9 research outputs found

    Performance Analysis of Prioritized MAC in UWB WPAN With Bursty Multimedia Traffic

    Full text link

    Saturation throughput of IEEE 802.11e EDCA based on mean value analysis

    No full text
    Abstract — The IEEE 802.11-based wireless LANs have been widely deployed for local area high-speed data access. The IEEE 802.11e amendment aims at providing QoS provisioning to support real-time multimedia traffic in WLANs. The Enhanced Distributed Channel Access (EDCA) is a QoS extension of the Distributed Coordination Function (DCF) in IEEE 802.11a/b/g. In this paper, we propose an analytical model to evaluate the saturation throughput of the IEEE 802.11e EDCA. Our analytical model is based on the use of mean value analysis. We carry out extensive simulation study to validate the accuracy of the proposed model. Our scheme models accurately the effects of the change of contention window size and AIFS (Arbitration Inter-Frame Space). Our analytical model is applicable to real-time system tuning and on-line admission control algorithms which require a low computation complexity. I

    Design of Wireless Communication Networks for Cyber-Physical Systems with Application to Smart Grid

    Get PDF
    Cyber-Physical Systems (CPS) are the next generation of engineered systems in which computing, communication, and control technologies are tightly integrated. On one hand, CPS are generally large with components spatially distributed in physical world that has lots of dynamics; on the other hand, CPS are connected, and must be robust and responsive. Smart electric grid, smart transportation system are examples of emerging CPS that have significant and far-reaching impact on our daily life. In this dissertation, we design wireless communication system for CPS. To make CPS robust and responsive, it is critical to have a communication subsystem that is reliable, adaptive, and scalable. Our design uses a layered structure, which includes physical layer, multiple access layer, network layer, and application layer. Emphases are placed on multiple access and network layer. At multiple access layer, we have designed three approaches, namely compressed multiple access, sample-contention multiple access, and prioritized multiple access, for reliable and selective multiple access. At network layer, we focus on the problem of creating reliable route, with service interruption anticipated. We propose two methods: the first method is a centralized one that creates backup path around zones posing high interruption risk; the other method is a distributed one that utilizes Ant Colony Optimization (ACO) and positive feedback, and is able to update multipath dynamically. Applications are treated as subscribers to the data service provided by the communication system. Their data quality requirements and Quality of Service (QoS) feedback are incorporated into cross-layer optimization in our design. We have evaluated our design through both simulation and testbed. Our design demonstrates desired reliability, scalability and timeliness in data transmission. Performance gain is observed over conventional approaches as such random access

    Design and analysis of MAC protocols for wireless networks

    Get PDF
    During the last few years, wireless networking has attracted much of the research and industry interest. In addition, almost all current wireless devices are based on the IEEE 802.11 and IEEE 802.16 standards for the local and metropolitan area networks (LAN/MAN) respectively. Both of these standards define the medium access control layer (MAC) and physical layer (PHY) parts of a wireless user. In a wireless network, the MAC protocol plays a significant role in determining the performance of the whole network and individual users. Accordingly, many challenges are addressed by research to improve the performance of MAC operations in IEEE 802.11 and IEEE 802.16 standards. Such performance is measured using different metrics like the throughput, fairness, delay, utilization, and drop rate. We propose new protocols and solutions to enhance the performance of an IEEE 802.11 WLAN (wireless LAN) network, and to enhance the utilization of an IEEE 802.16e WMAN (wireless MAN). First, we propose a new protocol called HDCF (High-performance Distributed Coordination Function), to address the problem of wasted time, or idle slots and collided frames, in contention resolution of the IEEE 802.11 DCF. Second, we propose a simple protocol that enhances the performance of DCF in the existence of the hidden terminal problem. Opposite to other approaches, the proposed protocol attempts to benefit from the hidden terminal problem. Third, we propose two variants of a simple though effective distributed scheme, called NZ-ACK (Non Zero-Acknowledgement), to address the effects of coexisting IEEE 802.11e EDCA and IEEE 802.11 DCF devices. Finally, we investigate encouraging ertPS (enhanced real time Polling Service) connections, in an IEEE 802.16e, network to benefit from contention, and we aim at improving the network performance without violating any delay requirements of voice applications

    Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

    Get PDF
    Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore