2||2 ≤ sup
k=±3,±5,...

|W (ikω)| · µ
2
||y1− y2||2.

Furthermore, since

|W (ikω)|2 =
G∗(ikω)G(ikω)

(1− µ

2 G∗(ikω))(1− µ

2 G(ikω))
=

G∗(ikω)G(ikω)

(1−µRe(G(ikω))+ µ2

4 G∗(ikω)G(ikω))

and condition 3 of Theorem 3.7 holds:

|W (ikω)|2 <
G∗(ikω)G(ikω)

µ2

4 G∗(ikω)G(ikω)
for all k =±3,±5, . . .

|W (ikω)| <
2
µ

for all k =±3,±5, . . . (3.15)

this results in
||T y1−T y2||2 < ||y1− y2||2,

from which the existence of a unique 2π/ω-periodic solution x̄(t) follows according to the
contraction mapping argument and observability of (A,C).

To estimate (3.12), i.e. ||He||2, rewrite system (3.13) as

ė = (A+
µ

2
BC)e+B

[
φ(ȳ)− µ

2
ȳ−φ(ζ̄ )+

µ

2
ζ̄

]
−B∆(t)

ȳ− ζ̄ = Cē

z̄− η̄ = Hē
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and notice that

sup
k=±3,±5,...

|W (ikω)|= sup
k=±3,±5,...

|C(ikωI−A− µ

2
BC)−1B|= ρ1.

Then, by analogy with the previous part of the proof, it follows that

||Ce||2 ≤
ρ1µ

2
||Ce||2 +ρ1||∆||2

and

||He||2 ≤
ρ2µ

2
||Ce||2 +ρ2||∆||2

and finally,

||He||2 ≤
2ρ2

2−µρ1
||∆||2 = γν(a).

Since ρ1 = supk=±3,±5,... |W (ikω)|< 2
µ

as shown in (3.15), γ is finite.

Remark 3.8. Due to Theorem 3.3, conditions 2 and 3 of Theorem 3.7 can be replaced by a
stronger condition: Re G(ikω) < 1/µ for k =±1,±3,±5, . . ..

Note that under the conditions in Theorem 3.7, the system is not necessarily convergent. Al-
though the system is guaranteed to have a unique 2π/ω-periodic solution x̄(t) under the given
conditions, periodic solutions with a different period may coexist. A situation in which all
conditions of Theorem 3.7 are satisfied, but multiple periodic solutions exist, is given in Ex-
ample 3.11 in Section 3.5. In order to make sure that linear approximation (3.3) and error
bounds (3.14) actually describe the only solution of the nonlinear system, one needs to prove in
a different way that the system is convergent. The topic of convergent systems, as described in
Section 2.4, is discussed further in Chapters 4-6.

3.5 Illustrating examples

In this section, the theory as presented in this chapter is illustrated by means of three examples.
All examples are based on a Lur’e system with a saturation nonlinearity, of which the system
equations are given by 

ẋ = Ax+Bsat(y)+Fw
y = Cx+Dw
z = Hx

(3.16)

with w = bsin(ωt). In the examples it is made clear how the obtained theoretical results can
be used for frequency domain analysis of harmonically forced Lur’e systems. Furthermore the
results of this frequency domain analysis are compared with the L2 gain, which is an often
used performance index for nonlinear systems.
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Example 3.9. In this example, a system of type (3.16) is considered for which matrix A is
Hurwitz and the frequency domain condition (3.8) is satisfied for all frequencies. The system
matrices are given by

A =

[
−5 0
4 −10

]
, B =

[
1

0.5

]
, F =

[
0
−4

]
, C =

[
−10 20

]
, D =

[
10
]
, H =

[
1 0

]
.

Note that the saturation function satisfies the (incremental) sector condition with µ = 1. From
Figure 3.3, which shows the Nyquist plot for G(iω) = C(iωI − A)−1B, it can be seen that
Re G(iω) is indeed smaller than 1

µ
= 1, i.e. condition (3.8) is met for all frequencies ω , thus

the harmonic linearization is well-posed for all harmonic inputs w with arbitrary b > 0 and
ω > 0.
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Figure 3.3: Nyquist plot for G(iω).

The performance of this system, in terms of nonlinear complementary sensitivity function
(nCSF) ||z||2/||w||2, can now be established using Theorem 3.7 for any b > 0 and an arbitrary
range of frequencies ω . This approach results in an nCSF for the harmonic linearization, and
an upper- and lower bound, between which the nCSF of the nonlinear system is known to be.
Furthermore, since the system is quadratically convergent (see Remark 3.6) simulation-based
analysis as proposed in Section 2.4 can also be used to find the exact nCSF of the nonlinear sys-
tem, although this approach is more time-consuming than the harmonic linearization approach.
Finally, for system (3.16) with Hurwitz matrix A, also (an upper bound on) the L2 gain can
be computed using LMIs, as explained in Section 2.3. In Figure 3.4 the results of all these
approaches are plotted for b = 1 and ω ∈ [10−2,102].

As can be seen in Figure 3.4, the true nCSF as computed using the simulation-based analysis for
convergent systems (dots) is approximated quite well by the nCSF of the harmonic lineariza-
tion (solid line), and lies well between the computed upper- and lower bound (dotted lines).
The (upper bound on the) L2 gain is simply a horizontal line in this figure, and contains no
information on the dependence of the system’s behavior on the frequency ω .
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Figure 3.4: Frequency domain analysis for system (3.16), Example 3.9.

4

Example 3.10. In this example, a marginally stable system is considered (matrix A has one
eigenvalue 0 and one eigenvalue -5), while the frequency domain condition (3.8) is still satisfied
for all frequencies ω 6= 0. The system matrices for the considered system (3.16) are as follows

A =

[
0 0
1 −5

]
, B =

[
1

0.5

]
, F =

[
0
−1

]
, C =

[
−4 10

]
, D =

[
4
]
, H =

[
1 0

]
.

Since the system is marginally stable, no finite L2 gain estimate can be found from w to z
for H = [1, 0] using a quadratic storage function as described in Section 2.3. The results
of [49, 75] suggest that to find a finite L2 gain in this case, one can try to use nonquadratic
storage functions. However, even if such a gain can be found, it only corresponds to the worst-
case behavior of the system. Furthermore, since matrix A is not Hurwitz, the system is not
quadratically convergent. Nevertheless, in Chapter 4 it is shown that this system is uniformly
convergent, and hence it would be possible to determine the exact nCSF of the nonlinear system.
However, for now it is assumed that only the results of the harmonic linearization approach are
available. One can verify that frequency domain condition (3.8) holds for all frequencies ω 6= 0.
The results of this approach are plotted in Figure 3.5 for b = 1 and ω ∈ [10−2,102].

In this figure, the nCSF for the harmonic linearization and the bounds on the accuracy are
plotted. Even though the exact nCSF of the nonlinear system is not plotted in this figure, the
harmonic linearization results still give a very good idea about what this exact nCSF should
look like, since the bounds are very tight. For this case, the distance between the upper- and
lower bound, i.e. the ‘uncertainty’ on the exact nCSF, goes to zero for low frequencies. This
can be explained by the fact that for low frequencies the value of y remains within the bounds
of the saturation, and hence the system behaves in a linear way.
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Figure 3.5: Frequency domain analysis for system (3.16), Example 3.10.

4

Example 3.11. In this example, again a marginally stable system is considered, but now the
frequency domain condition is not satisfied for all frequencies, which implies that the harmonic
linearization may not be well-posed for all frequencies. Consider system (3.16) with system
matrices

A =

[
0 0
−1 0

]
, B =

[
1
0

]
, F =

[
0
1

]
, C =

[
−10 20

]
, D =

[
10
]
, H =

[
0 1

]
.

Since the system is marginally stable, no finite L2 gain estimate can be found from w to z for
H = [0, 1] using a quadratic storage function, and the system is not quadratically convergent.
In fact, this system is not even (uniformly) convergent for the class of harmonic inputs, i.e. for
some harmonic input signals the system has multiple stable periodic solutions. Nevertheless,
Theorem 3.7 can be used to estimate the performance of the system for some harmonic input
signals, as is shown in Figure 3.6 for b = 5 and ω ∈ [100,102].

As one can see, Figure 3.6 contains only data for ω ≥ 1.4908 [rad/s]. For ω < 1.4908 con-
dition 3 of Theorem 3.7 is not satisfied, and hence uniqueness of the T = 2π/ω-periodic so-
lution cannot be guaranteed, and an upper bound for (3.12) cannot be computed. Although
frequency domain condition (3.8) is only satisfied for ω ≥ 4.4724 (which makes sense since
this is 3× 1.4908), one can verify that for ω ∈ [1.4908,4.4724] the harmonic balance equa-
tion (3.6) still has a unique solution a(b,ω) and hence the harmonic linearization is well-posed.
Nevertheless, since there is no proof in this case that the T = 2π/ω-periodic solution is the only
periodic solution of this system, the result in Figure 3.6 must be handled with caution: it only
holds for the T = 2π/ω-periodic solution.
Indeed, for a harmonic input with b = 5 and ω = 2, the system has stable periodic solutions
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Figure 3.6: Frequency domain analysis for system (3.16), Example 3.11.

with a different period, as shown in Figure 3.7, while all conditions of Theorem 3.7 are sat-
isfied. The three steady-state solutions, respectively T -periodic, 5T -periodic and 7T -periodic,
have been obtained for the initial conditions x0 = [−0.4401, −2.7056], x0 = [2.2638, 2.7504],
and x0 = [4.0096, 4.6892]. Note that even more periodic solutions may exist than the ones
plotted in Figure 3.7.
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Figure 3.7: Multiple steady-state solutions with different period.

In line with the result in Figure 3.7, it is interesting to note that for a long time it was a common
belief that periodically forced nonlinear systems should have a unique periodic steady-state
response. In 1927, Van der Pol and Van der Mark [104] demonstrated that this is not the case,
even for a simple second order system. Nevertheless, in 1945, Cartwright and Littlewood [8]
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remarked that their belief in their own results was at that time only sustained by the experimental
evidence that stable subharmonics of two different orders did occur. Currently, it is well known,
by Melnikov’s method, see e.g. [106], that a periodically forced system can exhibit chaotic
behavior. 4

For the three examples given in this section, the harmonic linearization approach has been
illustrated and compared with the exact results (if available) and with the L2 gain, an often
used performance index for nonlinear systems. The examples showed that although (an upper
bound on) the L2 gain can be computed very fast using LMIs (see Section 2.3), it only provides
a rough estimate on frequency domain performance of the system. For some cases, i.e. for
marginally stable systems, a (finite) L2 gain estimate cannot even be found using a quadratic
storage function.

Furthermore, it was observed that the harmonic linearization approach is a computationally ef-
ficient method to get an impression on a Lur’e system’s frequency domain behavior, in compar-
ison to the simulation-based analysis for convergent systems. An advantage of the simulation-
based analysis for convergent systems, however, is that the system behavior can be investigated
for a much wider class than only harmonic input signals. The results of the harmonic lineariza-
tion approach should be used with caution, since other stable periodic solutions may exist with a
different period. Convergent systems theory may be used to assure that the T = 2π/ω-periodic
solution is actually the only stable solution of the system.

A final remark is made on the fact that the error bound (3.12) for the system with Hurwitz
matrix A (Example 3.9) does not go to zero for small frequencies, while for the marginally
stable system (Example 3.10) it does go to zero. This is caused by the fact that for the marginally
stable system a(b,ω) < 1 for small frequencies, and thus ν(a) = 0. For the system with Hurwitz
matrix A and b = 1, on the other hand, amplitude a remains larger than 1 for all frequencies.
For smaller values of b or a different choice of system parameters, however, a may also become
smaller then 1.

3.6 Discussion

In this chapter, a computationally efficient approach was presented, based on the method of
harmonic linearization, to analyse the frequency domain performance of nonlinear systems
of Lur’e type with forced harmonic excitation. To the best of the author’s knowledge, the
existing harmonic linearization technique was not suitable for the approximation of this type
of nonlinear systems, because the harmonic balance equation could have multiple solutions. In
this chapter, a frequency domain condition was provided which, if satisfied, ensures a unique
positive real solution to the harmonic balance equation. Furthermore, an upper bound was found
for the L2 norm of the error between the solutions of the Lur’e system and its approximation
obtained by harmonic linearization.
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By means of three examples the obtained theory was illustrated. These examples showed that
the proposed frequency domain analysis based on harmonic linearization often provides more
detailed information on the considered system than the often used L2 gain. It was also shown
that for some systems, such a (finite) L2 gain estimate cannot even be found using a quadratic
storage function (as described in Section 2.3), while the harmonic linearization approach still
can provide detailed results.
In the examples it also became clear that although simulation-based analysis can predict exact
behavior for convergent systems, the approximative analysis based on harmonic linearization is
a good alternative, which is much more time-efficient.

It is worth mentioning that the frequency domain analysis by means of the harmonic lineariza-
tion approach as presented in this chapter has already been used for a practical application [67],
i.e. analysis of a nonlinearly controlled optical storage drive.

Although the presented harmonic linearization approach already provides useful results, some
interesting issues remain for future work. As mentioned in Section 3.4, the conditions in Theo-
rem 3.7 are only used to prove existence and uniqueness of a 2π/ω-periodic solution. Existence
of solutions with a different period is not excluded, as is shown in Example 3.11 in Section 3.5.
However, it is conjectured that if condition 3 of Theorem 3.7 is extended to include also fre-
quency ω , i.e. the frequency domain condition (3.8) is satisfied for ω,3ω,5ω,7ω, . . ., then the
conditions of Theorem 3.7 may also be sufficient to prove that the T = 2π/ω-periodic solution
is the only bounded solution of the system with harmonic input bsin(ωt). Future research must
point out if this conjecture is true.
Another interesting issue for future work is that besides using the presented approach to eval-
uate frequency domain behavior of nonlinear systems of Lur’e type, it is suspected that this
approach can also be used to design such a nonlinear system to meet certain performance re-
quirements. Using the efficient way of computing performance and estimation error, one can try
to develop an efficient procedure to find suitable system parameters in the linear approximation
and minimize the corresponding estimation error.

In the remainder of this thesis, the harmonic linearization approach as presented in this chap-
ter is used together with the simulation-based analysis for the frequency domain performance
analysis of convergent systems.



Chapter 4

Performance Analysis for Externally Forced

Lur’e Systems with Saturation

Abstract In this chapter, a theorem is derived to establish uniform convergency
for externally forced Lur’e systems with a saturation nonlinearity and marginally
stable linear part. This result is shown to be also applicable in the field of anti-
windup systems, where it provides a means to analyse the steady-state performance
of these systems. Furthermore it is discussed how the notion of convergent systems
can be used in combination with existing anti-windup design methods, and what
the added value of the convergency property is in this case. Various examples are
given, which include results from both simulation and real-time experiments, to
illustrate the developed theory and to show how this theory can be used to analyse
a system’s performance.

4.1 Introduction

In Section 2.4 definitions and some properties have been given for both quadratically conver-
gent and uniformly convergent systems. In the past, several results have been found to prove
quadratic convergency for different types of nonlinear systems, see e.g. [63, 65]. These results,
however, are not applicable for a nonlinear system of Lur’e type with a marginally stable linear
part. To prove that such a system is uniformly convergent, on the other hand, no constructive
results were available so far. In this chapter, such a result is derived for Lur’e systems with a
saturation nonlinearity and marginally stable linear part. That is, sufficient (constructive) con-

39
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ditions are found under which this type of systems is guaranteed to be uniformly convergent.

An application area in which the convergency property can be useful is the anti-windup design
for linear control systems with actuator saturation. The presence of actuator saturation in an
otherwise linear closed-loop system can dramatically degrade the performance of that system.
This performance degradation is caused by the so-called ‘controller windup’: an integral ac-
tion or relatively slow mode in the controller causes the control signal to grow (windup) while
saturation occurs. A terrifying example of the effects that controller windup can cause is given
by the pilot induced oscillations that caused the YF-22 crash in April 1992 [14] and the Gripen
crash in August 1993 [86]. The study of anti-windup design deals with synthesizing an addi-
tional controller that compensates for this performance degradation. This study received a lot of
attention during the last decades and has resulted in many proposals for both linear and nonlin-
ear anti-windup designs (see e.g. [22, 24, 25, 29, 41, 77, 90]). A relatively simple introduction
to the field of anti-windup design can be found in [21].

In this chapter, the theory on uniform convergency is applied to the field of anti-windup systems
with a marginally stable plant, in order to analyse the steady-state performance of these systems.
Although there exist in literature some anti-windup techniques (e.g. [39, 90]) that are able
to guarantee global anti-windup for such systems, the convergent systems approach applied
here is new. That is, whereas the existing anti-windup methods focus on guaranteeing some
form of (incremental) L2 stability of the system, this convergent systems approach focusses
on ensuring a unique limit solution. Since in some cases the anti-windup methods also lead to
convergent system behavior, a comparison is made that clarifies the exact differences between
the convergent systems approach and the existing anti-windup methods. This comparison also
clarifies that new insights can be gained from the convergent systems approach.

For anti-windup systems with an asymptotically stable plant, quadratic convergency can be
proven using the theory of V.A. Yakubovich [109], see also [65]. A similar result has been
obtained in [22]. However, for systems with a marginally stable plant as discussed in this
chapter, quadratic convergency cannot be obtained and hence the focus lies on establishing
uniform convergency.

The remainder of this chapter is organized as follows. Section 4.2 introduces the considered
Lur’e system with saturation nonlinearity and provides a theorem with sufficient conditions
under which this system is uniformly convergent. Section 4.3 describes how the obtained theo-
retic results can be applied in the field of anti-windup design, and provides a comparison with
existing anti-windup design methods. In the second part of this chapter, the convergent sys-
tems approach is applied to analyse the system’s performance in two case studies. The first
case study (Section 4.4) deals with the performance analysis of an anti-windup system with an
integrator plant, while in the second case study (Section 4.5) similar results are obtained for a
second (more complex) anti-windup system with a marginally stable plant. For both case stud-
ies, simulation and experimental results are used to illustrate the convergent systems approach.
Finally, Section 4.6 gives a discussion on the results obtained in this chapter.
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4.2 Uniform convergency for Lur’e systems with satura-

tion and marginally stable linear part

Consider a Lur’e system with saturation nonlinearity as given by the following equations

ẋ = Ax+Bsat(u)+Fw

u = Cx+Dw

y = Hx

(4.1)

where x ∈ Rn is the state, u ∈ R is the control input, w ∈ Rm is the external input (e.g. ref-
erence, disturbance), y ∈ Rp is the output, and the saturation function is defined as sat(u) =
sign(u)min(1, |u|). Matrix A is marginally stable, i.e. there exists a P = PT > 0 such that
PA+AT P≤ 0. Furthermore, it is assumed that matrix A has at least one eigenvalue equal to 0.
Without loss of generality assume that x = [ x1, x2 ]T with x1 ∈ R1, x2 ∈ Rn−1 and

A =

[
0 0
0 A2

]
, B =

[
B1

B2

]
, F =

[
F1

F2

]
, (4.2)

where obviously B1 is a scalar. If system (4.1) does not satisfy (4.2), a similarity transformation
can be performed to obtain the desired form (4.2). Note that the convergency property for a
system is coordinate independent, and thus it holds under a similarity transformation. External
input w is assumed to belong to class W which is defined below.

Definition 4.1. A continuous function t 7→ w(t), w(t) ∈Rm is said to belong to class W if w(t)
is bounded and if it satisfies the following conditions
1. Dw(t) is uniformly continuous,
2. ∀t ∈ R, |F1w(t)|< α1|B1| for some constant α1 < 1.

The remainder of this section is written towards Theorem 4.3 which states under which condi-
tions system (4.1) with w ∈W is uniformly convergent.

Consider a system consisting of two copies of (4.1) with identical inputs:

ẋAB =

[
A 0
0 A

]
xAB +

[
B 0
0 B

][
sat(uA)
sat(uB)

]
+

[
F
F

]
w, (4.3)

with xAB = [ xA, xB ]T = [ x1A, x2A, x1B, x2B ]T , uA = CxA +Dw and uB = CxB +Dw. Define
the function ξ (t) as follows

ξ (t) =


sat(uB)−sat(uA)

uB−uA
if uA(t) 6= uB(t);

1 if uA(t) = uB(t), |uA(t)|< 1 and |uB(t)|< 1;
0 otherwise.

Furthermore, since the function sat(·) satisfies the incremental sector condition it follows that
0≤ ξ (t)≤ 1 for all t.
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Lemma 4.2. Assume system (4.1) with w ∈ W is uniformly ultimately bounded (as defined in
Section 2.1). Then, given a w ∈W , there is a δ > 0 such that for any solution xAB(t, t0,xAB,0)
of (4.3) starting from some compact set Ω there exist a T̄ = T̄ (Ω) > 0, such that for all t ≥ t0
it follows that ∫ t+T̄

t
ξ (s)ds≥ δ .

Proof. First, it is assumed that the initial conditions are taken from Ω+, where Ω+ is a positively
invariant set with respect to system (4.1) with w ∈ W , that exists due to the uniform ultimate
boundedness of the system.

From (4.1), (4.2) it follows that

ẋ1A = B1sat(uA)+F1w

and therefore for any t ≥ t0, T > 0

x1A(t +T )− x1A(t) =
∫ t+T

t
B1sat(uA(s))ds+

∫ t+T

t
F1w(s)ds. (4.4)

Dividing both sides of (4.4) by T and taking the absolute value gives∣∣∣∣B1

T

∫ t+T

t
sat(uA(s))ds

∣∣∣∣ =
∣∣∣∣x1A(t +T )− x1A(t)

T
− 1

T

∫ t+T

t
F1w(s)ds

∣∣∣∣
≤

∣∣∣∣x1A(t +T )− x1A(t)
T

∣∣∣∣+ ∣∣∣∣ 1
T

∫ t+T

t
F1w(s)ds

∣∣∣∣ .
Note that due to Definition 4.1 and the assumption that system (4.1) is uniformly ultimately
bounded, it follows that second term of the right hand side is strictly smaller than |B1|, and that
by making T sufficiently large, one can make the first term of the right hand side arbitrarily
small. In other words, for a sufficiently large T̄ = T̄ (Ω+) there is a constant α < 1, that can be
chosen independently of t0 such that∣∣∣∣ 1

T̄

∫ t+T̄

t
sat(uA(s))ds

∣∣∣∣≤ α < 1. (4.5)

Due to the mean value theorem, it follows from (4.5) that there is an η ∈ (t, t + T̄ ] such that
|sat(uA(η))| ≤ α < 1, i.e. in the time interval (t, t + T̄ ] there is always a moment in which
‘one copy’ of (4.3) is in the linear mode (|uA| < 1). From the assumption of uniform ultimate
boundedness it follows that ẋA(t) is bounded and thus xA(t) is uniformly continuous. Using also
Definition 4.1 it can be concluded that function sat(uA(t)) is uniformly continuous on [t0,∞).
Now choose some ε > 0 such that α +ε < 1. Since sat(uA(t)) is uniformly continuous there is
a number ∆t > 0, independent of t0, such that

|sat(uA(τ))| ≤ α + ε < 1, ∀τ ∈ [η−∆t, η +∆t].



CHAPTER 4. PERFORMANCE ANALYSIS FOR EXTERNALLY FORCED LUR’E . . . 43

Among the possible values, choose ∆t such that [η−∆t, η +∆t]⊂ (t, t + T̄ ]. Now, integrating
nonnegative ξ from t till t + T̄ yields∫ t+T̄

t
ξ (s)ds≥

∫
η+∆t

η−∆t
ξ (s)ds≥ 2∆tξmin,

where
ξmin = min

τ∈[η−∆t, η+∆t]
ξ (τ).

For this case, in which sat(uA) = uA ≤ α +ε < 1, the minimum value of ξ (τ) is obtained for a
maximal value of uB, i.e.

ξmin =
sat(uB)− sat(uA)

uB−uA
≥ 1− (α + ε)

uB,max− (α + ε)
> 0

where uB,max is the maximum value of |uB| that can be obtained for a given w ∈ W and any
xB ∈ Ω+. Note that also for the case in which uB,max < 1 (and thus sat(uB) < 1) it holds that
ξmin > 0. Therefore, ∫ t+T̄

t
ξ (s)ds≥ 2∆t

1−α− ε

uB,max−α− ε
> 0.

The last inequality implies the inequality from Lemma 4.2 with

δ = 2∆t
1−α− ε

uB,max−α− ε
.

To prove the lemma, recall the definition of uniform ultimate boundedness (Section 2.1) and,
for an arbitrary compact set Ω, take T̄ (Ω) = T̄ (Ω+)+T (Ω), where T (Ω) is from the definition
of uniform ultimate boundedness. Note that δ is independent of the initial conditions from Ω,
and only depends on the positively invariant set Ω+ and input w ∈W .

In the following theorem the main result of this chapter is presented.

Theorem 4.3. If system (4.1) with w ∈ W is uniformly ultimately bounded, and in addition
there exists a Lyapunov matrix P = PT > 0 such that

PA+AT P≤ 0 (4.6)

and
P(A+BC)+(A+BC)T P < 0, (4.7)

then system (4.1) is uniformly convergent for every input w ∈W .

Note that if there is a Lyapunov matrix P = PT > 0 such that PA + AT P < 0 (instead of con-
dition (4.6)) and P(A + BC) + (A + BC)T P < 0 hold, then the corresponding system can be
proven to be quadratically convergent. However, matrix A in system (4.1) is marginally stable
thus PA+AT P < 0 cannot be satisfied. The proof of Theorem 4.3 is given below.
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Proof. Consider for system (4.3) the Lyapunov-like function

V (xAB) = xT
AB

[
P −P
−P P

]
xAB ≥ 0,

with xAB = [ xA, xB]T . Denote e = xA− xB and ϕ = sat(uA)− sat(uB). Then the derivative of
V satisfies

V̇ = eT (PA+AT P)e+2eT PBϕ

= eT (PA+AT P)e+2eT PBCeξ

= eT (PA+AT P)e(1−ξ )

+ eT (P(A+BC)+(A+BC)T P)eξ

≤ eT (P(A+BC)+(A+BC)T P)eξ .

It follows then that V satisfies the following inequality

V̇ ≤ λmaxξ (t)V,

in which λmax < 0 is the largest solution of the following generalized eigenvalue problem

det
(
P(A+BC)+(A+BC)T P−λP

)
= 0.

Hence
∫ t0+T̄

t0 λmaxξ (t)dt ≤ λmaxδ < 0 with δ from the statement of Lemma 4.2. Using the
Gronwall-Bellman lemma (see e.g. [1]) one can see that V → 0 as t→∞ uniformly in time and
uniformly in the initial conditions from Ω. Since the system is uniformly ultimately bounded, Ω

is an arbitrary compact set, and all solutions are globally uniformly asymptotically stable. Due
to Property 2.5 there is a bounded solution x̄(t) defined on the whole time interval (−∞,+∞)
and thus system (4.1) is uniformly convergent for every w ∈W . Note that due to Property 2.7
this solution x̄(t) is the unique solution bounded on (−∞,+∞).

As one can see, this proof is based on a PE-like (persistency of excitation) property that follows
from Lemma 4.2. More advanced results in this direction can be found in [53, 62].

Remark 4.4. If the input of system (4.1) is a periodic function of time, then the proof of
Theorem 4.3 can be simplified if one employs an extension of the LaSalle principle for periodic
time-varying systems, see e.g. [79]. The approach used here is more general, yet requires the
regularity assumption imposed on Dw.

In the following section, it is shown that the presented theorem can also be applied to prove
uniform convergency of anti-windup systems with a marginally stable plant, and it is explained
how this result can be used in addition to the existing synthesis methods for anti-windup sys-
tems.
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4.3 Uniform convergency for anti-windup systems with a

marginally stable plant

Consider the system in Figure 4.1 with plant dynamics

ẋp = Apxp +Bp (sat(u)+w1)
yp = Cpxp

(4.8)

where Ap is marginally stable with at least one eigenvalue 0. The controller dynamics are given
by

ẋc = Acxc +Bc(w2− yp)+Law (sat(u)−u)
u = Ccxc +Dc(w2− yp)

(4.9)

in which Law is a static anti-windup gain.

Controller

Anti-windup
compensation

Marginally
stable plant

w2 +
u

+ −

+

w1

+ y
−

Figure 4.1: Anti-windup scheme with marginally stable plant.

For the given system the closed-loop dynamics can be written in Lur’e form (4.1) with x =
[ xp, xc ]T ∈ Rn, w = [ w1, w2 ]T ∈W , and

A =

[
Ap 0

LawDcCp−BcCp Ac−LawCc

]
,

B =

[
Bp

Law

]
, F =

[
Bp 0
0 Bc−LawDc

]
,

C =
[
−DcCp Cc

]
, D =

[
0 Dc

]
, H =

[
Cp 0

]
.

After a similarity transform, this system fits the form (4.2), and hence Theorem 4.3 can be
applied to establish uniform convergency of this system. In Section 4.4 it is demonstrated for a
relatively simple system how the static anti-windup gain Law can be chosen in such a way that
the system is convergent.
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Note that also for dynamic anti-windup compensation, for example as proposed in [90], with
plant dynamics (4.8) and controller dynamics given by

ẋc = Acxc +Bc(w2− yp− v2)

u = Ccxc +Dc(w2− yp− v2)+ v1

ẋaw = Apxaw +Bp (sat(u)−u+ v1)

v1 = k(xaw)

v2 =−Cpxaw

(4.10)

with some linear function k(xaw), the closed-loop system equations can be written in Lur’e
form (4.1), and hence Theorem 4.3 can be applied.

In order to clarify the difference between a convergent systems approach for anti-windup syn-
thesis and the L2 anti-windup synthesis in e.g. [39, 90], first consider the definition by Teel
and Kapoor [90] of the global (nominal) anti-windup problem. Loosely speaking, this definition
states that the problem is to find a (static, dynamic) anti-windup modification of a predefined
linear system with actuator saturation such that

1. if the control signal never saturates, then the closed-loop trajectories of the system with
saturation and anti-windup equal those of the corresponding linear system (without satu-
ration and anti-windup), i.e. if sat(u(t))≡ u(t) then x(t)≡ xlin(t)

2. if (sat(ulin(t))−ulin(t)) ∈L2 then (x(t)− xlin(t)) ∈L2.

Here, x and u represent respectively the state and control input of the system with actuator satu-
ration and anti-windup compensation, whereas xlin and ulin represent the state and control input
of the corresponding linear system (i.e. without saturation and anti-windup compensation).

If ||sat(ulin)− ulin||2 is finite then, by the result of [39, 90], ||x− xlin||2 is also finite, but it is
not guaranteed that x(t) converges to xlin(t). If in addition to the assumptions in [39, 90] it
is known that the nonlinear system is uniformly ultimately bounded and input w is bounded,
it follows that ẋ− ẋlin is bounded and hence x− xlin is uniformly continuous. By Barbalat’s
lemma (see e.g. [40]), it then follows that x(t) eventually converges to xlin(t). Since xlin(t) is
the solution of a linear system, it converges to a unique limit solution (provided that matrix
A + BC is Hurwitz), and hence x(t) eventually converges to a unique limit solution, which is
independent of the initial conditions, and only depends on the external input signals.

If, on the other hand, ||sat(ulin)−ulin||2 is not finite, then based on the assumptions in [39, 90],
no conclusions can be drawn about whether the system has a unique limit solution or not, and
only an upper bound on the performance of the system may be found (using e.g. the extended
L e

2 norm). Using a convergent systems approach, however, one can prove the existence of
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a unique limit solution, even for the case in which ||sat(ulin)− ulin||2 is not finite. This limit
solution can then be determined exactly using simulation, as mentioned in Section 2.4.

It is interesting to note that the marginally stable plant (4.8) with the dynamic anti-windup
design (4.10) and k(xaw) = −BT

p Pxaw as proposed in [90], can be proven to be uniformly con-
vergent, if Ap−BpBT

p P is Hurwitz (this is always the case if Ap,Bp is stabilizable), the system
is uniformly ultimately bounded, and the external input signals satisfy Definition 4.1. Since
the full proof of this claim is not interesting within the scope of this chapter, only the rough
directions of this proof are given and technical details are omitted:
Using system equations (4.8) and (4.10) one can construct the following relation:

u = H3sat(u)+
H3H2H1−H2H1

1+H2H1
w1 +

H2−H3H2

1+H2H1
w2

with H1 =Cp(sI−Ap)−1Bp, H2 =Cc(sI−Ac)−1Bc +Dc, H3 =−BT
p P(sI−Ap)−1Bp, and s = d

dt .
The dynamics of H3 can for example be described by the following state-space representation:

ζ̇ = Apζ +Bpsat(u),
u =−BT

p Pζ .

Matrix P = PT > 0 is such that PAp + AT
p P ≤ 0 and P(Ap−BpBT

p P) + (AT
p −PBpBT

p )P < 0.
If in addition the system is ultimately bounded and input w satisfies Definition 4.1, then all
conditions of Theorem 4.3 are satisfied, and hence the system with the dynamic anti-windup as
proposed in [90] is uniformly convergent.
From this result one can conclude that based on the convergent systems approach, an additional
result can be obtained for the same anti-windup design, i.e. a result that can also be applied if
||sat(ulin)−ulin||2 is not finite.

Note that for anti-windup systems with an asymptotically stable plant, the convergent systems
approach can also be used, using existing results on quadratic convergency of Lur’e systems, see
e.g. [109] or [65]. In order to find an anti-windup compensator that optimizes the performance
of the convergent closed-loop system, one can use some simulation-based optimization scheme
that optimizes the steady-state trajectory of the system for some performance index. Also, the
existing static and dynamic anti-windup synthesis methods (possibly with extension to L e

2 )
can be used in combination with the convergent system approach to obtain a more detailed
performance analysis.

Concluding, one can observe that the convergent system approach is an alternative approach
to the anti-windup problem. Whereas existing anti-windup methods, as discussed in [39, 90],
focus on the design of anti-windup compensators, this convergent system approach focusses
on performance analysis of systems with anti-windup compensation. It does not directly result
in new anti-windup designs, but provides new performance insights for existing anti-windup
designs, especially when ||sat(ulin)− ulin||2 is not finite, for which most existing anti-windup
synthesis methods provide no performance analysis. The case in which ||sat(ulin)− ulin||2 is
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not finite for example occurs for (periodic) reference signals, which now and then keep forcing
the control signal to saturate. If the fraction of time that the control signal saturates is small
enough, one can argue not to use a (more expensive) actuator with saturation bounds that are
less tight, but use an appropriate anti-windup compensator instead.

The following two sections contain several examples that demonstrate the convergent systems
approach for a static anti-windup design for systems with a marginally stable plant.

4.4 Case study 1: Performance analysis of an anti-windup

system with an integrator plant

In this section, the performance of the system in Figure 4.2 is investigated using the theory
described in the previous two sections. For that purpose, first it is shown that this system is
uniformly convergent if the anti-windup gain kA satisfies a specific condition. Then, by means
of simulation and experimental results, the behavior of the system is illustrated for both the
case in which this condition is not met, and the case in which the condition is met. Finally,
a frequency-domain performance analysis of the uniformly convergent system is presented,
using both simulation and experimental results and the harmonic balance method as presented
in Chapter 3.

kP

kI/s

kA

1
s

w2 +

+

+

+

u

+ −−

+

w1

+ y

−

Figure 4.2: Anti-windup scheme with integrator plant.

Consider the system in Figure 4.2, consisting of an integrator plant, a proportional-integral (PI)
feedback controller, actuator saturation and static anti-windup compensation. The dynamics of
this system can be written in Lur’e form (4.1)

ẋ = Ax+Bsat(u)+Fw
u = Cx+Dw
y = Hx

where w = [ w1, w2 ]T ∈W and

A =

[
0 0

−(1− kAkP) −kIkA

]
, B =

[
1

kA

]
,
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F =

[
1 0
0 1− kAkP

]
, C =

[
−kP kI

]
,

D =
[
0 kP

]
, H =

[
1 0

]
.

Here, kI and kP are given positive constants, and kA is a nonnegative constant to be designed.
The following corollary states what condition kA should satisfy to guarantee uniform conver-
gency of the system.

Corollary 4.5. If kA > 1/kP then the system given in Figure 4.2 is uniformly convergent for all
w ∈W .

Proof. This corollary can be proved using the theory developed in Section 4.2. First, it is shown
that the system is uniformly ultimately bounded. Under the given assumption, it is possible to
perform a similarity transformation [ x1, x2 ]T = T x with

T =

[
1 0

kAkP−1
kIkA

1

]
so that the given system can be rewritten into:[

ẋ1

ẋ2

]
=

[
0 0
0 A2

][
x1

x2

]
+

[
B1

B2

]
sat(u)+

[
F1

F2

]
w

u = C1x1 +C2x2 +Dw

(4.11)

with

A2 = −kIkA, B1 = 1, B2 =
1− kAkP + kIk2

A
kIkA

,

F1 = [ 1, 0 ], F2 = [
1− kAkP

kIkA
, 1− kAkP ],

C1 = − 1
kA

, C2 = kI, D = [ 0, kP ].

Since ẋ2 = A2x2 + . . . can be interpreted as an LTI system with bounded inputs and A2 is Hur-
witz, it follows that limsupt→∞ |x2(t)| exists. Now consider the first subsystem of (4.11) to-
gether with the Lyapunov function V = x2

1/2. The derivative of this function is given by

V̇ = x1

[
sat(− 1

kA
x1 + kIx2 + kPw2)+w1

]
.

Taking into account that limsupt→∞ |x2(t)| exists, |w1| ≤ α1 < 1, and |w2| is bounded it follows
that

sat(− 1
kA

x1 + kIx2 + kPw2) = sign(− 1
kA

x1) if |x1|> kA(kI|x2|+ kP|w2|+1)

and thus
V̇ ≤−|1−α1| |x1|< 0 if |x1|> kA(kI|x2|+ kP|w2|+1)
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which (similarly to the Yoshizawa theorem, see e.g. [30]) implies that system (4.11) is uni-
formly ultimately bounded.

The fact that the system is uniformly ultimately bounded in turn implies that Lemma 4.2 holds
for large enough T̄ . Finally, for kA > 1/kP and for example

P =

[
(kAkP−1)+ kIk2

A 0
0 k2

I k2
A

]
> 0

inequalities (4.6) and (4.7) are satisfied. Thus Theorem 4.3 holds and the system in Figure 4.2
is uniformly convergent.

Remark 4.6. Note that if kA > 1/kP, then also frequency domain inequality (3.8) holds for all
frequencies ω 6= 0. This is a standard result from the Kalman-Yakubovich-Popov lemma, see
e.g. [40].

In the remainder of this section, the results of several simulations and experiments are shown
and evaluated, in order to analyse the behavior of the system in Figure 4.2. The simulations
have been performed in Matlab using an ODE-solver or Simulink model, while the experiments
have been performed using the experimental setup as described below. For all the simulations
and experiments, the following values have been chosen for the system parameters: kP = 10
and kI = 20, since these values provide a satisfactory closed-loop performance of the system
without saturation. Furthermore, disturbance input w1 is assumed to be 0 for simplicity.

Experimental setup

In order to investigate the behavior of the system in Figure 4.2 in practice, an experimental setup
has been constructed, which is shown schematically in Figure 4.3. The experimental setup con-
sists of a PI controlled integrator plant with actuator saturation and a static anti-windup (AW)
gain kA. As indicated in Figure 4.3, the hardware of this setup (see Figure 4.4) consists of
an actuator (brushless DC motor) an integrator plant and a sensor (incremental encoder, 8192
counts/revolution). The hardware is connected (at sample rate: 1kHz) using a TUeDACS de-
vice [91] to a computer with a Matlab Simulink model (Real Time Workshop), which contains
the software elements described in Figure 4.3. Both the reference and disturbance signal, and
the controller parameters are defined in this model. The actuator is driven by a velocity con-
troller (not shown in Figure 4.3), which receives its reference value v from the Simulink model.
The settling time of the velocity controller is negligible, so that it can be assumed that the actua-
tor exactly follows the reference velocity v. The actuator rotates a rigid body at the given speed,
and the rotation angle of the body is measured by the incremental encoder and fed back to the
Simulink model. This transition from angular velocity to rotation angle forms the integrator
plant.
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Figure 4.3: Schematic representation of the experi-
mental setup.

Figure 4.4: Photo of the hardware construc-
tion.

Simulation and experimental results for kA = 0

First consider the case in which kA = 0, i.e. condition kA > 1/kP is not satisfied and hence
the system is not guaranteed to be convergent. Figure 4.5 shows system output y as a function
of time, when the reference input is w2(t) = bsin(ωt), with amplitude b = 1 and frequency
ω = 1. The two solutions depicted in the figure are obtained for respectively initial conditions
y(0) = 3 and y(0) = 4, and the initial value of the integrator state in the controller is 0. As
one can observe, the simulation results correspond very well to the experimental results. More
important, one can also observe that after some transient time, two stable periodic solutions
exist, which confirms that the system is not convergent. One solution follows the reference
signal quite well, while the other solution resembles a sawtooth. This sawtooth indicates that
control output u constantly hits upper and lower saturation as a result of integrator windup,
which leads to this undesired behavior.

The fact that multiple steady-state solutions exist for this system is undesirable, even though
one of the steady-state solutions displays desirable tracking behavior: a small disturbance can
be enough to cause the system to switch from one solution to the other [100]. This also becomes
clear from the next experiment, which is motivated by the following thought. Since the ampli-
tude of control signal u becomes larger if amplitude b (or frequency ω) of the reference signal
increases, one would suspect that for a relatively large amplitude b the sinusoid-like steady-
state solution no longer exists. This is indeed the case, as can be seen in Figure 4.6. For this
experiment, again a reference input w2(t) = bsin(t) is used, but now with the amplitude slowly
varying from b = 0.1 to b = 1.5 and back again. Every 200π seconds the amplitude is slightly
increased/decreased, so that after each change, steady-state is reached again. Figure 4.6 dis-
plays the resulting amplitude of controller output u versus amplitude b of the reference signal,
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Figure 4.5: System output for kA = 0 and w2 = sin(t).
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Figure 4.6: ‘Hysteresis’ for kA = 0 and w2 = bsin(t) with b ∈ [0,1.5].

once steady-state is reached. One can observe that for a small amplitude b, controller output
u has only one amplitude, which suggests that there is only one steady-state solution. For b
approximately between 0.69 and 1.13, u can have two different amplitudes, and thus there are
(at least) two coexisting steady-state solutions. Finally, if b is larger then approximately 1.13
then again only one amplitude is left for u. Note, however, that this result does not guarantee
that there exist no other steady-state solutions. In fact it can be shown using simulation that for
this system also multi-periodic steady-state solutions exist (similar to Figure 3.7) for various
values of b.
Another observation that can be made from Figure 4.6 is that by slowly increasing b, starting
from b = 0.1, the amplitude of controller output u also slowly increases but does not switch
to the other steady-state solution, until it makes a large jump at b = 1.13 and then slowly in-
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Figure 4.7: Left-hand side of harmonic balance equation for kA = 0 and ω = 1.

creases further. Then, if b is decreased again, the amplitude of u only slowly decreases and
does not switch back to the other steady-state solution until b = 0.69. This gives Figure 4.6
a hysteresis-like shape. During the experiment it was also noted that the closer the increasing
amplitude gets to b = 1.13, the smaller the required effort to switch from the desirable solution
to the undesirable solution becomes (and vice versa for decreasing b→ 0.69). This suggests
that the region of attraction of the desirable steady-state solution (small amplitude) decreases
with increasing b, while the region of attraction of the undesired steady-state solution (large
amplitude) decreases with decreasing b.

Finally, it is interesting to compare the results of Figure 4.6 with the results of a harmonic
analysis, as discussed in Section 3.3. Figure 4.7 shows the left-hand side of the harmonic
balance equation |1−K(a)G(iω)|2a2 = |C(iωI−A)−1F + D|2b2 = 500b2, and indicates the
values of b which form the border between one and three solutions a of |1−K(a)G(iω)|2a2 =
500b2. As one can observe, these values b = 0.57 and b = 1.14 are close to the values found in
Figure 4.6, and also the values of a (small amplitude: < 5, large amplitude: > 30) correspond
quite well to the amplitude of u for the different steady-state solutions.

Simulation and experimental results for kAkP > 1

Now consider the case where kA = 0.5 > 1/kP and thus the system is uniformly convergent.
The experiment with w2(t) = sin(t) and initial conditions y(0) = 3 and y(0) = 4 is repeated
for this value of kA and the result is given in Figure 4.8. As was expected, the solutions with
different initial conditions converge to a unique limit solution.

Since the system is uniformly convergent one can use simulation or experiments to determine
the exact steady-state performance of the system, for example in terms of a nonlinear frequency
response function (nFRF), or one can use harmonic linearization to estimate this nFRF, see
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Figure 4.8: System output for kA = 0.5 and w2 = sin(t).

Chapter 3. For a reference signal w2(t) = sin(ωt) with ω ∈ [10−1,102], and kA = 0.5 this nFRF
is given in Figure 4.9. Both the results from the harmonic linearization, and the simulation
results and the experimental results are given. The experimental results (open circles in Fig-
ure 4.9) show a large deviation from the simulation results for frequencies above 10 rad/s. This
deviation is caused by the fact that the periodic output signal y of the experimental system has
a certain constant offset (in the order of 0.01 revolutions), which is different for each trial. The
cause of this offset is not yet clear, it could be unmodeled dynamics, measurement errors, or an-
other cause. Nevertheless, if this offset is subtracted from the solution, such that the average of
the steady-state solution is 0, then these corrected experimental results (asterisks in Figure 4.9)
follow the simulation results quite well. Furthermore, it can be seen that the simulation and
corrected experimental results lie well within the bounds as determined by the harmonic lin-
earization approach, i.e. the harmonic linearization approach is able to give a quite accurate
description of the frequency domain behavior of this system. For comparison the FRF for the
linear system (i.e. without saturation and anti-windup) is also plotted in this figure. Note that
for this system no finite estimate of the L2 gain from w to y can be found using a quadratic
storage function, which makes the result in Figure 4.9 even more valuable from a practical point
of view.

Similar nFRFs can be found for different values of kA, but since they are almost identical to
the steady-state results in Figure 4.9, these results are not shown here. On the other hand,
whereas the value of kA hardly affects the steady-state result, it does have a large influence
on the transient behavior of the system, especially for relatively high frequencies, as is shown
in Figure 4.10 for w2 = sin(10t) and various values of kA. The higher the value of kA is, the
longer the transient period becomes, although for high values of kA this difference becomes
again negligible. The difference between the solutions with kA = 2 and kA = 20 is already
hardly visible in Figure 4.10.
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The results shown in Figures 4.9 and 4.10 provide much information on the behavior of the
system. Results like these can also be used for example to determine the ‘best’ value of kA for
this system. The subject of optimization, however, lies outside the scope of this thesis and is
left for future research.

Finally note that the results in Figure 4.9 only hold for harmonic reference signals with ampli-
tude b = 1. For other amplitudes, similar graphs can be constructed. In Chapter 5, the effect of
amplitude b on the nFRF of an anti-windup system with an integrator plant is discussed further,
in the context of manufacturing systems.

4.5 Case study 2: Performance analysis of an anti-windup

system with a ‘mass-spring-damper’ plant

In this case study, instead of an integrator plant, a plant with extra dynamics is investigated. The
plant considered here emanates from the mass-spring-damper construction in the experimental
setup as discussed later in this section. For the control of this plant again a PI controller with
static anti-windup augmentation is applied. The dynamics of the resulting closed-loop system
(Figure 4.11) can be described by the following equations

ẋ = Ax+Bsat(u)+Fw
u = Cx+Dw
y = Hx

where w = [ w1, w2 ]T ∈W and

A =


0 0 0 0
0 0 1 0

3.9 ·103 −3.9 ·103 −10.7 0
0 −(1− kAkP) 0 −kIkA

 , B =


1
0

10.7
kA

 , F =


1 0
0 0

10.7 0
0 1− kAkP

 ,

C =
[
0 −kP 0 kI

]
, D =

[
0 kP

]
, H =

[
0 1 0 0

]
.

Again, kI and kP are given positive constants, and kA is a nonnegative constant to be designed.

As this system has extra dynamics in comparison to the system in Section 4.4, it is harder to
analytically find a bound on kA which is sufficient to guarantee uniform convergency of the
system. However, it is possible to prove uniform ultimate boundedness of this system and
to guarantee uniform convergency for certain given values of kI, kP and kA, when w ∈ W .
Since matrix A has one eigenvalue 0, and the other eigenvalues have negative real part, uniform
ultimate boundedness of this system can be proven for kA > 0 in the same way as was done in
the proof of Corollary 4.5. If the values of kI, kP and kA are such that there exists a P = PT > 0
that satisfies LMIs (4.6) and (4.7) of Theorem 4.3, then the system is uniformly convergent.
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Figure 4.11: Anti-windup scheme with ‘mass-spring-damper’ plant.

Although it is hard to find an analytic bound on kA that guarantees uniform convergency of the
system for given values of kP and kI, it is possible to define a ‘sufficient’ interval for kA once two
values of kA have been found for which LMIs (4.6), (4.7) can be solved. That is, since matrix
A affinely depends on kA, and there exists a P = PT > 0 such that (4.6), (4.7) are solvable for
kA = kA and kA = kA, then the LMIs are also solvable for all kA in the interval [kA,kA]. In that
case, the system is uniformly convergent for all kA ∈ [kA,kA]. The considered ‘mass-spring-
damper’ system with kI = 20 and kP = 8 is uniformly convergent if kA ∈ [0.125,6]. A larger
interval may exist, but is not pursued here.

The remainder of this section is dedicated to some simulation and experimental results that
have been obtained for this system. The experimental results have been obtained from the
experimental setup as described below.

Experimental setup

The experimental setup considered for this case study, which is schematically shown in Fig-
ure 4.13, is similar to the experimental setup discussed in Section 4.4. The only difference is
that instead of the integrator plant, now a plant is used that consists of two rotating rigid bodies
(masses) connected by an element that has a certain stiffness and damping, see Figure 4.12. The
first body is driven by an actuator (brushless DC motor) and the rotation of the second body
is measured by a sensor (incremental encoder, 8192 counts/revolution). The connection of the
hardware to the software and the design of the software are the same as with the experimental
setup in Section 4.4. The system identification, which was required to identify the dynamics of
the mass-spring-damper elements, is described in Appendix A.

Simulation and experimental results

Consider the system in Figure 4.11 with kI = 20 and kP = 8. Similar to the system in Section 4.4,
one can visualize that this system is not convergent for kA = 0 (Figure 4.14) and that it is
convergent for kA = 0.5 (Figure 4.15). Again, it can be observed in these figures that the
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Figure 4.12: Photo of the hardware construction.
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Figure 4.13: Schematic representation of the experimental setup.

simulation and experimental results match very well. Since these results are very similar to
those in Figures 4.5 and 4.8, no further attention is paid to them here. A result which shows
multi-periodic solutions (as in Figure 3.7) for this system with kA = 0 can be found in [99].
In the remainder of this section, the uniformly convergent system (with kA = 0.5) is examined
further.

In Figure 4.16 an nFRF plot is shown based on both simulation and experimental results of the
convergent system with kA = 0.5. This plot has been obtained by evaluating solution y once
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Figure 4.14: System output for w2 = sin(t) and kA = 0.
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Figure 4.16: Nonlinear FRF for kA = 0.5 and w2(t) = sin(ωt).

steady-state has been reached, for an input signal w2 = sin(ωt) with ω ∈ [10−1,102]. Since the
system is convergent, the initial conditions for this experiment are not relevant. It can be seen
in Figure 4.16 that for ω > 10 rad/s, the experiments and simulation give different results. In
the original experimental results again an offset was present as discussed in Section 4.4. After
removing this offset, however, these ‘corrected’ experimental results still do not match the
simulation results for ω > 10 rad/s. The identification of the experimental system, as described
in Appendix A, indicate that there should be a resonance peak around 60 rad/s, however, this
resonance does not occur in the performed experiment. This deviation is not fully understood
yet, but might be caused by unmodeled (nonlinear) dynamics or measurement errors.

In Figure 4.17, the nFRF results (complementary sensitivity) are compared with the harmonic
linearization results and the FRF of the corresponding linear system (i.e. without saturation and
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Figure 4.17: Nonlinear FRF and harmonic linearization results for kA = 0.5 and w2(t) = sin(ωt).

anti-windup). Since the harmonic linearization results are based on the same dynamics as in
the simulation model, the deviant experimental results are left out here. Figure 4.17 provides
valuable information on the frequency domain performance of the system. It clearly shows how
output y behaves in steady-state under harmonic input signals with respectively high or low fre-
quencies. Also, it can be seen that the frequency domain behavior of the system with saturation
substantially differs from the corresponding linear system. Another interesting observation is
that the error bounds on the harmonic linearization contain ‘copies’ of the resonant peak, i.e.
while the resonant peak lies at approximately 62 rad/s, the peaks in the error bounds lie at ap-
proximately 62

3 , 62
5 , 62

7 , . . . rad/s. These ‘copies’ are a result of the definition of the bounds (see
ρ1 in Section 3.4). Nevertheless, the error bounds lie relatively tight around the exact results
as obtained by simulation, from which it can be concluded that the harmonic linearization ap-
proach gives a quite accurate description of the frequency domain behavior of this system. Note
that a similar plot can be made for the nonlinear sensitivity function (||w2− y||2 / ||w2||2) to
investigate for example tracking behavior of the system.

Finally note that since this system has a marginally stable plant, in general no finite estimate
of the L2 gain from w2 to y can be found using a quadratic storage function. However, even if
such an L2 gain estimate can be found, for example by using another approach, it would only
be a horizontal line in this plot, i.e. an upper bound for the frequency domain performance. For
a convergent system as considered here, both the simulation based approach and the harmonic
linearization approach provide more detailed information on the frequency domain behavior of
the system. Nevertheless, it should be remarked that the result in Figure 4.17 only holds for a
harmonic reference signal with amplitude b = 1, and although similar plots can be constructed
for different harmonic reference signals, the superposition principle does not hold here, since
the considered system is nonlinear. For periodic reference signals that are not harmonic (e.g.
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multi-harmonic signals), the simulation-based approach can still be used to determine the exact
steady-state response to such a reference signal. The harmonic linearization approach, on the
other hand is not applicable for such reference signals.

4.6 Discussion

In this chapter a theorem was presented with sufficient conditions to guarantee uniform conver-
gency for externally forced Lur’e systems with a saturation nonlinearity and marginally stable
linear part. The theorem was shown to be also applicable to a class of anti-windup systems with
a marginally stable plant. The presented result is both new in the field of convergent systems
and in the field of anti-windup design.

In the research field of convergent systems, most approaches are based on finding quadratic
Lyapunov functions, leading in turn to quadratic convergency conditions. The presented the-
orem is new in the way that it leads to conditions for uniform convergency, which is less re-
strictive. This result may also be useful to prove uniform convergency for systems other than
those presented in this chapter, for example Lur’e systems with a different nonlinearity. For this
purpose, it may also be valuable to take into account the approach and results of [9, 20, 47],
in which synchronization of Lur’e systems is studied in the presence of strongly oscillatory
external signals.

For the design of anti-windup schemes, most approaches are based on guaranteeing some form
of (incremental) L2 stability of the system. The approach described in this chapter, on the
other hand, is based on guaranteeing uniform convergency of the system, i.e. obtaining a unique
limit solution which is independent of the initial conditions. This solution can easily be anal-
ysed, for example by simulation, to find the exact steady-state performance of the system.
The convergency-based approach for the performance analysis of anti-windup systems with a
marginally stable plant was illustrated using two case studies, in which both simulation and
experimental results were presented to support the theoretical findings.

The convergent systems approach is currently only suitable for evaluation of the system’s
steady-state performance for a given controller, but not for controller synthesis and perfor-
mance optimization, except for some small cases such as the case study in Section 4.4. An in-
teresting property of convergent systems, however, is that simulation is a reliable performance
analysis tool. This property may be further exploited in order to obtain a simulation-based per-
formance optimization tool, which is able to optimize (in some sense) the performance of the
limit solution within the boundaries of the conditions for convergency. This possibility might
be interesting to investigate in future work. Another possibility to strengthen the result of the
convergent system approach, is to exploit it in combination with existing synthesis or optimiza-
tion algorithms. An example of such a combination was given in Section 4.3, where it was
shown that an existing anti-windup design [90] also results in a uniformly convergent systems
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under some minor additional constraints. By combination of these ideas, a stronger conclusion
was obtained.

The results obtained in this chapter are used in the following chapter to construct a feedback
controller for manufacturing machines.



Chapter 5

Feedback Control of Manufacturing Machines

Abstract This chapter deals with the problem of controlling discrete-event man-
ufacturing machines such that a customer demand is tracked while maintaining a
low inventory level. To study this problem, a manufacturing machine is first ap-
proximated by an integrator which is subject to input saturation as a result of the
finite capacity of the machine. For this ‘integrator machine’, a proportional-integral
(PI) controller with anti-windup compensation is proposed to meet the tracking re-
quirements. Results on harmonic linearization and convergent systems theory as
presented in Chapters 3 and 4 are applied to evaluate the tracking performance. The
proposed continuous-time controller is subsequently implemented in the discrete-
event domain and applied to the discrete-event manufacturing machine. The re-
sulting discrete-event controller is also applied for the control of a line of four
machines. It is shown for this line that, in order to meet the tracking and low in-
ventory requirements, application of the proposed controller is not sufficient; the
reference demands of the first three machines should also be adjusted. For both the
single machine and the line of four machines, simulation results are shown which
indicate good tracking behavior of the closed-loop system.

5.1 Introduction

The production control of discrete-event manufacturing systems, i.e. how to control the pro-
duction rates of machines such that the system tracks a certain customer demand while keeping

63
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a low inventory level, has been a field of interest for several decades. Early control strategies
based on simple push and pull concepts, such as material requirements planning (MRP), enter-
prise resources planning (ERP), and just-in-time (JIT), see e.g. [34], can provide an adequate
solution if the system requirements are not very strict and a fast reaction to possible distur-
bances/failures is not required (e.g. since such disturbances/failures hardly occur). However, as
manufacturing systems become more complex and the system’s performance must constantly
improve in order to stay competitive in today’s global economy, these control strategies become
less effective.

A more structured control theory was proposed in 1987 by Ramadge and Wonham under the
name of supervisory control theory [73, 74]. This theory, which is based on a discrete-event
description of the manufacturing system, has since then been extended by several research
groups. However, when it comes to the control of large manufacturing systems (or networks
of such systems), supervisory control is not very suitable due to the high level of detail it deals
with, which causes the corresponding control problem to grow intractably large. Furthermore,
the supervisory control theory does not deal with transient or steady-state performance of a
system, but mainly focusses on guaranteeing avoidance of undesired/unsafe behavior, such as
deadlock.

Another strategy for the control of manufacturing systems, is to describe the manufacturing
systems using so-called flow models, see e.g. [2]. These models, which are based on ordinary
differential/difference equations (ODEs), or sometimes partial differential equations (PDEs, see
e.g. [45, 97]), form a continuous approximation of the discrete-event manufacturing systems
and therefore result in a simpler control problem. Moreover, various (advanced) control theories
are already available for ODEs, which makes these models attractive to work with. Most control
strategies proposed in literature that use flow models to describe the manufacturing system,
are based on the assumption that (an estimate of) the future demand is known, and use some
optimization algorithm to find a suitable control signal, see e.g. [28, 85, 105]. In the ODE
models, a manufacturing machine is usually interpreted as an integrator, where the cumulative
number of finished products is the integral of the production rate. Bounds on the production
rate, due to the finite capacity of the machine, are then taken into account in the optimization
problem. Disadvantages of these control strategies are that they depend on future demands
(which are hard to predict and therefore often inaccurate) and that in general the optimization
problem requires much computational effort.

In this chapter, a different strategy is employed for the control of manufacturing machines,
which does not depend on future demands and requires less computational effort. For this con-
trol strategy, the manufacturing machines are still approximated by an integrator, but the bounds
on the production rate are interpreted as a saturation function. A simple proportional-integral
(PI) feedback controller with anti-windup compensation is applied to pursue good tracking
properties for the closed-loop system. First, the system with a single machine (integrator) is
investigated. The tracking behavior of this continuous system is analysed using the harmonic
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linearization and convergent systems theory as presented in Chapters 3 and 4. In particular,
the tracking behavior for customer demands with periodic fluctuations1 is investigated. The
controller as designed for the continuous approximation model is subsequently implemented
in the discrete-event domain to control the discrete-event machine, and simulation results are
compared with those of the continuous approximation. Finally, the control problem is extended
to a line of four manufacturing machines. In this case, each machine is controlled by a PI con-
troller with anti-windup to set its production rate. In addition, a coupling relation between the
machines is defined to set the reference demands for the first three machines.

It should be noted that the ideas and results as presented in this chapter are only the first findings
in the development of this control strategy for discrete-event manufacturing systems. Many
other aspects (see Section 5.4) should be investigated before it can become clear if this control
strategy is suitable for the control of complex manufacturing systems in practice. Nevertheless,
for the simple systems as considered in this chapter the control strategy shows promising results.

The remainder of this chapter is organized as follows. In Section 5.2 the control of a single
manufacturing machine is discussed for both the continuous and the discrete-event domain.
Section 5.3 deals with the control of a manufacturing line consisting of four machines. Finally,
Section 5.4 gives a discussion on the results obtained in this chapter.

5.2 Feedback control of a single machine

In this section a simple feedback controller is derived for a single discrete-event manufacturing
machine. For this purpose, the discrete-event machine is first approximated by a continuous
model, i.e. an integrator with input saturation. Then, a feedback controller is derived for this
continuous model, such that the closed-loop system has satisfactory tracking behavior. After
analysing the system’s tracking performance in the continuous domain, the controller is imple-
mented in the discrete-event domain and simulation results are presented that show the tracking
performance of the discrete-event system.

Continuous approximation

Consider a manufacturing machine (Figure 5.1) that produces items with production rate up(t).
It is assumed that there is always sufficient raw material to feed the machine, i.e. the machine
never starves. The total amount of items produced by the machine is indicated by y(t) and is
related to production rate up(t) according to the relation

ẏ(t) = up(t).

1In [7] a similar control problem with a constant customer demand rate has been considered.
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That is, the machine can be interpreted as an integrator. In order to let the total production y(t)
follow a certain customer demand yd(t) a feedback controller can be used to set the production
rate up(t). However, in case of a manufacturing machine, one should take into account the fact
that the production rate of a machine cannot be negative and has a certain maximum (capacity
of the machine), i.e. the production rate is constrained by the following bounds

0≤ up(t)≤ up,max. (5.1)

In order to deal with these constraints, one can either build a controller that takes these bounds
into account, or build a controller that initially does not take into account the bounds and add
some modification to the controller for the times that the control signal exceeds a bound. An
example of the former control method is model predictive control (MPC), in which the bounds
on the control signal can be explicitly taken into account in the optimization problem. For cases
in which the control signal only rarely exceeds the bounds, the latter control method is often
preferred due to its simplicity. Here, the latter control method is used, since this results in a
simpler controller and no knowledge of the future demand is required (whereas for MPC such
knowledge is required).

M
up y

raw material

Figure 5.1: Manufacturing machine M with production rate up.

PI controller with anti-windup modification

Assume that the manufacturing machine should follow a reference production signal

yd(t) = yd0 +udt + r(t) (5.2)

where yd0 is the desired production at t = 0, ud is a constant that represents the average desired
production rate, and r(t) represents a fluctuation around this average as a result of (for instance
seasonal) market fluctuation. Throughout this chapter, the fluctuation r(t) is assumed to be har-
monic. This assumption makes it possible to use harmonic linearization to analyse the tracking
performance of the system. For fluctuations other than harmonic, performance analysis using
harmonic linearization as presented in Chapter 3 is not possible, but the analysis can still be
performed using simulation (provided the system is convergent for this reference r(t)).

First a controller is selected for the linear system, i.e. the integrator without the saturation
nonlinearity. The simplest feedback controller that is able to make the machine follow (to some
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extent) a reference production signal like (5.2), is a proportional integral (PI) controller, i.e.

u(t) = kPe(t)+ kI

∫ t

0
e(τ)dτ

with e(t) = yd(t)− y(t). For the linear system it holds that up = u. For r(t)≡ 0, this controller
with parameters kP > 0 and kI > 0 drives the error y−yd to zero as t→∞ for arbitrary constants
yd0 and ud, as follows by the final value theorem from linear control theory, see e.g. [21]. For a
harmonic fluctuation r(t), the tracking performance can be determined in terms of the sensitivity
or complementary sensitivity function, which are defined in the Laplace domain. For a closed-
loop system as shown in Figure 5.2, the sensitivity function S(s) and complementary sensitivity
function T (s) are given by

S(s) =
Yd(s)−Y (s)

Yd(s)
=

1
1+G(s)C(s)

, T (s) = 1−S(s) =
Y (s)
Yd(s)

=
G(s)C(s)

1+G(s)C(s)

where C(s) and G(s) are the transfer functions of respectively the controller and the machine,
while Y (s) and Yd(s) are the Laplace transforms of respectively y(t) and yd(t). Due to the
so-called waterbed effect this controller cannot achieve good tracking behavior of r(t) for all
frequencies. The waterbed effect, which is based on the Bode sensitivity integral [5], implies
roughly speaking that by decreasing the sensitivity in a certain frequency range (due to some
changes in the controller parameters), the sensitivity is increased in another frequency range.
Nevertheless, considering certain performance requirements on the (complementary) sensitivity
function, one can try to find the ‘best’ possible parameters kP and kI for the system. Other
controllers may be considered as well to investigate if they are more suitable to control the
manufacturing machine. Here, however, only the application of a PI controller is investigated.

−

+Yd
C(s) G(s) Y

Figure 5.2: Closed-loop control system.

The second step in the design of the controller is to construct an anti-windup compensator to
deal with the constraints on the production rate. In order to be able to apply a standard static
anti-windup compensator as discussed in Section 4.3 the following coordinate transformation
is performed. Take k = up,max/2 and rewrite the constraints in (5.1) as

−k ≤ up− k ≤ k.

Now up− k is the output of a saturation function satk(u) = sign(u)min(k, |u|), and thus the
actual production rate is given by

up = satk(u)+ k
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Figure 5.3: Anti-windup system with integrator plant.

where u is the output of the controller. After the application of a static anti-windup compensator,
the closed-loop system becomes as depicted in Figure 5.3, in which s = d

dt is a differential
operator. The dynamics of this system can be described by

ẏ(t) = satk(u(t))+ k,
u(t) = kPe(t)+ kI

∫ t
0 e(τ)dτ + kIkA

∫ t
0 (satk(u(τ))−u(τ))dτ,

e(t) = yd(t)− y(t).
(5.3)

In the following subsection, the performance of this system is evaluated using convergent sys-
tems theory and the harmonic linearization method. The convergent systems theory requires the
input to be bounded, and the harmonic linearization method requires a harmonic input. There-
fore, the linear part of the reference signal, i.e. yd0 + udt, is subtracted from both yd and y, so
that the system with harmonic input r(t) can be investigated. It is obvious that yd(t)−yd0−udt
equals r(t). For the subtraction of yd0 +udt from y(t), the following holds:

y(t)− yd0−udt = z(t),

where z(t) is defined to be the new output. For the system with this new notation (see Figure 5.4)
the closed-loop dynamics can be described by

ż(t) = satk(u(t))+ k−ud,

u(t) = kPe(t)+ kI
∫ t

0 e(τ)dτ + kIkA
∫ t

0 (satk(u(τ))−u(τ))dτ,

e(t) = r(t)− z(t),
(5.4)

or, in state-space notation, by

ẋ = Ax+Bsatk(u)+Fw
u = Cx+Dw
z = Hx

(5.5)

with w = [k−ud,r]T and

A =

[
0 0

−(1− kAkP) −kIkA

]
, B =

[
1
kA

]
, F =

[
1 0
0 1− kAkP

]
,
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Figure 5.4: Anti-windup system with integrator plant, normalized.

C =
[
−kP kI

]
, D =

[
0 kP

]
, H =

[
1 0

]
.

Note that since yd0 +udt is subtracted from both yd and y, the error signal e(t) = yd(t)− y(t) =
r(t)− z(t) in (5.3) and (5.4) is identical and hence the controller output u(t) is identical for
these systems. Therefore, the system response y(t) to the input yd(t) can be simply obtained
from the system response z(t) by adding yd0 +udt to it.

Performance analysis in continuous domain

Consider the system in Figure 5.4 and note that if k = 1 (i.e. satk = sat), then the system
is identical to the system in Figure 4.2 with w1 = k− ud and w2 = r. Hence for this case, the
system is uniformly convergent if kA > 1/kP, as stated in Corollary 4.5. The following corollary
shows that also for k 6= 1, the considered system is uniformly convergent if kA > 1/kP.

Corollary 5.1. If kA > 1/kP then system (5.5), visualized in Figure 5.4, is uniformly convergent
for all w = [ w1, w2 ]T = [ k−ud, r]T that satisfy
1. |w1|< k,
2. r(t) is a harmonic function of time.

Proof. Note that for any u ∈ R it holds that satk(u) = k · sat(u/k) and therefore (5.5) can be
written as

ẋ = Ax+Bksat(Ckx+Dkw)+Fw,

where Bk = kB, Ck = C/k, and Dk = D/k. Since Dkw(t) = Dc
k r(t) is uniformly continuous,

|w1(t)|< k implies |F1w(t)|< α1|kB1| for some constant α1 < 1, and A+BkCk = A+BC, one
can exactly follow the proof of Corollary 4.5 to prove that the system in Figure 5.4 is uniformly
convergent for the class of inputs described in Corollary 5.1 if kA > 1/kP.

Since system (5.5) is uniformly convergent for all admissible inputs (r(t), ud) if an anti-windup
gain kA > 1/kP is applied, simulation can be used to analyse the frequency domain performance
of the system, in terms of a nonlinear frequency response function (nFRF). If furthermore it is
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Figure 5.5: Nonlinear complementary sensitivity function for the system in Figure 5.4.

assumed that ud = k, i.e. w1 = 0, then also the harmonic linearization method as described in
Chapter 3 can be used to analyse the frequency domain performance of the system. For the
analysis of the case in which the average utilization of the machine is not 50%, i.e. ud 6= k, the
harmonic linearization method may be modified in a straightforward way. The derivation of
such a modification, however, is not of interest here. Moreover, for the case with ud 6= k, the
frequency domain performance can also be analysed using simulation.

For the system described below, both simulation and the harmonic linearization method are
applied to determine the frequency domain performance of the system.

Consider the PI controlled manufacturing machine (approximated by integrator and saturation)
with anti-windup compensation, as depicted in Figure 5.4, and take kP = 10, kI = 20, kA =
0.5, up,max = 25.0 items/sec, k = ud = 12.5 items/sec, and r = bsin(ωt). For amplitudes b ∈
{2.5,5.0,12.5} and frequencies ω ∈ [0.1,20] rad/sec, the nonlinear complementary sensitivity
function T (b,ω) = ||z||2/||r||2 is plotted in Figure 5.5. For comparison, the complementary
sensitivity function for the linear system (i.e. without saturation) is shown as well.

In Figure 5.5 it can be observed that, as mentioned before, the nonlinear FRF is dependent on
the amplitude of the reference signal r, unlike linear FRFs.

Furthermore, it can be seen that for ω > ud/b the nFRF shows a sudden decrease in perfor-
mance. Hence, for large amplitudes b this decrease occurs at a low frequency. This is due to the
fact that the machine then should produce beyond its capacity, i.e. in order to track the refer-
ence signal yd = udt +bsin(ωt) the control signal should equal up = ẏ = ud +bω cos(ωt) which
for ω > ud/b has a maximum and minimum that violate the constraints 0 ≤ up ≤ up,max. For
ω ≤ ud/b, on the other hand, one can observe that the closed-loop behavior of the system with
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saturation is identical to that of the linear system (without saturation). This makes sense, since
in this case the controller signal remains within the saturation bounds, and hence the system
behaves in a linear way.

Finally, based on the results in Figure 5.5 it is suspected that for low frequencies (roughly
below 1 rad/sec) the closed-loop system has good tracking behavior. However, as ||z||2 contains
no information for example on the phase of z, the data in Figure 5.5 alone is not sufficient
to conclude good tracking for these frequencies. Nevertheless, one can conclude from the
simulation results shown in the next subsection that for these frequencies the system indeed has
good tracking behavior. For reference signals with small enough amplitude b, a resonant peak
is visible at approximately 4 rad/sec. For high frequencies (or large reference amplitudes) the
closed-loop system is not able to follow the reference signal.

Based on a result like Figure 5.5, one can determine if the controller performs satisfactory. If
not, the controller parameters kP, kI , kA can be adjusted, or a new controller can be proposed.
Assuming that the reference demand only fluctuates with a relatively small frequency, the cur-
rent controller performs well enough. The following subsection discusses the implementation
and application of the controller in the discrete-event domain.

Implementation and simulation results in discrete-event domain

Before considering the implementation of the controller in the discrete-event domain, first some
differences between the continuous time integrator and discrete-event machine are identified.
First, it is noted that for the integrator it is possible to produce a total amount of items that is not
an integer, e.g. 15.36 items, whereas the discrete-event machine can only produce whole items
and thus the total amount of produced items is always a nonnegative integer. Furthermore,
the production rate for the integrator can vary in a continuous way, while the discrete-event
machine can only produce at full capacity or be idle. Finally, once the discrete-event machine
starts processing, it takes a full processing time delay after which the total amount of produced
items is increased by one. For the integrator, the production of items is a continuous process
without delay, i.e. when the production rate becomes larger than zero, the amount of produced
items directly increases (in a continuous way).

As a result of these differences, the continuous time controller cannot achieve the same behavior
for the discrete-event machine as for the integrator. Nevertheless, as long as the processing time
of the machine is small enough in comparison to the period of harmonic demand fluctuation
r(t), the integrator is a good approximation of the discrete-event machine, and in this case the
proposed controller is assumed to achieve similar behavior in the discrete-event domain.

In order to apply the controller in the discrete-event domain, some modifications are required.
Instead of controlling the production rate of the machine itself, the rate at which items arrive
at the machine is controlled. The resulting control structure is depicted in Figure 5.6. Here,
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B M E

C

y(t)u(t)

Figure 5.6: Schematic representation of the control structure for a discrete-event machine.

buffer B in front of the machine releases items into the machine according to rate u(t), which
is set by controller C. Machine M processes items with a processing time of t0 = 1

up,max
per

item. Exit buffer E receives the completed items and sends the total number of produced items
y(t) to the controller. Based on this number y(t) and reference demand yd(t) the PI controller
with anti-windup modification computes production rate u(t) at each sample time ts (which is
relatively small in comparison with t0). The resulting rate u(t) is sent to buffer B, which then
releases items into the machine at this rate. If the machine is busy at the time that the buffer
tries to send an item, then the item remains in the buffer until the machine becomes available.

In order to test the controller in the discrete-event domain, several discrete-event simulations
have been performed. To do so, the control structure as shown in Figure 5.6 was implemented
in χ , a specification language developed at the Eindhoven University of Technology [92]. More
details on the implementation can be found in [101]. Here, some results of the discrete-event
simulations are shown and discussed.

Consider the system with kP = 10, kI = 20, up,max = 25.0 items/sec, and k = ud = 12.5 items/sec.
The discrete-event simulations were performed in the original coordinates, i.e. with yd and y,
but the results are displayed here using the normalized coordinate z(t) = y(t)−ud− yd0, since
in these coordinates the results are easier to analyse.

In Figures 5.7 and 5.8, the normalized system output z(t) is shown for r = bsin(ωt) and respec-
tively kA = 0 (no anti-windup) and kA = 0.5 (i.e. kAkP > 1). One can observe that the system
has properties similar to its continuous approximation system. For kA = 0, the discrete-event
system has multiple steady-state solutions, which correspond to the solutions of the continuous
approximation system. For kA = 0.5, the solutions with the different initial conditions converge
to one steady-state solution. This behavior also corresponds to the behavior of the continuous
approximation, which is convergent for kA = 0.5. Since the goal in this chapter is to find a
controller with good tracking behavior, only the controller with kA = 0.5 is considered further
here.

In Figure 5.5, the frequency domain analysis results for the continuous approximation system
(with the same system parameters as considered here) indicate that the tracking behavior can
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Figure 5.7: System output z(t) for kA = 0 and resp. z(0) =−3 and z(0) =−5.
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Figure 5.8: System output z(t) for kA = 0.5 and resp. z(0) =−3 and z(0) =−5.

be roughly divided into three regions: good tracking behavior for frequencies below 1 rad/sec,
a resonant peak around 4 rad/sec, and a drop in performance for frequencies above ud/b. In
Figures 5.9–5.11 simulation results are shown for frequencies in each of these regions, i.e. for
ω = {0.5,4.0,10.0}, and b = 2.5. The results of the discrete-event simulations are compared to
the simulation results of the continuous approximation model. Note that the results are plotted
on different time scales: for each frequency the output z(t) is displayed for two periods. After
a short transient period (due to well-chosen initial conditions), the steady-state behavior can
already be observed in these figures. The ‘saw-tooth’ like fluctuation around the average trend
of the discrete-event simulation results is caused by the integer character of machine output y.

Figure 5.9 shows that, for a low frequency of r(t), the results of the discrete-event simula-
tion and the continuous-time simulation match very well. Furthermore, it can be seen that the
machine output z(t) follows, after a short transient time, the demand fluctuation r(t) very well.

For the frequency ω = 4.0 rad/sec (Figure 5.10) the results of the discrete-event simulation and
the continuous-time simulation still match very well. Both results show a phase lag and an
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Figure 5.9: System output z(t) for kA = 0.5 and r(t) = 2.5sin(0.5t).
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Figure 5.10: System output z(t) for kA = 0.5 and r(t) = 2.5sin(4t).

increased amplitude for z(t) in comparison with the demand fluctuation r(t). This increase in
amplitude is in accordance with the results as shown in Figure 5.5.

Finally, Figure 5.11 shows that for a relatively high frequency, the results of the discrete-event
simulation and the continuous-time simulation still match quite well, although the relative de-
viation due to the integer character of the discrete-event results is obviously larger than in the
previous two simulations. Furthermore, both results show a large phase lag and a decreased
amplitude for z(t) in comparison with the demand fluctuation r(t). The decrease in amplitude
is again in accordance with the results as shown in Figure 5.5.

Concluding, one can state that, as long as the processing time is much smaller than the period
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Figure 5.11: System output z(t) for kA = 0.5 and r(t) = 2.5sin(10t).

of the fluctuation, the proposed controller implementation works satisfactory, and the result-
ing discrete-event system behaves in a very similar way to its continuous-time approximation
system. Furthermore, it was observed that for the proposed PI controller with anti-windup com-
pensation, the system shows good tracking behavior for frequencies roughly below 1 rad/sec.

5.3 Feedback control of a line of machines

In Section 5.2, a tracking problem for a single machine was considered, and a PI controller
with anti-windup compensation was proposed to solve this problem. In this section, the control
problem is extended to a line of four manufacturing machines. The goal of this control problem
is to track a certain reference demand yd with the last machine in the line, while maintaining a
low inventory level in the line.

M1
y1

M2
y2

M3
y3

M4
y4

B0,1 B1,2 B2,3 B3,4

Figure 5.12: A manufacturing line consisting of four identical machines.

The line (see Figure 5.12) that is considered throughout this section consists of four identical
manufacturing machines, which are separated by buffers with an infinite capacity. The ma-
chines Mi, i ∈ {1,2,3,4} have a maximum production rate up,max and the total amount of items
produced by machine Mi is indicated by yi. Machine Mi processes items from buffer Bi−1,i and
puts them in buffer Bi,i+1 when finished. Machine M4 sends the finished items to the exit buffer
(not shown in Figure 5.12). The amount of items in the intermediate buffers Bi−1,i, i ∈ {2,3,4}
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is indicated by wi−1,i and satisfies the following relation

wi−1,i = yi−1− yi.

Since the amount of items in a buffer cannot become negative, machine Mi+1 cannot produce
(i.e. starves) while wi,i+1 = 0. It is assumed that machine M1 never starves.

In order to control this line, the production rate ui(t) of each machine is controlled using the
PI-controller with anti-windup compensation as proposed in Section 5.2. Note that as a result
of the buffer constraint wi,i+1 ≥ 0, the machines are influenced by each other: if for example
machine M2 needs to process an item according to control signal u2(t), but buffer B1,2 is empty,
then it has to wait until machine M1 has processed a new item. Another issue that has a large
influence on the behavior of the manufacturing line, is how to set the reference signal for the
first three machines, i.e. when should these machines be authorized to process an item? If these
machines are allowed to process continuously at full capacity, then the amount of inventory
probably becomes very large, which is undesirable. On the other hand, if these machines do
not produce at all, then the fourth machine is not able to follow the reference demand.

In order to address this problem of reference signals, first the continuous approximation system
is shortly considered again, in which the machines are replaced by integrators and a saturation
function. After that, the feedback controlled manufacturing line is considered in the discrete-
event domain, and some simulation results are shown.

Continuous approximation

For each machine in the line, the continuous approximation system with an integrator plant,
saturation, a PI controller, and anti-windup compensation is identical to the system in Fig-
ure 5.3 (or Figure 5.4 with normalized coordinates) except for the fact that the buffer constraints
wi,i+1 ≥ 0 should be taken into account. Figure 5.13 shows the adjusted approximation system
for machines Mi, i ∈ {2,3,4}, according to the following relations

ẏi(t) = f (up,i(t),wi−1,i) =

{
up,i(t) if wi−1,i > 0,

0 if wi−1,i = 0.

Since machine M1 is not affected by the buffer constraint, the corresponding continuous ap-
proximation system for this machine is identical to the system in Figure 5.3.

As can be seen in Figure 5.13 each machine requires a reference signal yd,i(t) to track. For the
fourth machine this reference signal is obviously given by the customer demand, i.e. yd,4(t) =
yd(t) = yd0 + udt + r(t). For the first three machines, the choice of an appropriate reference
signal is now discussed.

First consider the case in which the reference signal for all machines is given by yd(t), i.e.
yd,1(t) = yd,2(t) = yd,3(t) = yd,4(t) = yd(t). Since items are processed in the continuous ap-
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Figure 5.13: Anti-windup system with integrator plant adjusted for buffer constraint.

proximation system without a process delay, at first sight this reference signal seems to work
fine: machine M4 can track the customer demand (provided the frequency of r(t) is below 1
rad/sec), and the buffers remain empty since the other three machines follow the same reference
signal. From a practical point of view, however, it is obvious that this solution does not work
properly. In practice, the production of an item takes a delay of t0 seconds. This implies that
if machine M1 starts processing an item at t = 0, then machine M2 cannot start processing this
item before t = t0, and so on, which eventually results in the fact that y4 lags y1 by at least 3t0
seconds. A solution to this problem can be to apply a reference signal to the machine which
leads the reference signal of its first downstream machine by t0 seconds. However, this would
require future knowledge of the reference signal, which is assumed not to be available. Another
reason why the reference signal yd(t) for the first three machines does not work is that in prac-
tice failures may occur at machines and bad products may be thrown away (scrapped). In this
case, the upstream machines need to produce extra items to compensate for the scrapped items.
However, using a reference signal yd(t) such compensation does not occur.

In order to be able to deal with issues as production delay and compensation for scrapped
items, information on the production error of (at least) the downstream machine Mi+1 should be
incorporated in the reference signal of machine Mi. The following reference signal construction
achieves this goal: {

yd,4 = yd

yd,i = yd +Ki,i+1 · ei+1 , for i = 1,2,3
(5.6)

where ei = yd,i−yi is the production error of machine Mi and Ki,i+1 is a gain that indicates how
much of the error ei+1 is added to yd,i. The motivation for this reference signal is as follows.
Suppose that a downstream machine Mi+1 has a production error ei+1 > 0 (due to scrap or
production delay). Then, in order to make it possible for this machine to compensate for this
error, the production of Mi should also be increased to prevent the intermediate buffer from
depleting. In the following subsection the consequences of this reference signal construction
and the choice of Ki,i+1 are discussed further for the system in the discrete-event domain.

Before the discrete-event implementation of this feedback controlled manufacturing line is dis-
cussed, a final remark is given on the convergency of this continuous approximation system.
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Figure 5.14: Schematic representation of the control structure for the discrete-event manufacturing line.

The continuous manufacturing line with reference signals (5.6) but without the positive buffer
constraints, can be seen as a cascade of systems. In [72], it is shown that if each of these systems
is convergent and in addition certain mild regularity conditions are met (which is the case for
the system considered here), then the cascade of these systems is also convergent. A proof of
convergency of the cascaded system with the positive buffer constraint, however, has not been
found so far.

Discrete-event implementation and simulation results

The feedback controlled manufacturing line was implemented in χ , in a similar way to which it
was done in Section 5.2, and is only discussed shortly here. More details on this discrete-event
implementation can be found in [101].

In the implementation, each machine Mi has its own controller process Ci as depicted in Fig-
ure 5.14. This controller process is almost identical to the controller process for the single
machine as depicted in Figure 5.6. The only two differences are that the reference signal is now
described by (5.6), and that the error signal ei is sent to the upstream controller.

Several discrete-event simulations have been performed for this system with the reference signal
construction as described by (5.6). For these simulations, the parameters of the controller and
the machines are the same as in Section 5.2, i.e. kP = 10, kI = 20, kA = 0.5, up,max = 25.0
items/sec, k = ud = 12.5 items/sec. The reference demand considered here is yd(t) = udt +
bsin(ωt), with b = 12.5 and ω = 0.25, such that a single machine with the proposed feedback
controller is able to follow the reference signal, see Figure 5.5. With the simulation results
shown here, the influence of the value of gain Ki,i+1 in (5.6) is analysed.

First the case with K = Ki,i+1 = 0 ∀i is considered, i.e. the production error of downstream
machine Mi+1 is not communicated to the controller of machine Mi. Figures 5.15 and 5.16
show some discrete-event simulation results for this system. In Figure 5.15 the system output
(in normalized coordinates) z4(t) is shown together with the reference fluctuation r(t). The
figure clearly shows an offset between z4(t) and r(t). The reason for this offset is the lag of
3t0 as a result of the production times of the machines, as discussed in the previous subsection.
This lag of 3t0 is better visible in Figure 5.16 in which the output of the four machines is shown
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in original coordinates. In this figure, which is zoomed in on the simulation results, it can be
seen that machine M1 follows the desired production quite well, while machines M2, M3, and
M4 lag respectively t0, 2t0 and 3t0 seconds. From this result, it is concluded that the reference
signal with K = 0, i.e. yd,i = yd, is unsatisfactory for the first three machines.
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Figure 5.15: System output z4(t) for K = 0.
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Figure 5.16: System outputs in original coordinates yi(t), i ∈ {1,2,3,4} for K = 0.

In Figures 5.17 and 5.18 the discrete-event simulation results are shown for the system with
K = Ki,i+1 = 1.0 ∀i. In Figure 5.17 one can observe that for this value of K, the offset between
z4(t) and r(t) is much smaller, but the oscillation of z4 around its mean value is in amplitude
larger than the oscillation that is caused by the integer character of the output, as can be seen for
example in Figure 5.15. Figure 5.18 shows again detailed results for the four machine outputs
yi, from which this larger oscillation can be explained. In this figure, it can be seen that at
t = 25.2 the output of machine M4 is lagging behind the reference output yd. Due to (5.6) with
K = 1.0, this production error e4 causes a larger reference signal for machine M3 and in turn M2

and M1. As a result, the machine outputs y1, y2, and y3 start to lead yd, such that at t = 25.5 y4 is
able to meet the desired production yd. Now, e4 is small again and hence y3 ≈ yd, which causes
bad tracking performance for machine M4, due to which e4 increases again. This explains the
observed oscillation around yd.

Apparently, K = 1.0 is still too small to guarantee good tracking behavior for machine M4.
After some trial-and-error, a more proper value for gain K was found, i.e. K = Ki,i+1 = 3.5 ∀i.
The discrete-event simulation results for this setting are displayed in Figures 5.19 and 5.20. As
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Figure 5.17: System output z4(t) for K = 1.0.
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Figure 5.18: System outputs in original coordinates yi(t), i ∈ {1,2,3,4} for K = 1.0.

one can see in Figure 5.19, the system output z4 now follows the reference signal r very well,
and the oscillation of z4 around its mean value is small again. In Figure 5.20 one can observe
that y4 indeed tracks yd quite well, and that the outputs yi of the first three machines all lie
well above y4. Recall that the vertical distance between two adjacent lines in this figure, i.e.
yi− yi+1, represents the total number of items in machine Mi+1 and Bi,i+1. In this case the total
amount of items in the system is quite small. For larger values of K, M4 still shows a good
tracking performance, but the amount of items in the system increases, which is undesirable.

Note that for the presented simulation results, all controllers in the line used the same value
for K. Of course, one can try to use a different value of K for each controller, in order to
obtain good tracking performance with even less inventory in the system. One may also think
of other relations than (5.6) to include the production error of the downstream machine Mi+1 in
the reference signal of machine Mi. Future research must point out if such relations can further
decrease the system’s inventory while preserving the tracking behavior.

5.4 Discussion

In this chapter, a feedback controller was proposed for the tracking control of a discrete-event
manufacturing machine. In order to design this feedback controller, the discrete-event machine
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Figure 5.19: System output z4(t) for K = 3.5.
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Figure 5.20: System outputs in original coordinates yi(t), i ∈ {1,2,3,4} for K = 3.5.

was first approximated by an integrator with saturation on the ingoing channel. It was shown,
by means of the convergent systems theory and the harmonic linearization method, that a PI
controller with anti-windup compensation is a simple but effective controller for this contin-
uous approximation of the machine, which achieves the desired tracking performance. The
proposed controller was subsequently implemented in the discrete-event domain and applied
to the discrete-event machine. Discrete-event simulation results were compared to simulation
results of the continuous approximation system. This comparison showed that the PI controller
achieves similar tracking behavior in the continuous-time domain and the discrete-event do-
main, as long as the processing time at the machine is relatively small in comparison with the
period of the fluctuation of the reference demand.

Subsequently, the PI controller with anti-windup compensation was applied for the control of
a discrete-event manufacturing line consisting of four machines. Besides the tracking require-
ment, a second requirement for this control problem was to keep the inventory in the line as
small as possible. To each machine in the line the controller was applied, and it was shown that
in order to solve the given control problem, the reference signals for the first three machines
should include some information on the production error of the direct downstream machine. A
linear coupling relation was proposed to include this production error in the reference signal,
and by means of simulations a proper value of the gain in this relation was found. The appli-
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cation of the developed controller together with the adjusted reference signal for the first three
machines resulted in a satisfactory tracking behavior with little inventory in the line, for the
given reference signal. However, it did not become clear from the results if this linear coupling
relation achieved the best possible result and if it is also applicable for longer manufacturing
lines or different reference signals, and hence it is useful to investigate other coupling relations
in future research as well.

Another issue that requires more investigation in future research is the applicability of the pro-
posed feedback controller in more complex manufacturing systems. In this chapter, only some
preliminary results were shown for a single machine and a short line of machines. Other investi-
gations should point out if the proposed controller is also applicable for manufacturing systems
with for example larger lines, assembly lines, multiple parallel machines, batch machines, mul-
tiple item machines, stochastic processing times, setup times, and/or multiple products with
possible priority rules, or what adjustments should be made to the controller for these cases.

This research may also provide some contribution to the analysis of the bullwhip effect (i.e.
demand amplification) in manufacturing lines, see e.g. [26, 44]. For example the frequency
domain result in Figure 5.5 clearly indicates an amplification of the reference amplitude for a
certain frequency range, which in turn may lead to an even larger output amplitude in upstream
machines, due to the coupling relation. Note, however, that although this research may provide
some insight in a bullwhip effect that is due to a choice of control policy, many more factors
can contribute to the bullwhip effect, which are not described by the system considered in this
chapter.

Although it is obvious that more research is required before a feedback controller of this kind
may become practically applicable to manufacturing systems, in this chapter the first steps
towards this goal have been made and the results obtained so far are promising.



Chapter 6

Performance Analysis of Switched Linear

Systems under Specific Switching Rule Design

Abstract Whereas Chapters 3–5 dealt with systems described by linear dynam-
ics and a static (saturation) nonlinearity, this chapter focusses on switched linear
systems, i.e. systems that consist of several linear subsystems and a switching rule
that governs the switching between these subsystems. Due to the switching, such
a system is either linear time-varying (in case of time-dependent switching) or
nonlinear (in case of state-dependent switching) and hence the steady-state solu-
tion of a switched linear system is in general dependent on the initial conditions.
Some switched linear systems, however, are convergent and therefore have a unique
steady-state solution. In this chapter it is discussed if, under the assumption that the
dynamics of the separate linear submodes are given, a switching rule can be found
for which the closed-loop system is convergent. Both a state-dependent switching
rule, an (observer-based) output-dependent switching rule, and a time-dependent
switching rule are considered. For each of these switching rules, sufficient condi-
tions are found under which the closed-loop system is exponentially convergent.
The presented theory is illustrated by means of a case study in which these results
are used to analyse the steady-state performance of switched linear systems. This
case study is supported by results from both simulation and real-time experiments.
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6.1 Introduction

A switched linear system is a system that consists of two or more linear subsystems and a
switching rule that decides which of the subsystems is active at a certain moment in time. These
systems have received a lot of attention in the last decades, see e.g. [10, 36, 48, 54, 59, 60, 82,
88, 89] and references therein. One of the aspects that makes a switched linear system inter-
esting is that by appropriate switching between the available linear subsystems/controllers, the
performance (e.g. transient response) of the closed-loop system can be improved, see e.g. [16].
Most studies in which the performance of switched linear systems is compared to the perfor-
mance of linear systems are based on time-domain analysis. Frequency domain performance
analyses (i.e. using frequency response functions) of switched linear systems, however, are
rare. This is due to the fact that the frequency response functions for linear systems cannot be
straightforwardly extended to the nonlinear case. Nevertheless, in many cases such a frequency
domain performance analysis is an important aspect of the overall performance analysis of a
system. For example, for the controller design for a CD/DVD player, it is important to investi-
gate the steady-state response to periodic disturbance inputs [32]. Fortunately, there exist some
types of nonlinear systems, such as time-periodic systems (see e.g. [15, 80]) or nonlinear con-
vergent systems (see Section 2.4), which can be analysed using frequency response functions.
This chapter focusses on the latter type.

By the results of [66] (see also Section 2.4) it is known that for the class of convergent switched
linear systems, a frequency domain analysis can be performed which is similar to the frequency
response function analysis known from linear systems theory. Evidently, not all switched linear
systems are convergent. Recent research provides LMIs to analyse if a certain switched linear
system is quadratically convergent [65]. Furthermore, in [13] an approach is given to design a
linear feedback matrix for a switched linear system with a fixed switching rule in such a way
that the closed-loop system is convergent.

This chapter provides a different starting point for the design of a convergent switched linear
system. That is, the dynamics of all linear subsystems are assumed to be given (in contrast
to the situation in [13], in which the switching rule is given). For this situation, a switching
rule is proposed and sufficient conditions are found under which this switching rule results in
a convergent closed-loop system. In particular, two switching rules are considered. Firstly,
the case is considered in which the switching rule depends on state feedback. Secondly, the
case is considered in which full state information is not available. For this case a switching
rule is discussed that is based on an observer of the system. Finally, the use of time-dependent
switching rules is also briefly discussed.

The remainder of this chapter is organized as follows. Section 6.2 introduces the considered
switched linear system and discusses the different investigated switching rules. Section 6.3
describes a case study that illustrates the presented theory and shows how this theory can be
used to analyse the steady-state performance of switched linear systems. Finally, Section 6.4
gives a discussion on the results obtained in this chapter.



CHAPTER 6. PERFORMANCE ANALYSIS OF SWITCHED LINEAR SYSTEMS . . . 85

6.2 Convergent system design using switching rules

In this section, first the switched linear system is introduced that is considered throughout the
chapter. Then, the idea of designing a switching rule that renders the closed-loop system conver-
gent, is explained further. Subsequently, the use of a state-dependent switching rule is discussed
for the case that full state information is available. Finally, the case is considered in which only
some part of the state information is available for feedback. For this case an observer-based
switching rule is presented.

Consider the switched linear system

ẋ(t) = Aix(t)+Biw(t)
y(t) = Cix(t)

i = 1, . . . ,k (6.1)

where x(t) ∈ Rn is the state, y(t) ∈ Rl is the output, and w(t) ∈ PCm is the input. Here PCm is
the class of bounded piecewise continuous inputs w(t) : R→Rm. The dynamics in (6.1) can for
example represent the behavior of a switched linear control system as visualized in Figure 6.1.
It is assumed that the collections of matrices {A1, . . . ,Ak}, {B1, . . . ,Bk}, and {C1, . . . ,Ck} are
given, which implies that the dynamics of the linear subsystems are fixed. The general problem
that is considered in this section is to find a switching rule for which the closed-loop system is
exponentially convergent.

Controller 1

Controller k

Switch Plant
w(t) + y(t)

−

Figure 6.1: Switched linear control system.

Note that it is always possible to find a switching rule that makes the system exponentially
convergent whenever there is at least one exponentially stable mode. That is, a ‘switching’ rule
that keeps the system in only one (exponentially stable) mode, results in a system that is in
fact linear, and thus exponentially convergent. Here, this trivial case is ignored: only switching
rules are considered that take into account all modes, in order to obtain a convergent switched
linear system. Of course, it may occur that for a certain solution of the system the switching
rule selects only one mode (as a result of the given dynamics in the different modes, the input
signal and the initial condition), but in this selection all other modes are involved as well.

For a time-dependent switching rule, i.e. a switching rule that changes the active mode of the
system at fixed time instances regardless of the values of the state and input, it can easily be
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seen that the existence of a common matrix P = PT > 0 that satisfies

AT
i P+PAi < 0, ∀i = 1, . . . ,k (6.2)

is a sufficient condition for quadratic convergency. That is, for an arbitrary time-dependent
switching rule and a Lyapunov function V = (x1− x2)T P(x1− x2), where x1 and x2 are two
arbitrary solutions of system (6.1), the derivative V̇ is at each time instance smaller then −αV
for some fixed α > 0, because the active mode is always the same for x1 and x2. The inequality
V̇ <−αV implies that the system is quadratically convergent.

For state-dependent switching rules, on the other hand, the existence of a common matrix P =
PT > 0 satisfying (6.2) may not be sufficient for quadratic convergency of system (6.1), as is
demonstrated in the following example, which is based on results in [65].

Example 6.1. Consider the following system with a state-dependent switching rule

ẋ(t) =

{
−3x(t)+w(t) if |x| ≤ 2
−2x(t)+w(t) if |x|> 2

(6.3)

of which the dynamics are schematically depicted in Figure 6.2. For w(t) ≡ 0, it is easy to
conclude, using a common quadratic Lyapunov function V = x2, that the system is globally
exponentially stable. However, for other (e.g. constant) input signals w(t), it can be deduced
from Figure 6.2 that the steady-state solution of the system can depend on the initial condition.
For example, if w(t) = 5 for all time, then the solutions x(t) with initial conditions x(0) = 0
and x(0) = 4 stabilize at respectively x = 5/3 and x = 5/2. Hence, the system is not convergent
even though a common quadratic Lyapunov function exists for this system.

x

ẋ−w

−3 −2 −1 1 2 3

−6
−4
−2

2
4
6

Figure 6.2: Schematic representation of the dynamics of system (6.3).
4

Since the existence of a common Lyapunov function does not guarantee that a switched linear
system is convergent under an arbitrary state-dependent switching rule, it is not trivial to find a
state-based switching rule that renders system (6.1) exponentially convergent. In the remainder
of this section, two kinds of switching rules are discussed, i.e. a switching rule based on state
feedback and a switching rule based on output feedback, and sufficient conditions are derived
under which these switching rules render the closed-loop system exponentially convergent.
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State-dependent switching rule

Consider the following switching rule for system (6.1)

σ(x,w) = arg min
i
{xT Zixx+ xT Ziww} (6.4)

in which Zix and Ziw are matrices to be defined. The following theorem provides sufficient
conditions under which this switching rule makes system (6.1) quadratically convergent.

Theorem 6.2. If for system (6.1) the following conditions hold

1. a common Lyapunov matrix P = PT > 0 exists that satisfies

AT
i P+PAi < 0, ∀i = 1, . . . ,k, (6.5)

2. matrices Z1w, . . . ,Zkw are given by Ziw = 2PBi, i = 1, . . . ,k,

3. matrices Z1x, . . . ,Zkx exist such that

Zix 6= Z jx and/or Ziw 6= Z jw ∀i, j ≤ k, i 6= j (6.6)

and for some ε > 0[
PAi +AT

i P −(AT
i P+PA j)

−(AT
j P+PAi) PA j +AT

j P

]
+

[
−(Zix−Z jx) 0

0 Zix−Z jx

]

≤−ε

[
In −In

−In In

]
∀i, j ≤ k, i 6= j. (6.7)

Then switching rule (6.4) with matrices Zix and Ziw = 2PBi, i = 1, . . . ,k makes system (6.1)
quadratically convergent.

Proof. First note that condition (6.6) assures the existence of a solution in the sense of Filippov
for the closed-loop system. Consider the Lyapunov function

V (x1,x2) = (x1− x2)T P(x1− x2) (6.8)

in which x1(t) and x2(t) are two arbitrary solutions of system (6.1) with input w(t), and P =
PT > 0 satisfies (6.5). Let σ(x1,w) = p and σ(x2,w) = q, such that the derivative of (6.8)
becomes

V̇ = xT
1 (AT

p P+PAp)x1 + xT
2 (AT

q P+PAq)x2

− xT
1 (AT

p P+PAq)x2− xT
2 (PAp +AT

q P)x1

+2xT
1 P(Bp−Bq)w+2xT

2 P(Bq−Bp)w.

(6.9)
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If p = q, i.e. the active mode for solution x1(t) equals the active mode for solution x2(t) at time
t, then the inequality

V̇ ≤−αV, α > 0

is obviously satisfied. For the case that p 6= q, this inequality also holds for some α > 0 if
condition (6.7) is met, which is proven using the following reasoning.

Switching rule (6.4) implies the following constraints for mode p

G1(x,w) = xT
1 (Zpx−Zqx)x1 + xT

1 (Zpw−Zqw)w≤ 0

and for mode q

G2(x,w) = xT
2 (Zqx−Zpx)x2 + xT

2 (Zqw−Zpw)w≤ 0.

The system is quadratically convergent if for some ε > 0 it holds that

V̇ ≤−ε

[
x1

x2

]T [
In −In

−In In

][
x1

x2

]

for all (x,w) that satisfy G1(x,w)≤ 0 and G2(x,w)≤ 0. Using the S-procedure (see Section 2.2),
the previous condition is satisfied if the following inequality holds

V̇ −G1−G2 ≤−ε

[
x1

x2

]T [
In −In

−In In

][
x1

x2

]
.

This inequality is equivalent to (6.7).

Remark 6.3. If the conditions of Theorem 6.2 hold, then the closed-loop system is well-posed
in the sense of Filippov, i.e. existence, right uniqueness, and continuous dependence on initial
conditions of solutions are assured. The right uniqueness and continuous dependence on initial
conditions of solutions follow from the fact that the system is quadratically convergent, similar
to Theorem 2.10.1 in [17].

Remark 6.4. Note that (6.5) and (6.7) are LMIs with design variables P and Z1x, . . . ,Zkx, which
can be solved efficiently using available LMI toolboxes.

Although Theorem 6.2 gives sufficient conditions for quadratic convergency, it does not give
insight for what collection of matrices {A1, . . . ,Ak} a switching law can be found. In the case
that both Zix and Ziw are defined in advance for all i = 1, . . . ,k, i.e.

Zix =
1
2
(
AT

i P+PAi
)
, Ziw = 2PBi (6.10)

then Theorem 6.2 can be simplified as follows.
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Corollary 6.5. If there exists a common Lyapunov matrix P = PT > 0 such that conditions (6.5)
and (6.6) are satisfied and in addition

P(Ai−A j)− (Ai−A j)T P = 0 ∀i, j ≤ k (6.11)

then switching rule (6.4) with matrices Z1x, . . . ,Zkx and Z1w, . . . ,Zkw as defined in (6.10) makes
system (6.1) quadratically convergent.

Proof. The proof of this corollary is based on the proof of Theorem 6.2. Substituting Zix =
1
2

(
AT

i P+PAi
)

and using condition (6.11) gives

V̇ −G1−G2 ≤
1
2
(x1− x2)T (Zpx +Zqx)(x1− x2).

Since Zpx +Zqx ≤−εIn for some ε > 0, it follows that system (6.1) is quadratically convergent.

Remark 6.6. Note that condition (6.11) is an equality constraint and therefore the LMI problem
corresponding to Corollary 6.5 is harder to solve (using LMI toolboxes) than the LMI problem
corresponding to Theorem 6.2. On the other hand, condition (6.11) is very useful since it pro-
vides direct insight in the fact that the LMI problem is solvable for symmetric Hurwitz matrices
Ai, i = 1, . . . ,k, using P = In. This insight could not be gained directly from Theorem 6.2.

Switching rule (6.4) as used in Theorem 6.2 and Corollary 6.5 is based on the fact that full state
information is available for feedback. In the following subsection the case is discussed in which
only a part of the state is available for feedback.

Observer-based switching rule

Consider the case in which only some system output Cix is available for feedback, instead of
the entire state. For this case, an observer is constructed for system (6.1)

˙̂x(t) = Aix̂(t)+Biw(t)+LiCi(x− x̂), i = 1, . . . ,k (6.12)

where x̂ is the estimate of state x and Li ∈ Rn×l is the observer gain matrix. The following
observer-based switching rule is proposed

σ(x̂,w) = arg min
i
{x̂T Zixx̂+ x̂T Ziww} (6.13)

in which Ziw and Zix are matrices to be defined.

Theorem 6.7. If for system (6.1) all conditions of Theorem 6.2 hold, and in addition there exist
a matrix P2 = PT

2 > 0 and matrices Li for i = 1, . . . ,k, such that

(Ai−LiCi)T P2 +P2(Ai−LiCi) < 0, ∀i = 1, . . . ,k (6.14)

then observer-based switching rule (6.13) with matrices Zix and Ziw = 2PBi, i = 1, . . . ,k makes
system (6.1) exponentially convergent.
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Proof. First it is proven that the state x(t) of system (6.1) either lies in a positive invariant
compact set or converges exponentially in time to this set. Consider the Lyapunov function

V (x) = xT Px.

Since there exists a common P such that (6.5) is satisfied, it follows that

V̇ (x)≤−αV +β
∗|x||w| ≤ −αV +β

√
V

for some positive constants α , β ∗, and β , and bounded input w ∈ PCm. Here, | · | represents the
Euclidean norm. Note that there exists a level set

Ω =
{

x
∣∣∣ V (x)≤ β 2

α2

}
outside of which V̇ < 0. This implies that if initial condition V (x(0)) lies within this level set,
then V (x(t)) remains within this set for all t > 0. If V (x(0)) lies outside this set, then V (x(t))
converges exponentially in time to this set as can be seen from

V̇ ≤−αV +β
√

V ≤−α

(
V − β 2

α2

)
.

Since V is a quadratic function of x(t), it can be concluded that x(t) also converges exponentially
to the positively invariant compact set Ω.

Secondly it is proven that the estimation error e(t) = x(t)− x̂(t) decreases exponentially towards
zero as t → ∞ if (6.14) holds. Since both the observer (6.12) and system (6.1) use the same
switching rule (6.13) the error dynamics become

ė =


(A1−L1C1)e for σ(x̂,w) = 1

...
(Ak−LkCk)e for σ(x̂,w) = k

If there exists a common Lyapunov matrix P2 for all (Ai−LiCi), i = 1, . . . ,k, i.e. condition (6.14)
is satisfied, then the equilibrium point e = 0 is globally exponentially stable.

Finally consider the Lyapunov function and its derivative given in respectively (6.8) and (6.9).
Let σ(x̂1,w) = p and σ(x̂2,w) = q. The observer-based switching rule (6.13) implies the fol-
lowing constraints for mode p

G1(x̂,w) = x̂T
1 (Zpx−Zqx)x̂1 + x̂T

1 (Zpw−Zqw)w≤ 0

and for mode q
G2(x̂,w) = x̂T

2 (Zqx−Zpx)x̂2 + x̂T
2 (Zqw−Zpw)w≤ 0.

Substituting x̂i by xi− ei gives

G1(x̂1,w) = G1(x1,w)+G1(e1,w)− f (e1,x1),

G2(x̂2,w) = G2(x2,w)+G2(e2,w)+ f (e2,x2),
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with

f (ei,xi) = xT
i (Zqx−Zpx)ei + eT

i (Zqx−Zpx)xi.

Subsequently, the S-procedure is applied to obtain

V̇ −G1(x̂1,w)−G2(x̂2,w)≤−α1V +g

with

g =−G1(e1,w)−G2(e2,w)+ f (e1,x1)− f (e2,x2).

Since ei(t) tends exponentially towards zero as t→∞, xi(t) lies in Ω or converges exponentially
in time towards this set for i = 1,2, and w(t) is bounded, function g tends exponentially towards
zero as a function of time. Thus, using switching rule (6.13) the following inequality is true

V̇ ≤−α1V + γe−α2t (6.15)

where α1, α2, γ are some positive constants. Using for example the comparison principle
(see e.g. [40]) it can be shown that (6.15) implies that V (x1(t)− x2(t)) reduces exponentially
towards zero as t → ∞ and therefore that system (6.1) is exponentially convergent. This com-
pletes the proof.

Remark 6.8. Since there exists a common P for all Ai, i = 1, . . . ,k, condition (6.14) can always
be met (take e.g. Li = 0).

Remark 6.9. Condition (6.14) is not an LMI because of the product of design matrices P2Li.
However, replacing P2Li by matrices Qi leads to an LMI with design matrices P2 and Qi. Once
the LMI is solved the matrices Li can be obtained from Li = P−1

2 Qi. The inverse of P2 always
exists since P2 is positive definite.

It has been shown in this section that both time-dependent, state-dependent and output-dependent
switching rules can be defined that lead to an exponentially convergent closed-loop system, pro-
vided this system satisfies some conditions. In the remainder of this chapter, these results are
illustrated by means of a case study.

6.3 Case study: Performance analysis of a switched lin-

ear system

In this case study the following switched linear system is investigated

ẋ = Aix+Biw(t)
y = Cx

i = 1,2 (6.16)
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in which x(t) ∈ R3 is the state, w(t) ∈ PC is the input, and

A1 =

−5 −8 3
10 −2 0
9 −1 −6

 , B1 =

14
−6
7

 ,

A2 =

−8 −5 −8
13 −8 2
−2 1 −4

 , B2 =

 20
−16

8

 ,

C =
[
1 0 0

]
.

For this system, first a state-dependent switching rule is applied to obtain a quadratically conver-
gent system. Subsequently, the steady-state performance of this convergent system is analysed
in the frequency domain and compared to the performance of the two corresponding linear
systems. In the second part of the case study it is assumed that only some output y can be
measured. For this case an observer-based switching rule is applied to render the system ex-
ponentially convergent. The results presented in this section are obtained using both real-time
experiments and simulation. The real-time experiments are of special interest here, since they
can provide insight in how the switching rules (which allow sliding modes) operate in a real-
time environment (with only a finite sampling rate). The experimental setup that was used for
the real-time experiments is described below.

Experimental setup

The experimental setup that is used to investigate the behavior of system (6.16) with state-
dependent switching rule (6.4) is shown schematically in Figure 6.3. The hardware of this ex-
perimental setup is identical to the hardware described in Section 4.4 (see Figures 4.3 and 4.4).
The software, on the other hand, here consists of a reference signal generator, two subsystems
(controllers) with linear dynamics, a block that computes the switching signal according to
switching rule (6.4), and a switch that performs the actual switching between the available sub-
systems. Directly after the switch, signal ẋ is divided into two parts: ẋ1 and [ ẋ2, ẋ3 ]T . The first
part, i.e. v = ẋ1, is the reference velocity that is sent to the actuator, which drives a rotating rigid
body. The sensor (an incremental encoder) measures rotation angle x1. The second part, i.e.
[ ẋ2, ẋ3 ]T , is integrated numerically and the resulting [ x2, x3 ]T is fed back into the two sub-
systems together with the measured x1. Note that in order to realize the dynamics as described
in (6.16) the integrator in the software cannot be incorporated in the subsystems, since at the
moment of switching only ẋ should be changed, while state x keeps its value. If the integrator
would be incorporated in the subsystems then part of the state, i.e. x2 and x3, would also change
at the moment of switching.

For the investigation of the behavior of system (6.16) with observer-based switching rule (6.13),
the software of the experimental setup as described in Figure 6.3 is extended with an observer,
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Figure 6.3: Schematic representation of the experimental setup with state-dependent switching.
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ẋ = A1x+B1w

Subsystem 1
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Figure 6.4: Schematic representation of the experimental setup with observer-based switching.

as visualized in the schematic representation in Figure 6.4. This observer contains a copy of
the subsystems (with an additional term Li(x1− x̂1)), a switch and a numerical integrator, such
that it describes the dynamics as given in (6.12).
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State-dependent switching

Consider system (6.16) with the given matrices and state-dependent switching rule (6.4). Using
an LMI toolbox the following matrices can be found

P =

 0.1033 −0.0084 0.0032
−0.0084 0.0880 −0.0070
0.0032 −0.0070 0.1015

> 0 (6.17)

Z1x−Z2x =

 0.3702 −0.3670 1.1471
−0.3670 0.5676 −0.2548
1.1471 −0.2548 −0.1539

 (6.18)

that in combination with Z1w = 2PB1 and Z2w = 2PB2 satisfy conditions (6.5)–(6.7) with ε =
0.4415. Here, Z1x and Z2x can be chosen freely within the restrictions of (6.6) and (6.18). Since
all conditions of Theorem 6.2 are met, one can conclude that switching rule (6.4) with the
matrices as defined above makes system (6.16) quadratically convergent, i.e.

V̇ ≤−0.4415(x1− x2)T (x1− x2)

≤−3.9782(x1− x2)T P(x1− x2)

≤−3.9782V.

In order to determine how fast a solution converges to the limit solution x̄(t), the following
calculation can be made. First note that

(x1− x2)T P(x1− x2)≥ λmin(P)|x1− x2|2

(x1− x2)T P(x1− x2)≤ λmax(P)|x1− x2|2

where λmin(P) and λmax(P) denote respectively the minimum and maximum eigenvalue of P.
An upper bound on the exponential convergency of solutions can now be expressed as

|x1(t)− x2(t)| ≤

√
λmax(P)
λmin(P)

|x1(0)− x2(0)| e
−3.9782

2 t

≤ 1.1580 |x1(0)− x2(0)| e−1.9891t .

(6.19)

Note that for different matrices P and Z1x−Z2x (that also satisfy all conditions of Theorem 6.2),
a different upper bound can be found for |x1(t)− x2(t)|. However, as the main interest here lies
with the steady-state performance of the switched linear system, this transient performance and
for example the possibility of optimizing the upper bound on the exponential convergency is
not discussed further here.

In order to analyse the steady-state performance of this switched linear system, both simulation
and real-time experiments were used. As explained in Section 2.4, simulation is (experiments
are) a reliable way for convergent systems to determine the limit solution of the system. The
steady-state response of the switched linear system is compared to the steady-state response of
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the two corresponding linear systems, i.e. ẋ = A1x+B1w(t) and ẋ = A2x+B2w(t), for harmonic
input signals

w(t) = sin(ωt), ω ∈ [10−2,103].

By means of simulation the limit solutions of all three systems have been determined and a
nonlinear sensitivity function (S = ||w−y||2/||w||2, see Section 2.4) has been computed. This
nonlinear sensitivity function is shown in Figure 6.5.

i
i

“tempimage˙temp” — 2008/3/28 — 16:14 — page 1 — #1 i
i

i
i

i
i

10−2 10−1 100 101 102 103
0

0.5

1

1.5

2

2.5
Linear controller 1 (sim)
Linear controller 2 (sim)
Switched controller (sim)
Switched controller (exp)

||w
−

y||
2/
||w

|| 2

ω [rad/s]

Figure 6.5: Nonlinear sensitivity function.

In Figure 6.5 it can be observed that for the considered nonlinear sensitivity function the
switched linear system performs better than the linear systems for the input range ω ∈ [100,102].
This implies that besides improvement of transient behavior (see e.g. [16]), the use of switched
linear control instead of linear control may also provide better steady-state behavior. A more
important observation, however, is that the performance of the switched linear system can be
compared to the performance of the linear systems in the frequency domain, something which
is not trivial for switched linear systems in general.

Note that the nonlinear sensitivity function for the linear systems as depicted in Figure 6.5 is
not the same as the magnitude of the linear sensitivity function. Due to the definition of the
nonlinear sensitivity function a difference in phase between input w and output y also results in
a positive value of the nonlinear sensitivity, even if the amplitude of w and y are identical.

The nonlinear sensitivity function of the switched linear system is also determined by means of
experiments on the experimental setup as described in the previous subsection. These results
are indicated in Figure 6.5 with dots. One can observe that the results of the experiments
correspond quite well with the simulation results, especially for low frequencies. For higher
frequencies, the deviation between the experimental and simulation results becomes larger.
This is to be expected, since the sampling rate (1000 Hz) here forms an obvious limitation.
Another observation, which was made during the execution of the experiments, is that for some
input frequencies the system goes through a short time of ‘chattering’ in every period. This
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‘chattering’ is caused by very fast switching between the two subsystems, which is visualized
in Figures 6.6 and 6.7 for the system with w(t) = sin(0.4t). In these figures both output y and
switching signal σ(x,w) are shown as a function of time. Since fast switching implies that
the system is subject to large forces, such a switching policy may not be suitable for every
type of system. Nevertheless, for systems that do allow such a switching policy, the nonlinear
sensitivity may be improved as suggested in Figure 6.5.
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Figure 6.6: Experimental result: x1(t) for sys-
tem with w(t) = sin(0.4t).
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Observer-based switching

In this subsection the effect of observer-based switching as opposed to state-based switching
is shown. Consider again system (6.16) with the given matrices and consider (6.12) with gain
matrices

L1 =

10
5

10

 , L2 =

 5
10
−10


which are chosen in such a way that condition (6.14) can be satisfied for some P2. Since ma-
trices (6.17) and (6.18) as used in the previous subsection can still be applied, all conditions
in Theorem 6.7 are satisfied, which implies that system (6.16) with observer-based switching
rule (6.13) is exponentially convergent for any input w ∈ PC. In Figure 6.8 the convergent be-
havior of system output y as obtained by simulation is visualized for x(0) = [0;0;0], w = sin(5t),
and initial estimation errors e(0) = {[−10;−10;−10], [−100;100;0], [100;0;−10]} (respec-
tively the dashed, dash-dotted, and dotted line). Furthermore, the output of the system with
state-based switching is plotted (solid line) to make a comparison with the observer-based
switching. One can observe that for the different initial estimation errors, output y converges
to the unique steady-state solution that was also obtained using the state-dependent switching
rule.

The experiment as described above is repeated in real-time on the experimental setup as shown
schematically in Figure 6.4. The results as obtained by these real-time experiments (gray solid
lines) are given in Figure 6.9 together with the results obtained by simulation (black dashed



CHAPTER 6. PERFORMANCE ANALYSIS OF SWITCHED LINEAR SYSTEMS . . . 97

i
i

“tempimage˙temp” — 2008/3/28 — 14:07 — page 1 — #1 i
i

i
i

i
i

0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3

4
e(0)=[-10;-10;-10]
e(0)=[-100;100;0]
e(0)=[100;0;-10]
State-based switching

y

Time (s)

Figure 6.8: Observer-based versus state-based switching.

lines). As one can observe, the experimental results do not match with the simulation results
during the transient part of the solutions, but the limit solution corresponds very well. The
fact that the transient parts of the experimental results deviate from the simulation results is
most likely caused by unmodeled dynamics in the experimental setup, such as the dynamics of
the velocity controller. Nevertheless, after some time all solutions are converged to the limit
solution, which indicates that the observer-based switching rule can also be applied successfully
in real-time for this case.
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Finally note that only the transient part of the solution is influenced by the choice of switching
(i.e. state-dependent or observer-based), the limit solution is identical for both types of switch-
ing. Therefore, if the performance analysis of the previous subsection would be repeated for
the observer-based switching rule, then the results would be identical to those in Figure 6.5.

6.4 Discussion

In contrast to general switched linear systems, the steady-state performance of a convergent
switched linear system can be evaluated using (nonlinear) frequency response functions. As
a result, the limit behavior of these systems can also be easily compared in the frequency do-
main to the limit behavior of linear systems. This allows one to better understand the value of
switched linear systems in comparison with linear systems. In this chapter, it was shown for the
case that the dynamics of all subsystems are given a priori, one can define a time-dependent,
state-dependent, or observer-based switching rule that renders the closed-loop system expo-
nentially convergent if some sufficient conditions are satisfied. By means of a case study the
use of the state-dependent and observer-based switching rule was illustrated, and a comparison
was made between the limit behavior of the switched system and the corresponding individual
linear subsystems, for the case in which the system is externally forced with a harmonic signal.

The limit behavior as analysed in the case study was determined using simulation and exper-
iments. The harmonic balance method, which was used in Chapters 4 and 5 as an alternative
to determine the limit behavior of a system with harmonic excitation, could not be directly
applied in the case study in this chapter. For a switched linear system with time-dependent
switching, the harmonic balance method can be used, as demonstrated in e.g. [46]. However,
for the state-dependent and output-dependent switching rules as presented in this chapter, this
method cannot be straightforwardly applied, since the switching rule depends on both a (multi-
dimensional) state x (or x̂) and input w.

Furthermore, in this chapter only switched linear systems were considered. Switched affine
systems, i.e. systems of the form ẋ(t) = Aix(t) + Biw(t) + Fi, where Fi is a constant matrix,
were not discussed, but the results presented in this chapter can be easily extended towards this
case.

Finally, it should be mentioned that although the existence of a common Lyapunov matrix, see
e.g. (6.5), is not sufficient for state-dependent switching rules in general to guarantee an ex-
ponentially convergent system, for some state-dependent switching rules such a common Lya-
punov matrix may not even be necessary. For systems with a time-dependent switching rule it
is obvious that a common quadratic Lyapunov matrix is not necessary to prove exponential con-
vergency, since roughly speaking only the average matrix Ā = (t1A1 + t2A2 + . . .+ tkAk)/∑

k
i=1 ti

needs to be Hurwitz, while all individual matrices Ai may have eigenvalues with a positive real
part. Also, a ‘switching’ rule that dictates the system to remain in one exponentially stable
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mode, does not require a common Lyapunov matrix condition. More research is required, how-
ever, to find other state-dependent switching rules and less conservative conditions under which
the closed-loop system is exponentially convergent.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this thesis, several contributions were made to the research on performance analysis of exter-
nally forced nonlinear systems, using the notion of convergent systems. These contributions are
summarized in this section, and can be roughly divided into four themes: conditions for conver-
gent systems, computationally efficient performance analysis, applications, and experimental
validation. These themes correspond to the four research objectives defined in Section 1.3.

Conditions for convergent systems

In previous research, it has already been demonstrated that convergent systems, in contrast to
nonlinear systems in general, have specific properties due to which detailed steady-state perfor-
mance analysis (e.g. using nonlinear frequency response functions) is possible. The available
results that provide sufficient conditions to prove that a system is convergent, however, are still
limited. In this thesis, two new contributions were made to this field, i.e. sufficient conditions
were found to prove uniform convergency for Lur’e systems, and sufficient conditions were
found to prove exponential convergency for switched linear systems.

The Lur’e system that was considered, is an externally forced Lur’e system with a saturation
nonlinearity and marginally stable linear part. In Chapter 4, a theorem was presented with
sufficient conditions to guarantee that such a system is uniformly convergent, i.e. within a given
compact set, the system is convergent with an exponential rate. The theorem was shown to be

101
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also applicable to a class of anti-windup systems with a marginally stable plant, as discussed
further in subsection ‘Applications’.

For the switched linear systems with external inputs, it was assumed that the dynamics of all
subsystems are given a priori. For this setting, switching rules and accompanying conditions
were discussed in Chapter 6 that guarantee an exponentially convergent closed-loop system.
Both state-dependent, observer-based (output-dependent), and time-dependent switching rules
were shown to be applicable to guarantee a convergent system under some additional condi-
tions.

Computationally efficient performance analysis

Although simulation can be used for convergent systems to analyse the system’s steady-state
performance, this can be very time-consuming. In Chapter 3 of this thesis, a computation-
ally efficient approach was presented to approximate nonlinear frequency response functions
(nFRFs) for Lur’e systems with forced harmonic excitation. This approach is based on the
method of harmonic linearization, and provides both a linear approximation of the nFRF and
an upper bound on the error between the approximative nFRF and the true nFRF.

This computationally efficient alternative for the computation of nFRFs was illustrated by
means of three examples. These examples made clear that the proposed frequency domain
analysis based on harmonic linearization can provide an accurate approximation of the nFRF,
and is much more time-efficient than the exact simulation-based analysis. Furthermore, the ex-
amples showed that this approximative analysis often provides more detailed information on the
considered system than the often used L2 gain. It was also shown that for some systems, such a
(finite) L2 gain estimate cannot even be found using a quadratic storage function (as described
in Section 2.3), while the harmonic linearization approach still can provide detailed results. Fi-
nally, it was observed that the method of harmonic linearization can sometimes be misleading:
if the harmonic balance equation has a unique solution, the corresponding nonlinear system can
still have multiple distinct steady-state solutions, as demonstrated in Example 3.11.

Applications

In this thesis, the theoretical results on uniform convergency of Lur’e systems have been further
exploited in two application fields: anti-windup systems with a marginally stable plant, and
anti-windup control for discrete-event manufacturing systems.

The proof of uniform convergency for Lur’e systems as presented in Chapter 4 was shown to
be also applicable to a class of anti-windup systems with a marginally stable plant. It was
shown that in comparison with the performance results as obtained by existing anti-windup
methods, the convergency-based performance analysis can in some cases provide more detailed
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information on the steady-state behavior of the system. Two case studies were performed to
illustrate how the theory on uniform convergency can be applied to analyse the steady-state
performance of anti-windup systems. In the first case study, which focused on a PI controlled
integrator plant with actuator saturation and static anti-windup gain, the theory was used to
show that the closed-loop system is convergent if the anti-windup gain is large enough. Both
the case in which the system is not convergent and the case in which it is convergent were
illustrated by means of simulations, and for the convergent system an nFRF was constructed,
using both simulation and the method of harmonic linearization. In the second case study,
which dealt with a PI controlled ‘mass-spring-damper’ plant with actuator saturation and static
anti-windup gain, the system was shown to be uniformly convergent for a range of anti-windup
gains and again an nFRF was constructed.

In Chapter 5, a PI controller with anti-windup compensation was proposed for the tracking con-
trol of a discrete-event manufacturing machine. Advantages of such a controller over existing
MPC strategies are that no estimates of future customer demands are required, and that it re-
quires less computational effort. In order to design this feedback controller, the discrete-event
machine was approximated by an integrator that is preceded by a saturation nonlinearity. Us-
ing the results of Chapters 3 and 4, the use of the proposed controller was shown to result in
a convergent closed-loop system with desired tracking performance. The proposed controller
was subsequently implemented in the discrete-event domain and applied to the discrete-event
machine. Discrete-event simulation results were compared to simulation results of the contin-
uous approximation system, which indicated a good match between the results, as long as the
processing time of the machine is relatively small in comparison with the period of the fluctu-
ation of the reference demand. The controller was also applied for the tracking and inventory
control of a discrete-event manufacturing line consisting of four machines. It was shown that
in order to solve the given control problem, the reference signals for the first three machines
should include some information on the production error of the direct downstream machine. A
linear coupling relation was proposed to include this production error in the reference signal,
which together with the anti-windup controller resulted in satisfactory tracking behavior with
little inventory in the line, for the considered reference signal.

Experimental validation

Besides the simulation-based validation of the theoretical results in Chapters 4 and 6, also
real-time experiments were performed. For this purpose an electromechanical setup was con-
structed. This experimental setup was used to generate real-time results for the case studies
described in Chapter 4, in order to illustrate the (non-)convergent behavior of the system and
to construct an nFRF of the considered anti-windup systems. The results were shown to match
well with the simulation results in general, although for high frequencies of the input signal
some mismatches were observed, which are probably caused by unmodeled dynamics. The
electromechanical setup was also used to generate real-time results for the case study described
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in Chapter 6. In this case study, the proposed state-dependent and observer-based (output-
dependent) switching rules were applied to a switched linear control system, and the exponen-
tially convergent behavior was indicated using both simulation and real-time experiments. It
was observed that the considered switching rules, which in theory allow infinitely fast switching
(sliding mode), still performed well in a real-time environment, in which the sample frequency
is limited. Finally, an nFRF was constructed, and it was observed that the experimental results
match well with the simulation results, except for high frequencies of the input signal; here, the
effect of the finite sample time of the experimental setup becomes significant.

7.2 Recommendations for future research

In the ‘Discussion’ sections of Chapters 3-6 several suggestions were made to extend the results
obtained in this thesis. This section summarizes the main recommendations for future research.

• Currently, the notion of convergent systems is only used to analyse the steady-state per-
formance of nonlinear systems. It would be very interesting to investigate if the conver-
gent systems approach can also be extended so that it can be used to design for perfor-
mance. One way to approach this problem can be to develop a simulation-based optimiza-
tion tool, which is able to optimize certain system parameters with respect to some per-
formance index, while preserving the conditions that are required for convergent systems.
For example, in the case study in Section 4.4, it was shown that the considered system is
uniformly convergent if parameter kA is larger than 1/kP. Using such a simulation-based
optimization tool, one can determine an optimal value of kA, that still satisfies kA > 1/kP.
If the considered performance index is based on some nFRF, then instead of only simu-
lation, one can also use the method of harmonic linearization as presented in Chapter 3,
which may lead to a more time-efficient tool. Finally, another possibility to strengthen
the result of the convergent system approach, is to exploit it in combination with existing
synthesis or optimization algorithms. An example of this was given in Section 4.3, where
by combination of an existing anti-windup design method and the proof of convergency,
a stronger conclusion was obtained on the performance of the system.

• In the research field of convergent systems, most approaches are based on finding quadratic
Lyapunov functions, leading in turn to quadratic convergency conditions. The theorem
presented in Chapter 4 is new in the way that it leads to conditions for uniform conver-
gency, which are less restrictive. This result may be extended in future research to prove
uniform convergency for other (similar) systems. For this purpose, it may also be valu-
able to take into account the approach and results of [9, 20, 47], in which synchronization
of Lur’e systems is studied in the presence of strongly oscillatory external signals.

• In Chapter 5 only some preliminary results were obtained in the research on anti-windup
control for manufacturing systems. Other investigations should point out if the proposed
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controller is also applicable to more complex manufacturing systems, with for example
a different structure (e.g. assembly points, networks) or different type of machines (e.g.
batch machines, stochastic processing times, setup times), or what adjustments should be
made to the controller for such systems. One part of the control structure that requires
additional investigation is the construction of the reference signal for the upstream ma-
chines. In this thesis, the reference signal was assumed to be linearly dependent on the
production error of the direct downstream machine, which resulted in satisfactory behav-
ior of a small manufacturing line. However, it should be investigated if such a reference
signal construction is also suitable for more complex manufacturing systems, starting
with longer manufacturing lines.

• As mentioned in Chapter 6, the existence of a common Lyapunov function is not sufficient
for state-dependent switching rules in general to guarantee an exponentially convergent
system. However, for some state-dependent switching rules such a common Lyapunov
function is not even necessary. For example, a ‘switching’ rule that dictates the system to
remain in one exponentially stable mode, does not require this condition. Future research
may lead to other state-dependent switching rules and less conservative conditions under
which the closed-loop system is (exponentially) convergent.
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Appendix A

Experimental Setup: System Identification

This appendix describes the identification of the dynamics of the ‘mass-spring-damper’ con-
struction in the experimental setup as discussed in Section 4.5.

Rigid
Body 2

Rigid
Body 1

v

k

d

Figure A.1: Schematic representation of the ‘mass-spring-damper’ plant.

The ‘mass-spring-damper’ plant of the considered experimental setup, see Figure 4.12, consists
of two rotating rigid bodies connected by an element that has a certain stiffness and damping.
The dynamics of this plant are assumed to be linear, i.e. the effect of nonlinear elements (such
as Coulomb friction or nonlinear spring/damper behavior) is assumed to be negligible. As a
result, the dynamics of the plant, as represented schematically in Figure A.1, can be described
by the following equationsṙ1

ṙ2

r̈2

=

 0 0 0
0 0 1
k
J2
− k
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− d
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r2

ṙ2

+

 1
0
d
J2

v (A.1)

where r1 and r2 are the rotation angles of respectively body 1 and body 2, J2 is the moment
of inertia of body 2 with respect to its rotation axis, k is the spring constant, d is the damping
constant, and v is the rotational velocity at which body 1 is driven.
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As one can conclude from (A.1), only two parameters need to be estimated in order to identify
the dynamics of the plant, i.e. p1 = k

J2
and p2 = d

J2
. For several harmonic input signals v with

different frequencies, the response (rotation angle) of body 2 was measured. Subsequently,
a least-squares fit was computed on the obtained experimental data, see Figure A.2, which
resulted in the following estimates of the required parameters:

p1 =
k
J2

= 3.9 ·103 (1/s2),

p2 =
d
J2

= 10.7 (1/s).

These estimates are used for the case study in Section 4.5.
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Figure A.2: Experimental data and least-squares fit with k/J2 = 3.9 ·103 and d/J2 = 10.7.



Samenvatting

Prestatieanalyse is een belangrijk aspect binnen het ontwerpen van dynamische (regel)systemen.
Zonder een degelijke analyse van het gedrag van een systeem, kan men onmogelijk garanderen
dat een bepaald ontwerp voldoet aan de gestelde systeemeisen. Voor lineaire tijdsinvariante
systemen is het relatief eenvoudig om nauwkeurige prestatieanalyses te maken. Als een gevolg
hiervan zijn in het verleden ook al veel lineaire ontwerpmethodes voor (regel)systemen ver-
schenen. Voor niet-lineaire systemen, daarentegen, zijn dit soort nauwkeurige prestatieanalyses
en ontwerpmethodes over het algemeen niet beschikbaar. Een belangrijke reden hiervoor is dat
niet-lineaire systemen meerdere steady-state oplossingen kunnen hebben, in tegenstelling tot
lineaire tijdsinvariante systemen. Door het bestaan van meerdere steady-state oplossingen is het
veel lastiger om een nauwkeurige prestatieindex te definiëren. Bepaalde niet-lineaire systemen,
d.w.z. de zogenaamde convergente niet-lineaire systemen, worden echter gekarakteriseerd door
een unieke steady-state oplossing. Deze oplossing kan wel afhankelijk zijn van de ingangssig-
nalen (bijv. referentiesignalen) van het systeem, maar is onafhankelijk van de begincondities
van het systeem. In het verleden is al gebleken dat de notie van convergente systemen erg nuttig
kan zijn bij de prestatieanalyse van niet-lineare systemen met ingangssignalen.

In dit proefschrift worden nieuwe resultaten gepresenteerd op het gebied van prestatieanalyse
van niet-lineaire systemen met ingangssignalen, gebaseerd op de notie van convergente sys-
temen. Een deel van dit proefschrift is gericht op de vraag “hoe kan de prestatie van een
convergent systeem geanalyseerd worden?” Omdat het gedrag van een convergent systeem
onafhankelijk is van de begincondities (na een transiënte tijd), kan simulatie gebruikt worden
om de unieke steady-state oplossing, die correspondeert met een bepaald ingangssignaal, te
bepalen. Een dergelijke simulatie kan echter tijdrovend zijn. In dit proefschrift wordt een
rekentijd-efficiëntere methode gepresenteerd voor het schatten van de steady-state prestatie
van harmonisch aangedreven Lur’e systemen, in termen van niet-lineaire frequentie-respons-
functies (nFRFs). Deze methode is gebaseerd op de methode van harmonisch lineariseren.
De methode resulteert in een lineaire benadering van de nFRF en een bovengrens van de fout
tussen deze lineaire benadering en de werkelijke nFRF. Verschillende voorbeelden laten zien
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dat de benadering van de nFRF nauwkeurig is en dat zij meer gedetailleerde informatie ver-
schaft over het beschouwde systeem dan de veelgebruikte ‘L2 gain’ prestatieindex. Verder
is geobserveerd dat de methode van harmonisch lineariseren soms ‘misleidend’ kan zijn voor
Lur’e systemen met een saturatie niet-lineariteit: het is aangetoond dat, in het geval dat de har-
monische balansvergelijking een unieke oplossing heeft, het bijbehorende niet-lineaire systeem
toch meerdere verschillende steady-state oplossingen kan hebben.

Een ander deel van het proefschrift is gericht op de vraag “onder welke condities is een sys-
teem met ingangssignalen gegarandeerd convergent?” Twee typen systemen zijn onderzocht:
geschakelde lineaire systemen en Lur’e systemen met een saturatie niet-lineariteit en een mar-
ginaal stabiel lineair gedeelte.

Voor de geschakelde lineaire systemen is het aangenomen dat de dynamica van de afzonderlijke
lineaire subsystemen vastligt. Er is onderzocht of het mogelijk is, onder deze omstandighe-
den, een schakelwet te definiëren (die aangeeft wanneer er tussen de beschikbare subsystemen
geschakeld moet worden), zodat het totale systeem convergent is. Zowel een toestandsafhan-
kelijke, een waarnemerafhankelijke, als een tijdsafhankelijke schakelwet zijn gevonden die
gegarandeerd tot een convergent systeem leiden, mits de dynamica van de lineaire subsyste-
men aan enkele voorwaarden voldoet.

Het tweede soort systemen dat onderzocht is, zijn Lur’e systemen met een saturatie niet-
lineariteit en een marginaal stabiel lineair gedeelte. Het onderzoeksdoel voor dit type syste-
men was om voldoende voorwaarden te vinden waaronder het systeem convergent is. Van-
wege het marginaal stabiele gedeelte is het echter niet mogelijk een kwadratisch convergent
systeem te verkrijgen. In plaats daarvan zijn voldoende voorwaarden gevonden om uniforme
convergentie van het systeem te garanderen. Het is vervolgens aangetoond dat de verkregen
theorie ook toepasbaar is voor een klasse van anti-windup systemen met een marginaal stabiele
machine. Voor deze klasse van systemen zijn de resultaten van de convergentie-gebaseerde
prestatieanalyse vergeleken met de analyseresultaten van bestaande anti-windup methoden.
Hierbij is geobserveerd dat de convergentie-gebaseerde prestatieanalyse in sommige gevallen
meer gedetailleerde informatie verschaft over het steady-state gedrag van het systeem.

De resultaten van uniforme convergentie voor anti-windup systemen zijn ook toegepast in het
gebied van productie- en voorraadbeheersing van discrete-event fabricagesystemen. Aangezien
een productiemachine een beperkte capaciteit heeft en niet met een negatieve snelheid kan
werken, kan deze machine gezien worden als een integrator (ingang: productiesnelheid, uit-
gang: aantal bewerkte producten) vooraf gegaan door een saturatie functie. Voor deze marginaal
stabiele machine is een regelaar ontworpen, zodanig dat het totale systeem uniform convergent
is. De regelaar is vervolgens geı̈mplementeerd in het discrete-event domein en de resultaten
van discrete-event simulaties zijn vergeleken met de resultaten van continue-tijd simulaties. Op
dezelfde wijze is de regelaar ook toegepast voor de productie- en voorraadbeheersing van een
lijn van vier productiemachines. Voor zowel de enkele machine als de lijn van vier machines is
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aangetoond dat de resulterende geregelde discrete-event systemen het gewenste tracking gedrag
hebben.

Naast de genoemde theoretische en numerieke resultaten zijn ook experimentele resultaten ge-
presenteerd in dit proefschrift. Met behulp van een elektromechanische constructie zijn ver-
schillende experimentele resultaten verkregen. Deze resultaten zijn gebruikt om de theore-
tische resultaten voor zowel de geschakelde lineaire systemen als de anti-windup systemen te
valideren.
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