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Abstract

Cyber-Physical Systems (CPS) are the next generation of engineered systems in which

computing, communication, and control technologies are tightly integrated. On one

hand, CPS are generally large with components spatially distributed in physical world

that has lots of dynamics; on the other hand, CPS are connected, and must be robust

and responsive. Smart electric grid, smart transportation system are examples of

emerging CPS that have significant and far-reaching impact on our daily life.

In this dissertation, we design wireless communication networks for CPS. To make

CPS robust and responsive, it is critical to have a communication subsystem that is

reliable, adaptive, and scalable. Our design uses a layered structure, which includes

physical layer, multiple access layer, network layer, and application layer. Emphases

are placed on multiple access and network layer. At multiple access layer, we have

designed three approaches, namely compressed multiple access, sample-contention

multiple access, and prioritized multiple access, for reliable and selective multiple

access. At network layer, we focus on the problem of creating reliable route, with

service interruption anticipated. We propose two methods: the first method is a

centralized one that creates backup path around zones posing high interruption risk;

the other method is a distributed one that utilizes Ant Colony Optimization (ACO)

and positive feedback, and is able to update multipath dynamically. Applications

are treated as subscribers to the data service provided by the communication

system. Their data quality requirements and Quality of Service (QoS) feedback are

incorporated into cross-layer optimization in our design. We have evaluated our design
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through both simulation and testbed. Our design demonstrates desired reliability,

scalability and timeliness in data transmission. Performance gain is observed over

conventional approaches as such random access.
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Chapter 1

Introduction

1.1 Background and Scope

Cyber-Physical System (CPS) is the next generation of engineered system in which

computing, communication, and control technologies are tightly integrated (Kim and

Kumar, 2012). The “cyber” part of CPS used to mainly focus on computing, such

as embedded computers. However, with CPS covering an increasingly larger spatial

area and unprecedented coordination among components within CPS, communication

has become indispensable for CPS. The cyber characteristics of CPS are thus now

from both its computing and communication subsystems. The “physical” part of

CPS refers to physical processes through which CPS interacts with its surroundings.

Along with advancements in computing, communication, and control disciplines,

CPS has been around in different forms, such as Distributed Embedded Systems,

Wireless Sensor and Actuator Networks (WSAN), Networked Control Systems (NCS).

While CPS is a unique system that has various dynamics and uncertainties: discrete

dynamics from computing, link uncertainty in communication, and continuous

dynamics from physical processes, the operating standards for CPS are high. CPS

has to work safely, reliably, and timely, with high confidence. Applications of CPS

have been playing critical roles in industry sectors such as energy, transportation,
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healthcare, tele-communication, which all have profound societal and economic

impacts.

In this dissertation, we will focus on the design of communication networks for

CPS. On one hand, of the three major technologies integrated into CPS: computing,

communication, and control, communication’s role in CPS and its impact on CPS are

studied the least. This lack of study is in part due to the development of CPS itself,

because in the previous generation of CPS, such as embedded system, communication

was not a big concern (Lee, 2006). Although communication subsystems in large-scale

CPS have been integrated for a long time, such as SCADA in electric power system,

they do not prevail and have only limited impact (Wu et al., 2005). On the other

hand, in order to reach the full potential of CPS, it is essential to tightly integrate

communication into CPS and to allow controllers and actuators in CPS take full

advantage of the information provided by communication subsystem.

In sharp contrast to conventional data communication networks, communication

networks in CPS have much more dynamics. Different from an audio or video stream

on Internet that has fixed priority, a data stream in CPS could constantly change its

priority when data with varying importance is transferred through it. This dynamic

priority affects both multiple access and routing schemes. The data consumption

model is also different in CPS. For example, monitoring sensors may not know the

exact destination when they are disseminating their observation data, because the

data could be valuable to a set of controllers. Defining the set is difficult as it

requires knowledge of the current status of CPS. Finally, Quality of Service (QoS)

in CPS communication has its own unique requirements (Wu et al., 2011). Packet

delay, packet loss, and real-time guarantee all have to be re-interpreted within CPS

framework.

We would further narrow our focus down to wireless communication networks for

CPS. Wireless technology saves the hassle of wiring when deploying CPS. It also

provides the much-desired plug-and-play feature, which in turn makes CPS scalable

and extensible (Dunbar, 2001). In addition, when the scale of a CPS becomes large,
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it normally has a hierarchical structure. Upper-level nodes/hubs are much-better

equipped in terms of data transmission ability, using high-speed, reliable links such

as optical cable, dedicated Ethernet, or microwave link (Tan et al., 2009). CPS

has the same “Last Mile” problem as Internet does. The majority of sensors and

actuators of CPS fall into the “Last Mile” range, and their performance is critical for

CPS. Studying wireless communication networks in the “Last Mile” of CPS thus is

the most challenging but also high-rewarding task.

1.2 Design Challenges

Because of its high level of complexity in both structural and functional aspects,

CPS presents a wide range of challenges. The interacting dynamics among integrated

components pose most of the difficulties in modeling and analyzing the system. The

classical models and analysis that are devised within narrowly-defined disciplines

would no longer be adequate to capture the semantics of CPS. The dynamics from

computing, communication, and physical world have to be addressed in a unified form

before any subsystem can actually make contribution to the CPS it belongs to.

As to the design of communication subsystem for CPS, we have identified the

following challenges, which are carefully addressed while designing communication

subsystem for CPS.

Real-Time while requirement of real-time communication is treated as a luxury

in many systems, it is a must in CPS. Data that have missed its deadline is

not only deemed useless, but also is harmful for the communication subsystem

due to wasted bandwidth and delay caused to other packets. Thus, managing

acceptable dynamic traffic load with the ability to deliver data in real-time is

an essential task of the communication subsystem in CPS.

Reliability and Robustness A typical data flow in CPS is like this: sensors report

monitoring data to interested controllers; controllers make decision and forward
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action data to actuators. Reliability and robustness of the communication

subsystem are very important in this monitor-control type applications, which

are the most common in CPS. Also, interruption in data transmission in CPS

could quickly force the system out of stable operation and generate cascade

failure, which put the entire system in jeopardy.

Dynamic Traffic and Varying QoS CPS is basically interacting with the physical

world, the environment where we live in. Dynamics in the physical world

result in dynamic traffic in CPS. Overall traffic within a certain period of time

could be much higher than that of other times. For a data stream originated

from a specific sensor, data volume and Quality of Service (QoS) could also

change dramatically, which is triggered either by large change in the sensors

neighborhood, or adjustment of relative priority throughout the entire CPS. In

other words, other places have more urgent messages to report.

Scalability and Adaptability The ultimate goal of communication subsystem in

CPS is providing a channel for reliable and timely information transmission.

It is desirable that sensors, actuators, and controllers in CPS can be flexibly

added, removed, or replaced. This flexibility asks for scalability and adaptability

of a communication subsystem that can tolerate frequent change from other

components in CPS.

1.3 Contributions

An ideal CPS would be able to operate safely, reliably, and efficiently; its system

performance is temporally predictable, and system components are able to be verified,

validated, and certified (Lee, 2008). In line with the overall CPS design goals, the

design of wireless communication networks for CPS presented in this dissertation has

made the following contributions:
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1. We studied a new topic of significant importance, the design of wireless

communication networks for CPS. We analyzed challenges and requirements for

the design, presented a layered communication system that is able to provide

efficient, reliable, and timely service with scalability and adaptability.

2. We developed a novel multiple access scheme using Compressed Sensing (CS).

The scheme is able to provide efficient and reliable service for data traffic in

CPS.

3. We proposed a sample-contention approach for efficient prioritized multiple

access.

4. We introduced a method to systematically select the most important data for

transmission when communication resource is limited. The selection process

is CPS oriented, taking into consideration system model, environment noise,

control requirements and cost.

5. We developed a backup routing approach at network level for communication

networks in CPS, which increases communication reliability.

6. We integrated the communication system we designed into smart grid applica-

tion and tested it, which achieves obvious improvements.

Although CPS introduces a great amount of complexity, its potential is also

unprecedented. First, CPS is ubiquitous in our life, though their scale and

functionality may be different; The buildings we live in, the vehicles we drive, and the

appliance we use are all composed of CPS. Second, the increasing interaction between

human beings and physical world via CPS could fundamentally change the way we

live. Unlike current exchange of information that is dominantly among people, CPS

provides the chance for human beings to interact with physical world. For instance,

in the near future, a car could navigate through busy traffic and arrive at the exact

specified time at its owner’s house. Third, CPS can significantly improve current
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engineering systems’ reliability and efficiency. A minor disturbance in electric power

system would no longer escalate into a wide-area blackout; rush-hour traffic jam in

metropolitan area could be greatly alleviated.

1.4 Dissertation Organization

The remainder of this dissertation is organized as the following: next chapter, chapter

2, surveys related work in the literature on designing wireless communication networks

for CPS, outlines our layered design briefly. Chapter 3 focuses on the design at

multiple access layer. Chapter 4 concentrates on the design at network layer. In

chapter 5, application of communication in smart grid, a typical CPS, is presented.

We conclude the dissertation with chapter 6.
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Chapter 2

Related Work and Design

Overview

2.1 Related Work

Through its path of evolution, CPS has presented itself in different forms. Networked

Control Systems (NCS) (Yang, 2006), Wireless Sensor and Actuator Networks

(WSAN) (Xia, 2008), distributed embedded system (Marwedel, 2010), and certain

application specific wireless sensor networks (Wu et al., 2011) all deserve credits for

the development of CPS. In order to give a more complete view of the topics in CPS,

we not only review the latest research progress in CPS, but also check all the areas

closely related to CPS.

Among many challenges identified in developing CPS, the demand for reliable

and high quality communication is unanimous (Lee et al., 2012; Yan and Qian, 2012;

Baillieul and Antsaklis, 2007). Kim and Kumar (2012) gives a comprehensive overview

of the development of CPS, as well as results on relevant research domains such

as NCS, real-time networking and WSN. Baillieul and Antsaklis (2007) discusses

control and communication challenges in networked real-time system. Progress in

designing wireless networks for CPS is meant to address many of those challenges.
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Wu et al. (2011) analyzes communication’s role in both WSN and CPS, trying to

identify its evolving path. Sztipanovits et al. (2012) knowledges the great challenges

of system integration in CPS because of heterogeneity of components and interactions.

It presents a passivity-based design approach that decouples stability from timing

uncertainties caused by networking and computation.

While there are few works in the literature specifically addressing the problem

of designing communication networks for CPS, considerable effort is invested in

designing general CPS. A system architecture with connected heterogeneous network

subsystem for the joint operations of control and communication is proposed in

(Wang et al., 2008). Heemels et al. (2010) presents a general framework that

incorporates communication constraints, varying transmitting intervals and delays

in NCS. Their work provides quantitative information that allows network designers

to select appropriate networks and protocols for guaranteed stability, desirable

performance, and system robustness against certain level of variations in delays and

transmission intervals. Ulusoy et al. (2011) introduces a practical wireless NCS and

an implementation of a cooperative medium access control protocol that work jointly

to achieve decent control under severe impairments, such as unbounded delay, bursts

of packet loss, and ambient wireless traffic. Ilic et al. (2008) discusses the tactics

for modeling future cyber-physical energy system. The authors view future energy

system as the intertwined cyber-physical network interconnections of many non-

uniform components, such as diverse energy sources and different classes of energy

users, equipped with their own local cyber. Their modeling approach is qualitatively

different from the currently used models that do not explicitly account for the effects

of sensing and communications. In Derler et al. (2011), technologies including hybrid

system modeling and simulation are discussed using a portion of an aircraft vehicle

management systems (VMS), specifically the fuel management subsystem as an

example. Lin et al. (2009) presents the CPS domain of intelligent water distribution

networks, for which EPANET represents the physical water distribution network,

and Matlab provides the decision support algorithms used to control the allocation
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of water. A power-network co-simulation framework which integrates power system

dynamic simulator and network simulator together using an accurate synchronization

mechanism is reported in Lin et al. (2011a). A wide range of tools have been employed

in the effort to model and simulate CPS. Modelica (Modelica, 2012) is introduced

for CPS modeling and simulation by Henriksson and Elmqvist (2011), in which the

authors have presented details on timing simulations, involving both real-time task

scheduling and network communication. In Li and Xu (2011), a design of a simulation

platform for ad hoc based CPS is proposed based on NS-2. The authors analyze the

advantages and disadvantages of CPS simulation platforms that have been developed

based on NS-2 and GLOMOSIM.

In communication systems, multiple access is a topic under intensive study.

Demirkol et al. (2006) gives a survey on MAC protocols for wireless communication.

Kanodia and Li (2002) discusses distributed priority scheduling and medium access

in ad-hoc networks. Conventional multiple access protocols, such as 802.15.4 based

ZigBee (Xia et al., 2008), WirelessHART (Song et al., 2008), and 802.11 based

Cooperative MAC (COMAC) (Gokturk and Gurbuz, 2008) are used in NCS or CPS.

However, inherent standard features limit their application in CPS whose diverse data

has various QoS requirements at MAC level. Unlike general data transfer networks,

certain application specific networks have a much larger range of importance levels

defined for data transmission (Ahmadi et al., 2010; Ahmadi and Abdelzaher, 2009;

Krishnamachari et al., 2002). When wireless sensor networks (WSN) are used for

environmental monitoring and data collection, data transferred over the network is

no longer service flow oriented (Akyildiz et al., 2002). Ahmadi et al. (2010) points

out that data dissemination protocols must consider the importance of data packets.

The authors measure packet importance by data’s contribution to the accuracy of

estimating the monitored physical phenomenon. In their congestion control scheme

for data collection application, both spatial and temporal aggregations are used.

A similar idea on how to determine data importance is presented in Ahmadi and

Abdelzaher (2009), in which reduction of estimation error is used as a metric to
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determine the amount of information that is to be successfully delivered. From NCS

perspective, the most important data first have to make sure a system is stable

(Zhang et al., 2001). Delay and packet drop are the two primary factors affecting

NCS’ stability, and these two factors within NCS have been under intensive study

(Cloosterman et al., 2009; Schenato, 2008). Therefore, we can infer that in NCS data

that could cause critical delay are the most important (impact of packet drop can

be converted to impact of delay). For WSAN, it has many characteristics of NCS;

under certain scenario, they are NCS. However, compared with NCS, WSAN has a

stronger ad hoc feature, thus its stability is not as intensively studied as that of NCS.

WSAN places more emphasis on QoS, particularly real-time capability (Xia, 2008).

Literature on WSN, WSAN, and NCS has revealed that the criticality of data in a

system depends on major factors such as the purpose and application of a system,

the status and requirements of a system’s operation, and structure of the system.

Determining the importance of data in CPS is still a task that needs significantly more

research effort, though most of criteria in the three types of systems aforementioned

still apply to CPS.

Reliable routing is essentially a multipath routing problem which has been

extensively studied in wireless networks (Mohammed Tariquea et al., 2009; Ganesan

et al., 2001). For example, node-disjoint and braided multipath schemes are proposed

to provide energy efficiency and resilience against node failures (Mohammed Tariquea

et al., 2009). Routing the connections in a manner such that link failure does not

shut down the entire stream but allows a continuing flow for a significant portion of

the traffic along multiple paths is proposed in Zhang et al. (2010). As to routing in

NCS or CPS, Liu et al. (2012) studies real-time routing for wireless networked sensing

and control. In the paper, time uncertainties is reduced by protocols MTE (Multi-

Timescale Estimation) and MTA (Multi-Timescale Adaptation). Routing protocols

for CPS with application to smart grid are reported in Li et al. (2012a) and Li et al.

(2012b)
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2.2 CPS Communication System Design Overview

Our design for wireless communication networks in CPS uses a layered structure,

which includes physical layer, multiple access layer, network layer, and application

layer. Emphases are placed on multiple access layer and network layer. Layered

structure has had a great success in communication system design. The success of

Internet is a big testament to the effectiveness of networks with layered structure.

By dividing a network into multiple layers, engineers have a smaller problem to

concentrate on. Adaptivity and scalability are also improved with each layer only has

to comply with pre-defined interfaces between layers. In other words, encapsulation

gives each layer more flexibility within its own domain. While we are trying to take

full advantage of the benefits of layered structure in communication design, we are also

aware of certain aspects for which we can utilize cross-layer design for optimization.

We propose a hybrid structure for CPS’ communication subsystem whose main

framework is layered-based, but we use cross-layer optimization to improve timeliness

and reliability.

2.2.1 Multiple Access Layer

At multiple access layer, we have designed three approaches, namely compressed

multiple access, sample-contention multiple access, and prioritized multiple access,

for reliable and selective multiple access in CPS. These three approaches are

complementary to one another, and they together provide a strong protocol at

multiple access level.

Compressed multiple access is a multiple access approach that utilizes compressed

sensing algorithm. Compressed Sensing(CS) allows different sensors to report their

data without worrying about possible collision while transmitting. Given that the

data traffic from sensors is sparse and that data size is small, which both generally

are true in CPS, compressed multiple access can provide more efficient access with

shorter delay. In addition, its ability to provide normal multiple access even when
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traffic volume increases and is no longer sparse makes it a desirable multiple access

approach for CPS, which has high standards for adaptability and reliability.

Sample-contention multiple access is suitable for the situation in which the

majority of sensors have data to transmit (i.e., no longer sparse); however, only

part of these sensors’ data is necessary in terms of efficient and robust control.

Indiscriminating transmission from sensors with data can overwhelm the multiple

access subsystem and thus undermine the stability of CPS. By first sampling sensors’

data, then estimating and broadcasting a threshold, sample-contention scheme is able

to restrict the number of reporting sensors and select those whose data is essential

for control purpose.

In prioritized multiple access, we study the criteria on how to select the most

suitable sensor for transmission. Without loss of generality, we consider the scenario

in which after a round of data collecting by all the sensors, only one of the sensors,

usually the one with the most important data, is given the right to transmit. When

selecting the most suitable sensor, a systematic method is applied. The method takes

both CPS system model and data processing into consideration.

2.2.2 Network Layer

At network layer, we focus on the problem of how to reliably route sensor data to

controllers, with service interruption anticipated. We propose two methods to solve

the problem. The first method is a centralized one that creates backup path around

zones posing high interruption risk; the other method is a distributed one that is able

to update multipath dynamically.

As apposed to other methods for creating backup path in multipath routing, our

approach to create backup path first defines a group of nodes named Shared Risk

Node Group (SRNG). Backup paths are created exclusively for SRNG to make sure

when interruptions happen in a SRNG, data transmission service through backup
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path is intact. The backup paths creating problem is formulated and solved as an

integer programming problem.

While creating backup path through integer programming is a centralized algo-

rithm, at network layer, we design another distributed algorithm for multipath routing

in CPS. The distributed routing algorithm is based on Ant Colony Optimization

(ACO), and is adaptive to SRNG change (e.g., position, node member). It also

incorporates the latest performance of current route into a feedback mechanism, which

reinforces section of good route and explores better routing options at the same time.

2.2.3 Application and Cross-Layer Optimization

CPS includes three key components: sensors, actuators, and controllers. An

typical application monitors physical world through sensors, collects information

at controllers, reacts using actuators. Controllers subscribe information data from

sensors, forming a multi-to-one relationship. Data from sensors first reaches key

nodes through multiple access stage; key nodes in core network (at network level) then

route data to the destination where specific data has been subscribed by applications.

Applications set standard for data quality, such as delay, precision. Generated by

cross-layer optimization, feedbacks are given back to both network layer and MAC

layer, which adjust accordingly to satisfy requirements from applications.
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Chapter 3

Multiple Access in Cyber-Physical

System

In this chapter, we study multiple access schemes for wireless communication in CPS.

All proposed schemes are at the multiple access layer of our design. We first introduce

compressed multiple access, a compressed sensing based multiple access scheme that

handles dynamic sparse traffic load with high efficiency. The scheme can achieve

shorter packet delay with smaller deviation, which improves communication reliability

in CPS. Its robustness when traffic is not sparse is also a highly desirable feature in

CPS. We then present sample-contention multiple access. This scheme is able to

selectively allow adequate sensors to transmit data according to pre-set criteria. We

design the scheme for WiMAX (Worldwide Interoperability for Microwave Access)

with application to voltage control in power system. However, the scheme itself is

a general one that can be easily adopted and applied to other CPS’ multiple access

layer. At the third part of this chapter, we discuss how to select the most suitable

data source (e.g., sensor) to transmit data when communication resources is limited

at the multiple access level. System model, environment (e.g., noise), control cost

and requirements are considered when making the selection.

14



3.1 Compressed Multiple Access

In the wireless communication system for CPS, multiple transmitters need to transmit

their data to a base station, thus requiring the technique of multiple access, such

as time division multiple access (TDMA), code division multiple access (CDMA)

or orthogonal frequency division multiple access (OFDMA). We suppose that the

channels are vectorized, either in frequency or in time, and assume that the dimension

of the vector channel is smaller than the number of transmitters. Quite often, the

data traffic at a transmitter is bursty, i.e., in one time slot, only a portion of the

transmitters have data to transmit. For example, in CPS, there could be hundreds

of sensors associated with one base station; however, in many applications, there

are only several sensors reporting to the base station simultaneously. Therefore, the

base station needs to know the identities of the active transmitters. Moreover, the

data packet could be very small, e.g., just a record of local temperature. Thus the

identity information may cause significant overhead. The identification problem could

be solved using the following three different ways:

1. Adding the identity information into data packets explicitly, i.e., adding an

identity field in the packet header. If the receiver can decode a data packet, it

can determine the owner of the packet.

2. Setting a preamble before each data transmission. In this preamble, active

transmitters send out requests containing their identity information.

3. Similar to CDMA systems, assigning different signature waveforms to different

transmitters and projecting the received signal onto all signature waveforms.

Only transmitters with sufficiently large projections are considered as being

active.

However, all three approaches have drawbacks. Approach 1 includes overhead to the

data packet. In approach 2, it may require a long preamble if the requests of different

transmitters are kept orthogonal, when the number of transmitters is large. If the
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Table 3.1: Typical Multiple Access Approaches

Category Identifying Method Cost
1 Decode packet header Identity field
2 Send request in preamble Preamble period
3 Assign different Signature waveforms and

signature waveforms their projection

orthogonality constraint in the preamble is removed (e.g., using contention based

multiple access), there could be collisions of request signals. In approach 3, when the

dimension of the vector channel is smaller than the number of transmitters (like an

overloaded CDMA system), the signature waveforms cannot be orthogonal; therefore

it is difficult to determine a threshold for the active user selection.

Besides the identification problem, multiple access scheme, i.e., how to separate

the signals from different transmitters, is also an important problem. In approach 2,

the receiver can allocate different time slots to the transmitters in a TDMA fashion.

However, the feedback signaling of time slot allocation induces overhead to the system.

In approach 3, CDMA can be used to separate the signals from different transmitters;

whereas it suffers from multiuser interference when nonorthogonal spreading codes are

used.

In this section, we tackle the multiple access problem by employing the compressed

sensing (Candes et al., 2006; Donoho, 2006, 2004), a signal processing technique

developed in recent years. Based on the assumption that the signal is sparse,

i.e., most elements of the signal in a transformation domain are zero or have

small amplitudes, compressed sensing reconstructs original signal from observations.

Efficient algorithms like Basis Pursuit (BP) (Tsaig and Donoho, 2006; Chen et al.,

1999), Orthogonal Matching Pursuit (OMP) (Pati et al., 1993; Tropp and Gilbert,

2007), and stagewise OMP (StOMP) (Donoho et al., 2006b) have been proposed

and applied in fields like data compression (Candes and Tao, 2006), sensor networks
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(Wang et al., 2007), statistical signal processing (Davenport et al., 2006) and image

processing (Ye, 2007).

It is easy to find the analogy between the multiple access and compressed sensing

since the received signal at base station is also given by Φx, where x is the vector of

transmitted signal and the columns in Φ are the signature waveforms of different

transmitters. Therefore, we can allow the transmitters having data to transmit

directly without the stage of request in approach 2. When there is no noise, the

equation can be perfectly solved, thus avoiding the threshold in approach 3. The

identities of the active transmitters are simply a by-product of the solution, i.e.,

the locations of the non-zero elements in x, thus avoiding the overhead of explicit

identity in approach 1. We coin the scheme proposed Compressed Multiple Access

since the identity information is “compressed” into the data transmission. Moreover,

the sparsity required by compressed sensing is assured by the assumption that most

transmitters do not have data to transmit. Therefore, the identification and multiple

access problems are solved jointly. Numerical simulation results will show that,

compared with the traditional carrier sense multiple access (CSMA), the proposed

multiple access scheme achieves better performance for the expectation and variance

of packet delays when the traffic load is not too small.

The following mathematical notations are used in this section.

• ◦ denotes Hadamard Product. For two matrices A and B having the same size,

(A ◦B)ij = AijBij.

• For matrix A, AT means the transpose of A.

• For an n-vector x, its 1-norm equals
∑n

k=1 |xk| and its 0-norm means the number

of nonzero elements.
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3.1.1 Access Model

In a wireless system, suppose that a base station receives signals from m transmitters

(e.g., sensors in CPS or mobile phones in cellular systems) via vector channels of

dimension n. In general case, the vector channel could be in either time or frequency.

We assume that the vector is in frequency, i.e., each dimension corresponds to a

subcarrier in the frequency domain. For simplicity, we assume that the received

signal is real. It is straightforward to extend the real signal to complex signal case.

At time slot t, the received signal is given by an n−vector:

r(t) =
m∑
k=1

[xk(t)hk ◦ sk(t)] + n(t), (3.1)

where hk is the vector of channel amplitude gains of transmitter k with upper bound

hmax and lower bound hmin, xk(t) is the information symbol of transmitter k. sk(t) is

the vector of signature waveforms of transmitter k at time slot t. n(t) is the received

noise vector at time slot t. We also place the following assumptions on the model.

1. We assume that a transmitter does not always have data to transmit. The

data burst is random which means that averagely ρm(0 < ρ < 1) transmitters

generate a new data to transmit at a time slot. When transmitter k has no

data, it does not transmit, namely xk = 0. We also assume that the receiver

does not have a priori information about which transmitters have data.

2. The channel gain vector hk does not change in time. The receiver knows

the channel gains perfectly by letting the transmitter send out pilot signals

periodically. However, the transmitters do not know the channel gains perfectly.

3. Eq. 3.1 implicitly assumes that the transmitters are perfectly synchronized in

time. This assumption will be addressed in details and relaxed later.
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4. We assume that sk(t), the signature waveform of transmitter k, is a vector

randomly chosen on the unit sphere in Rn. The signature waveforms are known

at both the transmitters and receiver.

5. A buffer is used for each transmitter to store untransmitted data packets.

Applying the assumption on signature waveforms, we can rewrite Eq. 3.1 as

r(t) = Φ(t)x(t) + n(t) (3.2)

where

x(t) , (x1(t), . . . , xm(t))T , (3.3)

and

Φ = H ◦ S(t), (3.4)

where S(t) , (s1(t), . . . , sm(t)) and H , (h1, . . . ,hm).

When there are multiple time slots, say from time slot 1 to time slot t, during

which the transmitted symbols do not change (will be called a frame later), we can

stack the received signals together and obtain the following expression

r(1 : t) = Φ(1 : t)x(1) + n(1 : t), (3.5)

where

r(1 : t) =
(
r(1)T , ..., r(t)T

)T
, (3.6)

n(1 : t) =
(
n(1)T , . . . ,n(t)T

)T
, (3.7)
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and

Φ(1 : t) =
(
HT , ...,HT

)T ◦ S(1 : t), (3.8)

and S(1 : t) , (S(1)T , ...S(t)T )T .

3.1.2 Compressed Multiple Access

We are going to propose a novel scheme of multiple access based on compressed

sensing, namely compressed multiple access. We first explain the procedures of

compressed multiple access. Then, we provide an illustrative example, as well

as a proposition about the equivalence between 0-norm and 1-norm optimization

conditioned on the signal sparsity.

Procedures of Compressed Multiple Access

In contrast to conventional multiple access approaches (e.g., CSMA/CA), the

proposed compressed multiple access scheme encourages transmission collisions.

Actually, every single measurement is a mixture of received information symbols

modulated by their own channel gains and signature waveforms plus noise. As

illustrated in Fig. 3.1, we define a Frame with varying length (different numbers

of time slots). A frame ends only when sufficiently many measurements have been

obtained and two adjacent reconstructions generate the same results (Malioutov et al.,

2008). Here we assume that a computationally efficient reconstructor, which can

reconstruct the original signals exactly when enough samples have been received, is

equipped at the base station. Therefore, multiple access is now possible using the

smallest number of time slots, and without any a priori knowledge about how many

transmitters are transmitting data in the current frame.

In each frame, the number of transmitters allowed to transmit data is determined

at the beginning of the frame and then fixed throughout the entire frame. Before

starting a new frame, the base station broadcasts a very short beacon signal, e.g., a
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Figure 3.1: Frame

sinusoid, indicating the start of a new frame. Sensors having data in their buffers are

legal for transmitting in the new frame. In the entire frame, sensors keep transmitting

the same data of their own and only change signature waveforms sk(t) in each time

slot. If a new data is generated in the middle of a frame, then the transmitter will

put the newly generated data into its buffer, and forms a first-in-first-out queue for

the data waiting to be transmitted. When the base station finds that it has received

sufficiently many observations and is able to distinguish the signals from different

transmitters, it sends out a beacon signal to indicate the end of the current frame.

Thus, the transmitters stop transmitting the current data. At this time, the received

signal at the base station is given by Eq. 3.5 and the base station uses compressed

sensing algorithm, e.g., OMP , to reconstruct the signals from different transmitters.

In the next time slot, a new frame begins and the procedure is repeated.

The described procedures of the compressed multiple access are summarized in

Algorithms 1 and 2 for transmitter and receiver, respectively. In the pseudo codes,

start and stop are control signals broadcast by base station in order to inform

transmitters the start and end of a frame.

An Illustrative Example

In Fig. 3.2, we provide an example to illustrate the procedure of compressed sensing

based multiple access. For the first frame, transmitters Tx1 and Tx2 have data
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Algorithm 1 Procedures at The Transmitter Side

if start == TRUE then
i← 0

end if
while stop 6= TRUE do

Send xk × sk[i]
i← i+ 1
if New data generated then
n← n+ 1
SendBuffer[n]=New Data

end if
end while
for j = 0 to n− 1 do

SendBuffer[j]=SendBuffer[j+1]
end for
n← n− 1

Algorithm 2 Procedures at The Receiver Side

if Previous Frame Ends then
Send start = TRUE

end if
repeat

CS reconstruction
until two consequent recoveries are identical
Send stop = TRUE
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x10, x20 to transmit (here additional subscript n in xkn represents the nth information

symbol sent by transmitter k). During the first frame, x11 and x30 are generated at

Tx1 and Tx3 and are saved in their own buffers, respectively. For the second frame,

Tx1 and Tx3 start transmitting. The detailed procedure is given below.

1. At time slot 1, a start signal is received by all transmitters in base station’s

coverage; the transmitters initialize signature waveform index i to 0;

2. Within the following several time slots before receiving Frame 1’s stop signal,

transmitters Tx1, Tx2 send x10×s1(i), x20×s2(i) respectively; index i increases

by 1; other transmitters keep silent and send nothing;

3. The base station receives the ith measurement y[i] = x10×s1(i)◦h1+x20×s2(i)◦

h2 + n(i); combined with the previously received measurements, information

symbols are reconstructed using the OMP algorithm;

4. Repeat the steps (2) and (3) until two consequent recoveries are the same

(Malioutov et al., 2008). Then, at time slot 7, the base station sends out the

stop signal of Frame 1, and this stop signal is also treated as the start signal of

Frame 2;

5. Transmitters Tx1 and Tx2 stop current Frame 1’s transmission and reset index

i to 0;

6. Starting from time slot 8, transmitters Tx1, Tx3 send x11 × s1(i), x30 × s3(i),

respectively; index i is increased by 1; other transmitters keep silent and send

nothing;

7. Base station receives the ith measurement y[i] = x11×s1(i)◦h1+x30×s3(i)◦h3+

n(i); combined with previously received measurements, information symbols are

reconstructed (correct recoveries are x11, x30);
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Figure 3.2: The Illustration of Compressed Multiple Access Transmission

8. Repeat steps (6) and (7) until two consequent recoveries are the same. Then, at

time slot 12, Frame 2’s stop signal is broadcast by base station to inform Tx1,

Tx3 to stop Frame 2’s transmission.

Transmitter Synchronization

As we have mentioned, the transmitters are assumed to be perfectly synchronized in

time. In practice, the synchronization can be achieved in the following traditional

ways:

• If each transmitter is equipped with a GPS and operates in outdoor environ-

ments, their timing can be almost perfectly synchronized.

• The base station can broadcast a time synchronization signal periodically such

that all transmitters can keep track the correct timing information.

In some cases, the perfect time synchronization cannot be achieved, e.g., each

transmitter keeps in the sleeping mode for most of the time and cannot frequently
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listen to the time synchronization signal. In this situation, we can adapt the

reconstruction algorithm to a asynchronous manner. In this subsection, we consider

adapting the OMP algorithm to an asynchronous one.

First, we assume that each time slot is divided into Tc + τmax smaller chips, where

τmax is the maximal time offset and Tc is the number of chips for transmission within

each time slot. The time offsets of active transmitters k1, ..., kK are given by τk1 , ...,

τkK (measured in chips), respectively (τki ≤ τmax).

Then, the algorithm of asynchronous OMP is given in Algorithm 3. The

performance will be evaluated in the numerical simulations.

Algorithm 3 Asynchronous OMP Algorithm

Receive signal r of multiple time slots.
Set the active set as empty and set the candidate set as {1, 2, ...,m}.
for Residual signal is still large do

for All elements in the candidate set do
for All possible time offsets do

Shift the signature waveform according to the time offset.
Compute the projection of the signature waveform over the received signal.

if The projection is large then
Put the element into the active set.
Delete it from the candidate set.
Remove the corresponding signal from the received signal r and obtain
the residual signal.

end if
end for

end for
end for

Conditional Equivalence of 0-norm and 1-norm Optimizations

To assure the performance of BP algorithm adopted at the receiver, we need to assure

the equivalence of the following two optimization problems (denoted by P0 and P1,

respectively) (Donoho, 2006) when there is no noise and the signal is sufficiently
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sparse:

min
x
‖x‖0, s.t. r = Φx, (3.9)

and

min
x
‖x‖1, s.t. r = Φx. (3.10)

Note that we discuss the received signal in only one time slot, for notational

simplicity. The conclusion can be extended to observations in multiple time slots

straightforwardly.

When the elements of Φ are identically distributed, the equivalence has been

proved in Donoho (2006). However, in our case, the elements may not be identically

distributed since they are modulated by channel gains, which could be non-uniform,

and the conclusions in Donoho (2006) cannot be applied directly. Fortunately, the

following proposition assures the equivalence under certain conditions, whose proof is

given in the appendix. Note that the quantity m
n

measures the sparsity of the signal.

Therefore, the condition of the proposition is essentially the limit on the sparsity.

Proposition 1. Define event E(Φ, ρ) as that, ∀‖x‖0 ≤ ρm, (P0) and (P1) yield the

same unique solution equaling x. Suppose that m
n
≤ C, there exists a ρ(C) such that

P (E(Φ, ρ(C)))→ 1, (3.11)

as m,n→∞, where the randomness is over the selection of Φ.

When noise exists, it is almost impossible to recover the original signal precisely.

Therefore, we can apply the noise-aware version of (P1) in Donoho et al. (2006a) to

recover the original signal. The corresponding optimization problem is given by

min
x
‖x‖1 , s.t. ‖r−Φx‖2 ≤ δ, (3.12)
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where δ is a controlling constant. When δ = 0, Eq. 3.12 degenerates to Eq. 3.10.

The stability of optimization problem in Eq. 3.12 has been discussed in Donoho et al.

(2006a), based on the assumption that the column vectors in Φ have unit norm.

We extend the conclusions in Donoho et al. (2006a) to the channel gain dependent

random matrix in our system. We assume that noise n has bounded norm, namely

‖n‖2 ≤ ε. (3.13)

For unbounded noise, ‖n‖2 > ε, we can claim outage (or erasure) of the communi-

cation system. Then, ε can be determined by tolerable outage probability and noise

distribution. Similar to Donoho et al. (2006a), we define the coherence for matrix Φ

as

M(Φ) , max
i 6=j

∣∣φTi φj∣∣
‖φi‖2‖φj‖2

, (3.14)

which measures the linear dependency of columns in Φ. Based on the definition of

coherence, we have the following proposition (the proof is given in Appendix .2)

Proposition 2. When the sparsity of data burst satisfies (f is the ratio of h2min and

h2max)

‖x‖0 ≤
1

4

(
f

M
+ 1

)
, (3.15)

we have

‖x̂δ,ε − x‖2 ≤
1

γmax(f −M(4N − 1))
, (3.16)

where x̂δ,ε is the recovered signal obtained from Eq. 3.12 and

γmax ,
h2max

(ε+ δ)2
.
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3.1.3 Numerical Results

Numerical simulations have been carried out to evaluate the performance of our

proposed compressed multiple access. We assume that the channel amplitude gain

satisfies a Rayleigh distribution within the interval [0.1, 10], i.e., hmin = 0.1 and

hmax = 10.

Compressed sensing reconstruction algorithm OMP∗ is used for compressed

multiple access’ signal reconstruction process. Because OMP is usually faster than

other reconstruction algorithms such as BP (Tropp and Gilbert, 2007); moreover,

it can handle noisy compressive measurements efficiently (Boufounos et al., 2007)†.

We choose the simple slotted CSMA as a baseline, which employs truncated binary

exponential back-off mechanism with the maximum delay of 1023 time slots (Ling

and Meng, 2006). We assume that 256 transmitters are associated with a base

station. Each transmitter generates data packet independently, and interval between

data packets of every transmitter is exponentially distributed. By changing the rate

parameter (e.g., 0.43 data/slot means that there are averagely 0.43 active transmitters

in each time slot), effects of different data generation rates of traffic are tested.

In each realization, 10000 time slots are simulated. We use 100 realizations to

obtain the transmission delay statistics, including transmission delay’s mean value

and standard deviation. The CDF (Cumulative Distribution Function) of the number

of active transmitters is provided in Fig. 3.3, which shows that the number of active

transmitters, as a random variable, varies significantly.

The length of each data packet sent by transmitters is set to 16 bits (e.g.,

temperature monitoring sensors report to an intermediate data collector). And

for CSMA, we add a header for identifying the reporting transmitters. Since 256

transmitters are deployed, we add extra 8 bits for the transmitter ID. We assume

that the PAM-16 modulation is used, thus 4 bits are transmitted in every successful

∗Note that OMP tries to directly solve the 0-norm optimization problem instead of solving the
1-norm optimization problem.
†Note that BP is also modified to combat noise (Lu and Vaswani, 2010). However, the

computational cost is much higher.
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Figure 3.4: Mean Values of Delay under Different Data Rates
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Figure 3.5: Standard Deviations of Delays under Different Data Rates

transmitting time slot. Meanwhile, we assume that the dimension of the vector

channel is 2. For a fair comparison, we assume that the CSMA approach can transmit

two data symbols over the two dimensions simultaneously. Therefore, in the CSMA

approach, all degrees of freedom in the vector channel are used for multiplexing, while

they are used for multiple access in the compressed multiple access scheme since the

same data symbol is transmitted over all dimensions of the vector channel. As a

result, for the compressed multiple access, a data needs 4 frames to transmit, while for

CSMA, it takes 3 transmitting time slots, when there are no competing transmitters.

For instance, if the average interval between two data packets of every transmitter

is 1000 time slots, then for each dimension of the vector channel, its data rate is

0.77, i.e., 0.77 successful transmission is needed for each time slot (16+8
4×2 × 256÷ 1000,

“16 + 8” is the number of bits of a data packet for CSMA, 16 bits data and 8 bits ID;

“4 × 2” is the number of bits transmitted each time slot; PAM-16 transmits 4 bits

per time slot and there are 2 dimensions, 256 transmitters; 1000 is average interval).

The signature waveform uses random binary variables. We also assume that the
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Figure 3.6: Mean Value of Delays with Different Number of Nodes

channel gains H are uniformly distributed between -3dB and 3dB. The assumption is

reasonable if we consider the power control of transmitters. The transmit power can

be incorporated into the channel gains. Then, the randomness of the channel gain is

from the granularity of the power control (we assume that the transmit power does

not change continuously).

We first compare the performance of proposed compressed multiple access and

slotted CSMA under the situation that no noise is presented. Under a very low

data rate, CSMA has a shorter average delay than the compressed multiple access.

However, when data rate changes from very low (averagely, 0.43 data generated per

time slot) to medium or high data rate (0.64 or 0.77 data per time slot), CSMA’s

average delay increases much faster than compressed multiple access, as observed

in Fig. 3.4. Another key observation is that, regardless of the traffic load, the

proposed compressed multiple access scheme always achieves much smaller variance

of transmission delay (or, equivalently jitter) than CSMA. This implies that the
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compressed multiple access scheme is suitable for real-time traffic which has a rigorous

requirement for the delay.

We also test the influence of changing the number of transmitters associated with

the base station. The results are shown in Figures 3.6 and 3.7. By varying the

number of nodes from 128 to 256, the mean value and standard variance of delays

for both the compressed multiple access and CSMA increase. Again, the mean value

and standard deviation of delays of CSMA increase much faster than that of the

compressed multiple access. This implies an advantage of compressed multiple access,

i.e., its delays are concentrated in a much smaller range, which is critical for system

stability, as observed in Fig. 3.5 and Fig. 3.7. The CDF curves of the delays are

shown in Fig. 3.8 for both the compressed multiple access and CSMA, as well as

for both moderate and high traffic loads (0.51 and 0.77 data packet per time slot).

We can observe that the compressed multiple access has much smaller 90% percentile

values of the delay (the 90% percentile values are labeled in the figure). Quite often,

a system’s transmission bottleneck is the tail of long delays which may determine

the whole system’s performance. Therefore, the compressed multiple access is more

suitable to provide Quality of Service (QoS) and is more stable when dealing with

heavy traffic.

When noise presents, both CSMA and compressed multiple access suffer, however,

compressed multiple access preserves its advantages of smaller variance and smaller

90% percentile value of transmission delays over CSMA. Fig. 3.9 shows that under

both data rates (high: 0.77 packet per time slot and moderate: 0.51 packet per

time slot), compressed multiple access always has smaller variance of delays. As to

mean value, under high data rate and low SNR, compressed multiple access provides

competitive mean value of delays as CSMA does; under high data rate and high SNR,

compressed multiple access has smaller mean value of delays than that of CSMA,

therefore outperforms CSMA. When data rate is moderate, CSMA has smaller mean

value of delays. But as SNR increases, the difference between mean value of delays

associated with CSMA and mean value associated with compressed multiple access
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Figure 3.9: Mean Value and Standard Deviation of Delays (With Noise)

becomes smaller. CDF curves of the delays with noise are shown in Fig. 3.10. This

figure is obtained when SNR is 35dB and data rate is high (0.77 packet per time slot).

As observed from Fig. 3.10, noise presents challenges to compressed multiple access

due to increased difficulty in reconstructing signal from measurements polluted by

noise (Boufounos et al., 2007). But when SNR is high enough (above 30dB), even

performance of compressed multiple access does deteriorate by certain degree, it still

has smaller 90% percentile value of transmission delays than that of CSMA.

To demonstrate the validity of the asynchronous OMP algorithm in Algorithm 3,

we have carried out simulations for a single frame with 50 time slots. We assume that

there are 20 users and the number of active users change from 1 to 10. We assume

Tc = 20 and τmax = 0, 5. When τmax = 0, the transmitters are perfectly synchronous.

We define an error as the event that the estimated set of active users is wrong. Then,
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the error rates are shown in Fig. 3.11 for various numbers of active users. We observe

that the asynchronicity incurs some performance degradation; however, the error rate

is still low even when the sparsity is around 50% (when there are 10 active users). This

significantly demonstrates the validity of the proposed asynchronous OMP algorithm.

3.1.4 Conclusion

We have applied the technique of compressed sensing to compress the data trans-

mission and transmitter identification in a multiple access system with random data

traffic. Collision is allowed for the multiple access in a way similar to CDMA. A

protocol has been proposed to accomplish the proposed algorithm. Numerical results

have demonstrated the small average and variance of delay for the proposed scheme,
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especially under heavy traffic situation, compared with the traditional slotted CSMA.

This implies that our proposed multiple access scheme is useful for real-time (soft)

data traffic with QoS requirements.

3.2 Sample-Contention Multiple Access

For compressed multiple access discussed in the previous section, we made the

assumption that traffic from sensors is sparse, and individual sensors are independent,

transmitting data when data becomes available. In this section, we consider a scenario

in which data generated at sensors is not sparse, but the number of sensors that are

allowed to transmit is constrained based on control needs. Thus, sensors have to

cooperated with other sensors as well as their base station to satisfy the constraint.

We introduce sample-contention multiple access scheme that solves the cooperation

problem.
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To make sample-contention multiple access easy to understand within the context

of CPS, we design sample-contention multiple access for WiMAX with a typical

application of voltage control in power system. But, the scheme we are going to

present is a general multiple access scheme that can be implemented in various

communication system. In the following, we give an introduction to WiMAX and

voltage control in power system first.

United States and many other countries or regions all over the world are in the

middle of a massive process of upgrading their power systems, which at some extreme

cases could be almost a century old. With an emphasis on integration and interaction

among various components, smart grid is playing a leading and representative role

of power system automation and upgrade (Smartgrid.gov, 2012). A critical function

missing or under-developed in old power systems but repeatedly highlighted in smart

grid is communication. The presence of flexible and efficient two-way communication

can fundamentally change how power systems work, which in turn can have deep

impact on people’s daily life.

In this section, we study the problem of cooperative voltage control in smart

grid with an efficient sample-contention multiple access scheme using WiMAX.

Traditionally, power system voltage control is carried out at substations and

certain prefixed infrastructures such as shunt capacitors; thus available control

options are comparatively simple and have limited capabilities. Furthermore,

little communication or no communication at all is employed when making control

decisions, and most control procedures are local, without considering voltage states

other than at the point where the local controller stays. The appearance of a

large number of Distributed Energy Resources (DER) such as distributed generators,

solar panels in smart grid requires coordination among them; otherwise, they can

hardly contribute to the power network to their full capabilities. More seriously,

their uncoordinated behaviors could actually undermine the stability of the power

system by introducing conflicts. To coordinate the collaboration of multiple DERs in

voltage control, we propose a sample-contention mechanism in WiMAX to prioritize
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voltage state reports. An area central controller located at the WiMAX base station

(BS) combines newly updated reports with prediction estimations as current complete

voltage state and applies optimal control accordingly.

WiMAX is a good platform for communications in power systems. From the

perspective of power system operators, what they care most is reliability and Quality

of Service (QoS). WiMAX, as one form of the fourth generation (4G) wireless

communication, has unprecedented data rate and off-the-shelf products available,

which are already deployed in many places around the world (Sekercioglu et al.,

2009). Most importantly, its large coverage and specific service classification for

QoS support really make it stand out. As opposed to conventional WiFi-based

network which has a transmission range of hundreds of meters at most, WiMAX

can easily cover tens of kilometers, which makes WiMAX practical to serve hundreds

of DERs in its covered area. Inherent five categories of service with QoS priority

from high to low, namely unsolicited grant service (UGS), extended real-time polling

service (ertPS), real-time polling service (rtPS), non-real-time polling service (nrtPS)

and best effort service (BE) (Sekercioglu et al., 2009), guarantee QoS requirements

of power system communication to be satisfied. By forming a back-haul WiMAX

network with multiple BS’s, they are able to cover even larger area and still strictly

follow QoS standards.

While WiMAX provides an attractive platform for communications in power

systems, cooperative voltage control in smart grid using WiMAX still needs an

appropriate design for the traffic scheduling. Existing studies on voltage control in

power system either neglect the communication aspect by assuming that the controller

has perfect system state knowledge, or mainly focus on control itself and lack an in-

depth analysis of the communication subsystem (Li et al., 2010; Fakham et al., 2010;

Wen et al., 2004; Jin et al., 2010). On the other hand, researches on WiMAX seldom

take into account the unique requirements of its application in power systems (Vu

et al., 2010; Belghith et al., 2008). In Li et al. (2010), local adaptive PID feedback

is used for voltage control, which greatly reduces voltage overshoot and fluctuation
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during voltage regulation process. The authors have also mentioned the performance

improvement of voltage control incurred by communication, but do not present the

implementation of communication subsystem. Model Predictive Control (MPC) is a

popular control method in voltage control; however, studies using MPC for voltage

control usually assume that current system state is completely available for state

prediction (Jin et al., 2010; Wen et al., 2004). Although ad-hoc network has the

problem of weak QoS support, research of performance analysis on them, especially on

802.11e-based networks, provides insight into how to provide QoS service on wireless

communication (Lin and Wong, 2006; Hanzo and Rafazolli, 2009). Our sample-

contention idea is in part inspired by Kanodia and Li (2002), in which transmitters

update their local scheduling table using overheard RTS/CTS and ACK information

of 802.11 network. However, the proposed sample-contention process in WiMAX

and Maximum Likelihood Estimation (MLE) for overall data distribution estimation

distinguish our work from Kanodia and Li (2002). Shi et al. (2009) should also receive

credits for providing helpful information with its handling of data prioritization from

the game theory perspective.

3.2.1 Voltage Control Model in Power System

Suppose that, in the power system we study, N bus voltages are under constant

regulation by manipulating M DERs. v = [v1, v2, ..., vN ]T is the voltage vector of

the N buses; and vr = [v1r, v2r, ..., vNr]
T is the predefined corresponding reference

voltage vector, which in normal condition v should stay close to. Denoting the voltage

deviation by x, we have x = v − vr. Take the voltage deviation x as system state,

we can model the power system in discrete time by Eq. 3.17.

xk+1 = Axk + (B + m)uk + n′k, (3.17)

in which uk ∈ RM is the control action taken by the M DERs; n′k ∈ RN is a

vector of Gaussian random variables which represent the power system disturbance
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at t = k; A ∈ RN×N is a diagonal system transit matrix with elements aii > 1, i =

1, ..., N , which means that, without correction from DER, system voltage would

change monotonously, resulting in increasing voltage deviations (Wen et al., 2004);

B,m ∈ RN×M , B’s element bji is a contributing factor reflecting the controlling effect

of DER i on the voltage of bus j, and Gaussian random variables in m are introduced

due to calibration error in determining B. Let nk = muk + n′k. Then nk is also a

vector of Gaussian random variables because the sum of two independent Gaussian

random vector is still a Gaussian random vector. nk ∈ N (u(k), σ(k)2), both u(k) and

σ(k) are random processes and the expectation of u(k) is 0. Rewriting Eq. 3.17 by

substituting nk into the equation, we have

xk+1 = Axk + Buk + nk. (3.18)

Consider S ⊂ N as the set of voltage monitors which report to the power system’s

controller at t = k, where N is the set of all monitors. The estimation of system

state x̂k is the combination of updated voltage readings by S, xk(S), and prediction

estimation at t = k − 1 of those which have not been updated by S, x̂k|k−1(N /S),

i.e.,

x̂k = xk(S) ∪ x̂k|k−1(N /S). (3.19)

The prediction of system state is carried out according to the following equation:

x̂k+1|k = Ax̂k + Buk. (3.20)

Meanwhile, we define a cost function J(uk) which takes into account both voltage

deviation penalty and control input costs, i.e.,

J(uk) =
∞∑
k=1

(x̂Tk+1|kRx̂k+1|k + uTkQuk), (3.21)
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where R ∈ RN×N and Q ∈ RM×M are both diagonal matrices whose non-zero

elements are cost weighting factors. At t = k, when voltage readings from set S

are available, by using Eq. 3.19, we are able to obtain system state x̂k. We further

substitute Eq. 3.20 into the cost function J(uk) and then uk becomes the only variable

of J(uk). Thus, the voltage controller calculates the optimal control input based on

available voltage observations by minimizing the cost function, which can be written

as

u∗k|S = argmin
u

J(uk) |u| ≤ umax. (3.22)

3.2.2 Sample-Contention Multiple Access for Voltage Con-

trol

In this subsection, we present our sample-contention scheme for efficient communi-

cation in voltage control. This scheme takes full advantage of WiMAX features we

mentioned in the previous introduction section to provide QoS-aware communication

service for the set of voltage monitors, S.

Sample-contention Scheme Overview

To help readers better understand the sample-contention scheme, we first give a

brief description of the network organization and the frame structure of WiMAX. In

centralized point-to-multipoint network organization of WiMAX, subscriber stations

(SS) share the uplink to a Base Station (BS) on demand basis (IEEE, 2005). In

the downlink, BS acts as a broadcaster. Therefore, if an SS wants to upload data

to the BS, it has to send request message first and then waits for the BS to grant

uplink transmission opportunities, which are time slots in WiMAX uplink subframe.

As illustrated in Fig. 3.12, a WiMAX frame has one downlink subframe and one

uplink subframe which is preceded by ul-map and dl-map broadcast periods from BS.

ul-map and dl-map consist of time slot allocation information for the following uplink

subframe and downlink subframe respectively.
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As the packet size of voltage state reporting data is really small, the conventional

WiMAX request-grant-transmit mechanism is not suitable for voltage state reporting.

A better way is to embed voltage data into request slots. In addition, due to

the sparseness of voltage disturbance (discussed at the following subsection), the

contention-based request fits the requirement of voltage reporting the best. In order

to utilize communication resources efficiently, only m (m < N) request (reporting)

slots are allocated in each reporting interval (m-contend). Before the contention-

based reporting starts, n randomly selected SS’s (voltage monitors) broadcast their

current voltage states in the n-sample interval (also illustrated in Fig. 3.12). IDs

of the n SS’s and their transmitting orders are decided by the BS (controller) and

broadcast during the ul-map. Other unselected SS’s prioritize their voltage reporting

based on overheard reportings during the n-sample interval.

Figure 3.12: Sample-contention Scheme Implemented in A WiMAX Frame

The sample-contention scheme is summarized as follows:

1. At the beginning of a WiMAX frame, in the ul-map, BS broadcasts the IDs of

randomly selected SS’s and their reporting orders in the n-sample interval.

2. During the n-sample interval, selected SS’s send their voltage state data

following the predetermined transmitting order. Unselected SS’s use these

overheard reports as samples and apply MLE to distributively decide the

priority of their own reports (will be discussed in details in the next subsection).
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3. In the m-contend interval, unselected SS’s which believe that their priorities are

sufficiently high contend for access.

4. In the control broadcast interval, which is at the beginning of downlink subframe

and right after the m-contend is completed, BS broadcasts control instructions

to all DERs.

Prioritized Transmission

A key observation of power system is that most of the time the system operates at

normal status and the voltage stays close to its desired reference level. Voltage starts

drifting away from the reference level dramatically only when significant disturbance

happens. These disturbances could be incurred by unexpected severe load change,

device malfunction in the system, extreme weather and so on. If the voltage run-

away is not curbed in time, power system could collapse, thus leading to catastrophic

consequences.

The sparseness of large voltage deviation presents the challenge of efficient

utilization of communication resources. This sparseness is both in the time domain

and space domain; i.e., at an arbitrary time point large voltage deviation happens only

with a small probability, and even when it happens, normally only a small portion of

SS’s would experience large deviations and have to report urgently. Therefore, it is

unwise to allocate a large number of reporting time slots on a regular basis. While

SS’s that do have large deviation to report should contend for limited reporting slots

access, SS’s with small deviation should keep silent and leave access opportunity to

SS’s which really need them. Each SS has to make a critical distributed decision

on whether contending for limited access opportunities in the m-contend reporting

interval.

When n randomly selected SS’s report to BS in the n-sample interval, we assume

that their transmitting power is sufficiently large such that all other unselected SS’s
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are able to overhear all the n reports‡. Let S = {x1, ..., xn} be the set of the n

voltage deviation samples from the n-sample interval. Each of the remaining N − n

SS’s independently estimates the distribution of current voltage deviation with the

set of samples, using MLE. In power systems, voltages stay close to their predicted

trajectory most of the time and only a few occasionally deviate far. We assume voltage

deviations follow independent and identical normal distribution with expectation u

and standard deviation σ, N (u, σ2). Note that, with the time-varying disturbances

in power systems happen at different times, both u and σ2 could take different values

at different reporting intervals. The likelihood function of MLE for the sample set

S = {x1, ..., xn} with N (u, σ2) distribution is given by

L(x1, ..., xn|u, σ2) = (
1

2πσ2
)
n
2 exp(

−
∑n

i=1(xi − u)2

2σ2
). (3.23)

Since logarithm is a continuous and strictly increasing function over the range of

the likelihood, the values which maximize the log-likelihood will also maximize the

likelihood itself. We maximize the log-likelihood over u and σ by differentiating with

respect to u and σ and equating to zero. Then, we have

û = argmax
u
L =

1

n

n∑
i=1

xi (3.24)

σ̂2 = argmax
σ
L =

1

n

n∑
i=1

x2i −
1

n2

n∑
i=1

n∑
j=1

xixj. (3.25)

Details on MLE and the process of obtaining its optimal estimation of parameters

can be found in Poor (1994).

With estimated û and σ̂2 available for normal distribution, we can move on to

prioritize the N −n SS’s transmission. Suppose that, for current m-contend interval,

the controller declared in the ul-map that K out of N − n SS’s were expected to

‡Standard WiMAX SS may not have the overhearing function. However, it should not be difficult
to add this function to power system devices which are compatible with the standard WiMAX
protocol and use them for the purpose of voltage control.
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contend for access. The value of K can be adjusted by the controller based on the

previous received voltage state reports; the number of time slots in the m-contend

interval should be adjusted accordingly when K changes, where the relationship

between K and m will be analyzed in the next subsection. With the portion of

SS’s which should be given the contend access eligibility out of N−n SS’s being K
N−n ,

let voltage deviation threshold of contend access eligibility be DT > 0 under which

SS is not allowed to transmit in the m-contend interval, we have

∫ DT

−DT

1√
2πσ̂

exp(−(x− û)2

2σ̂2
)dx = 1− K

N − n
. (3.26)

By solving Eq. 3.26, we can obtain threshold value DT given the estimated normal

distribution parameters û and σ̂2 are available. Fig. 3.13 illustrates the portion

of voltage deviations (shaded parts) which are eligible for transmission in the m-

contend interval. Each SS of the N − n unselected ones during the n-sample interval

can independently go through the above estimation and threshold calculation process

with its overheard samples. If its voltage deviation is larger than DT , then it will

contend for reporting to the BS in the m-contend interval.
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Figure 3.13: Transmission Eligibility Threshold
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Analysis of Contending Access

Suppose that there are m time slots in the m-contend interval, and the controller has

declared in the ul-map that K SS’s are expected to contend for access (actual number

of contending SS’s could be different from K because of estimation error), all with the

same contention window size, CW . We also denote by Ks the number of successful

access slots, i.e, slots except those either being idle or having a collision. Then, we

have

Ks =

 mK 1
CW

(1− 1
CW

)K−1 CW ≥ m

CWK 1
CW

(1− 1
CW

)K−1 0 < CW ≤ m
. (3.27)

Ks achieves its maximum value when K = K∗, i.e.,

K∗ = argmax
K

Ks =
−1

ln(1− 1
CW

)
≈ CW , CW , K ∈ N. (3.28)

Thus, replacing K in Eq. 3.27 with its optimal value CW , we further have

Ks =

 m(1− 1
CW

)CW−1 CW ≥ m

CW (1− 1
CW

)CW−1 0 < CW ≤ m
. (3.29)

Because (1− 1
CW

)CW−1 is a monotonously decreasing function and CW (1− 1
CW

)CW−1

is a monotonously increasing function, given CW ∈ N, we obtain

Ks,max = m(1− 1

m
)m−1 ≈ 1

3
m. (3.30)

Eq. 3.30 states that, for the m time slots in the m-contend interval, at most 1
3
m

SS’s have successful access if there are m SS’s contending for access (i.e., K = m)

and their contention window size is set to m. However, the voltage state reporting

process expects as many as possible SS’s of the K contenders having successful access

with minimum contending time slots, i.e., maximizing the communication channel

efficiency.
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Based on Eq. 3.30, we propose multi-contention in the m-contend interval.

Given K announced contenders, the controller allocates m = 3K time slots in

the m-contend interval. Each self-qualified SS has 3 contending opportunities with

different transmitting time slots (local virtual-conflict resolution). Altogether, it

imitates the situation that m SS’s contend in m time slots. As showed in Fig. 3.14,

with the proposed approach, a contender’s probability of successful transmission is

1− (1− (
(m−1

3 )
(m

3 )
)K−1)3, which is larger than (1− 1

m
)K−1, the probability of successful

transmission when a contender transmits randomly only once in m slots. In the

voltage control system where the transmitting power is abundant, it is obvious that

the multi-transmitting and multi-contention approach is better.
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Figure 3.14: Comparison of Successful Transmission Probability

3.2.3 Numerical Simulation and Performance Evaluation

In this subsection, we provide simulation results to demonstrate the effectiveness

and efficiency of the proposed sample-contention communication scheme for voltage

control in power system.

47



We consider in our simulation a power system which has N = 200 bus voltages

under control by manipulating 200 DERs. The diagonal elements in the system state

transit matrix A are all set to be 1.05, and the contributing factors of DERs in B

are set to 1. n = 20 randomly selected SS’s broadcast their voltage states in the

n-sample interval; m = 60 time slots are allocated in the m-contend interval for

K = 20 expected contenders. We compare our sample-contention scheme with three

other different state reporting schemes: 1) complete information: at each control

iteration, the central controller has complete information of all voltage states, thus

consuming 200 time slots; 2) random access: at each iteration, the controller uses the

same number of time slots (80) for randomly selected SS’s to report voltage states;

3) round-robin access: at each iteration, the controller updates voltage states using

round-robin polling (80 SS’s each time).
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Figure 3.15: Voltage Deviation Trajectories Under Control

Fig. 3.15 shows 10 voltage deviation trajectories under voltage control methods

using different voltage state reporting schemes. We observe that the voltage under

complete information control method converges the fastest; while both the random

access control method and round-robin access control method miss curbing the largest
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deviations from the beginning, our proposed sample-contention starts regulating them

at the very first control action. This responsive action is attributed to the prioritized

reporting transmission in the sample-contention scheme which assigns higher priority

to voltage monitors with larger voltage deviation.
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Figure 3.16: Comparison of Total Cost of Different Voltage Control Schemes

Fig. 3.16 shows the accumulated cost of bringing voltage back to the reference

level. Again, intuitively, the complete information method has the smallest cost

of 1010 unit cost, at the expense of 2.5 (200/80) times communication resource

consumption compared with others’. With 1352 unit cost, the sample-contention

method is about 20% more cost-effective than the round-robin method. Although

the random method has small cost at the early stage of control, it has the largest

final cost. The reason is that, at the beginning, it is disguised by randomly selected

moderate voltage deviation reports and did not draw much cost from the control

input, which actually affected it negatively afterwards. All the above cost statistics

are obtained from 100 realizations.
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3.2.4 Conclusion

In this section, we have proposed a sample-contention multiple access scheme for

the communication system in CPS. It is a complement to the compressed multiple

access scheme we introduced in section 3.1. The sample-contention scheme applies to

the situation when eligible data from sensors is not sparse, but useful data in terms

of control needs is sparse. As a proposed multiple access improvement to WiMAX,

the sample-contention multiple access scheme is studied in detail with application

to the voltage control in smart grid. By making use of the sparseness of voltage

deviation, the sample-contention scheme implemented in the WiMAX framework is

able to provide communication resource efficient service for voltage state reporting

in smart grid. The effectiveness of the proposed scheme has been demonstrated by

numerical simulation results.

3.3 Prioritized Multiple Access

With compressed and sample-contention schemes, we are able to provide efficient

multiple access for wireless communication in CPS. We have not discriminated data

from sensors, in other words, we treat all data with equal importance. However,

when communication resources are constrained, to preserve CPS’ reliability and

adaptability, it is critical to identify sensors that have more important data. In

this section, we are going to answer this question: in CPS, given a system state, how

to decide which sensor(s) is more important and thus deserves prioritized access at

the moment.

We again use smart grid for our study as a typical CPS. Smart grid is characterized

by a two-way flow of electricity and information and will be capable of monitoring

everything in the grid (DOE, 2008). By bringing in a variety of DERs, in particular

renewable sources such as solar panels and wind turbines, smart grid addresses both

globe warming and emergency resilience issues.
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Figure 3.17: Distributed Energy Resources for Voltage Control

We study the wireless communication protocol design for regulating the voltages

in smart grid which has a shared communication channel among control center,

voltage sensors and DERs. The feasibility of DER for regulating voltage has been

well reported in the literature, such as Ko et al. (2007). As shown in Fig. 3.17,

multiple sensors monitor the voltage states at {Va, Vb, . . . } and report the states to

the voltage control center. Based on all received reports, the control center estimates

the voltage states. If the estimated voltage state is deviated from a preset desired

value, the control center coordinates all available DERs to regulate voltage. The

arrival of new report from sensor triggers the control center to perform another round

of voltage state estimation and regulating. The above iterative voltage regulating

process continues until the voltages are within a desired range.
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The motivation of our work is the increasing availability of DERs, voltage sensors,

and the overlaying communication network in power networks (Vaccaro et al., 2010).

Although the voltage regulation for power system stability has been a critical problem

under intensive study (Jin et al., 2010; Kashem and Ledwich, 2005; Ko et al., 2007; Li

et al., 2010), the new properties and potential benefits brought by these new facilities

still need more effort to uncover. Take the microgrid as an example (Hatziargyriou

et al., 2007), in which DERs have demonstrated their abilities of increasing power

quality and reliability in practical systems; however, developing alternative control

strategies using next-generation information and communication technology is still an

open question. Existing solutions for the voltage control problem with DERs either

focus on analyzing the power system model or mainly study control method design,

e.g., the Model Predictive Control (MPC) (Jin et al., 2010; Kashem and Ledwich,

2005) or PID controller (Ko et al., 2007; Li et al., 2010).

We will focus on the multiple access layer design of the wireless sensor networks

for the voltage regulation. When orthogonal communications are required, i.e., only

one transmitter can access the channel at the same time and collisions incur packet

loss§, it is of key importance to study the problem of sensor selection. A simple

solution is to use round-robin scheduling, i.e., the sensors take regular turns to

report their measurements, regardless of the current voltage states. However, as

will be seen later, a significant performance gain over the simple scheme will be

achieved by manipulating the sensors in a system state aware manner. Particularly,

we will model the power grid as a hybrid system (Lunze and Lagarrigue, 2009; Savkin

and Evans, 2002), in which the power system is the continuous subsystem while

the communication system is the discrete subsystem. The sensor selection will be

considered as the switching of the system dynamics mode. Then, we apply a sliding

window algorithm to optimize the sensor selection, or equivalently, the system mode

selection. To our best knowledge, there have not been any studies applying the hybrid

system theory to the communication protocol design in smart grid.

§It is straightforward to extend to the case that multiple sensors can be scheduled simultaneously
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3.3.1 System Model and Problem Formulation

We first introduce the system model, including the power dynamics, system cost and

communication system. Then, we formulate the problem as three sub-problems.

Power System Dynamics

We use the following differential-algebraic equation (DAE) to describe our target

power system, which is given by

ẋ = f(x,u,w′), w′ ∼ N (0, Q′), (3.31)

where x ∈ Rn is the system state representing the voltages; u ∈ Rm is the system

control action; w′ is the system process noise which is assumed to be zero-mean,

Gaussian and white with covariance matrix Q′. Since the voltage is usually required

to stay within a narrow range centered at a desired value, we assume that the function

f can be well approximated by its linearization in the neighborhood of desired voltage

values.

When voltage fluctuations due to either fault in the system or load change, DERs

are able to provide compensation to regulate the voltages. Note that the action taken

by a DER, say increasing its voltage, can affect all voltages in the system, more or less.

Hence, a single DER as an individual actuator cannot reduce the voltage oscillation

efficiently, as it does not have the global information on the voltage state. Therefore,

to enable the DERs to collaboratively regulate the power system voltages, we must

first obtain as much information as possible about the overall voltage state, and then

assign the tasks of voltage adjustment to each DER accordingly.

There exists a group of sensors, S1, . . . , Si, . . . , SN , monitoring voltage change in

the power system. Each is able to obtain a partial observation of the system with its

unique measuring function, which is given by

yi = hi(x,v
′
i), v′i ∼ N (0, R′i), i = 1, . . . , N, (3.32)
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where yi denotes the measurement obtained by sensor Si; hi is the measuring function

associated with Si; v′i is the Gaussian measurement noise with zero mean and

covariance matrix R′i. We assume that v′i is independent of the system process noise

w′.

With the controlled voltage staying close to preset desired value, we consider

a discrete-time linearized model derived from aforementioned DAE. The time

continuous functions f and hi are locally linearized around desired voltage x∗, which

are given by

xk =f(x∗k−1,u
∗
k−1,0) + A(xk−1 − x∗k−1)

+B(uk−1 − u∗k−1) + Fw′
(3.33)

and

yik = hi(x
∗
k,0) +Hik(xk − x∗k) +Giv

′
i, i = 1, . . . , N, (3.34)

where A,B, F,Hik and Gi are matrices derived from the Jacobian matrices of f and

hi; x∗k−1 = x∗k = x∗. Calculation of the Jacobian matrices and discrete-continuous

model conversion are standard procedures (Negenborn et al., 2007; Shieh et al., 1980).

Since at the steady state, the voltages stay at desired values and the control action is

not needed, we have u∗k−1 = 0 and f(x∗k−1,u
∗
k−1,0) = x∗, hi(x

∗
k,0) = y∗i . Substitute

them into Eq. 3.33 and Eq. 3.34 respectively, we have

xk = x∗ + A(xk−1 − x∗) +Buk−1 + Fw′, (3.35)

and

yik = y∗i +Hik(xk − x∗) +Giv
′
i, i = 1, . . . , N. (3.36)

Letting ∆xk = xk − x∗, ∆yik = yik − y∗i , w = Fw′ and vi = Gv′i, we obtain the

voltage deviation based system equation 3.37 and the measurement equation 3.38,
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which are given by

∆xk = A∆xk−1 +Buk−1 + w, w ∼ N (0, Q), (3.37)

∆yik = Hik∆xk + vi, vi ∼ N (0, Ri), i = 1, . . . , N, (3.38)

where Q = FQ′F T , Ri = GiR
′
iG

T
i . Q represents the power system uncertainties which

may be due to variations in the power system parameters, the effects of nonlinearities

and the dynamics that have not been included in the power system model. Ri reflects

the uncertainties of sensor i’s measurement mainly because of noise.

System Cost

We define the time discretized cost function for the system as a quadratic function

which penalizes the voltage deviation and minimizes control cost, which is given by

J = E(
k=K∑
k=1

(∆xTkD∆xk + uTkEuk)), (3.39)

in which, k = 1 ∼ K is the entire voltage adjusting period. D and E are positive

definite matrices whose weighting elements depend on power system’s penalties for

voltage deviations at different buses and different DERs’ operating costs.

Communication System

We assume that the sensors can report their measurements to the control center

equipped with a base station. The center can then compute the corresponding actions

and send them to the DERs. Due to the expensive cost of wired communications,

we assume that wireless communication technologies are employed. To avoid the

possible collisions, the reports from the sensors are conveyed in a polling manner, i.e.,

the control center schedules the transmission of the sensors. For simplicity, we assume

that only one sensor can be scheduled in a time slot and it is straightforward to extend
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to the case of multiple scheduled sensors. Moreover, we ignore the communication

details like modulation and coding, as well as the transmission delay and packet drops,

thus focusing on the sensor selection at multiple access layer.

Problem Formulation

Our focus is to find an effective algorithm for selecting the voltage sensors. To that

end, three subproblems have to be studied towards solving our problem of timely

regulating voltage with minimum operating cost: i) how to obtain the optimal system

state estimation with partial observation from chosen sensors; ii) what control method

should be applied based on the estimated system state; iii) which sensor to choose at

each time slot and what is the selection criterion.

3.3.2 Optimal Sensor Selection Sequence

In this subsection, we present our algorithm of sensor selection for the voltage control

by employing the framework of hybrid dynamical systems (Savkin and Evans, 2002).

We will first introduce the theory of hybrid dynamical systems. Then, we will explain

the algorithm of sensor selection.

Hybrid Dynamical System

Hybrid dynamical system (HDS) is a dynamical system which consists of both discrete

and continuous dynamics. While continuous dynamics come from continuous subsys-

tems of HDS, discrete dynamics are from the switching among these subsystems.

Thus, the interaction between the discrete and continuous dynamics is the focus of

HDS study.

One well known method of describing hybrid dynamical systems is using a set of

ordinary differential equations with the following format:

ẋ(t) = fi(x) (3.40)
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in which, x(t) ∈ Rn is the system state; i = 1, 2, . . . , N is the switching system

mode, and f1, f2, . . . , fN are continuous functions determined by the corresponding

subsystems in the HDS.

Most dynamical systems around us are hybrid dynamical systems. Especially with

advancement of modern digital technology, numerous systems have been equipped

with computer based controller with digital-sampling blocks, which inevitably changes

these systems into HDS. One example of such HDS is robotic system. It uses camera or

other sensors to monitor surrounding environment, and chooses the optimal operating

mode accordingly. Being a practical analysis model for a variety of modern systems,

HDS has received intensive studies in the literature (Labinaz et al., 1997; Van der

Schaft and Schumacher, 1998; Seatzu et al., 2006).

Sensor Selection Algorithm

The power voltage control system under our study belongs to an important class of

hybrid dynamical system called switching system, in which the continuous variables

are the state variables of all continuous time subsystems and the discrete variables are

the indices of subsystems. Specifically, in our power system, the continuous variables

are the voltage states while the discrete variables are the indices of the chosen sensors.

We use feedback control to regulate the voltage. Since at any given time slot

only one sensor can report, the power system is always under partial observations.

To perform the feedback control, an estimation of overall voltage state has to be

obtained first. The feedback control equation is given by

uk = −Lk × x̂k = −Lk × g(yik), (3.41)

where uk is the control input; Lk is the feedback control matrix; x̂k = g(yik) is

the state estimation based on sensor i’s measurement yik and previously received

measurements; g(·) is the estimation function. From Eq. 3.37, Eq. 3.38 and Eq.
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3.41, we have

∆xk+1 = A×∆xk −B × Lk × g(Hik∆xk + vi) + w. (3.42)

With Eq. 3.42, we revisit the three subproblems (section 3.3.1) to be solved for

achieving our ultimate goal of sensor selection in voltage control: i) function g(·)

gives system state estimation; here we use Kalman filter; ii) feedback matrix Lk

represents control method for which we adopt Linear Quadratic Regulator (LQR);

iii) Hik indicates the choice among different sensors. The following three subsections

address these three individual problems.

The Kalman filter is a set of mathematical equations that provide an efficient

recursive computational means to estimate the state of a process by minimizing the

mean square error (Welch and Bishop, 1995). The state estimation process has

two main interactive procedures: process update and measurement update whose

mathematical expressions for our specific voltage control problem are Eq. 3.43 and

Eq. 3.44 respectively, namely

∆x̂−k = A∆x̂k−1 +Buk−1, (3.43)

and

∆x̂k = ∆x̂−k +Kk(yik −Hik∆x̂−k ), (3.44)

in which ∆x̂−k is the preliminary voltage deviation estimation based on the system

state dynamics in Eq. 3.37 with control input applied; ∆x̂k is the refined

voltage deviation estimation after incorporating the correction provided by current

measurement yik; Kk is the Kalman gain matrix which can be calculated beforehand

according to Eq. 3.45, namely

Kk = P−k H
T
ik(HikP

−
k H

T
ik +Ri)

−1, (3.45)
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where P−k = APk−1A
T +Q is the predicted estimation covariance which is iteratively

updated by Pk = (I −KkHik)P
−
k .

With the latest state estimation available from Kalman filtering, we use Linear

Quadratic Regulator (LQR) (Sontag, 1998) to control the deviated voltage to the

desired value. Being an effective control method in solving problem with linear system

model and quadratic cost function, LQR is a good fit for voltage control. In fact,

LQR, together with the Kalman filter, forms a Linear Quadratic Gaussian (LQG)

problem. By LQG separation principle (Zhang and Hristu-Varsakelis, 2005), we are

able to decouple the voltage state estimation from LQR control and calculate feedback

matrix Lk in advance by Eq. 3.46, which avoids posing a substantial computation

burden on voltage control center.

Lk = (E +BTMkB)−1BTMkA, (3.46)

in which A and B are system matrices in Eq. 3.37; E is the control input cost matrix

in the cost function Eq. 3.39; Mk is found iteratively backwards in time by using the

following equation:

Mk−1 = D + AT (Mk −MkB(E +BTMkB)−1BTMk)A, (3.47)

with initial condition MK = D, and D is the voltage deviation cost matrix in the cost

function Eq. 3.39.

Now we face the key challenge of sensor selection. We denote the sensor querying

sequence by I = {i1, . . . , ik, . . . , iK} for k = 1 ∼ K, and ik ∈ {1, . . . , N}. Since the

measurement of the current selected sensor, together with all previous sensor reports,

determines the voltage control input which in turn determines the voltage states, the

system cost function Eq. 3.39 becomes a function of I. Hence, our goal is to minimize
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the overall cost by finding an optimal sensor querying sequence I, i.e.,

min
I
{J(I) = E(

k=K∑
k=1

(∆xTkD∆xk + uTkEuk))}. (3.48)

According to the separation principle of LQG problem, its optimal control is

totally based on the accurate state estimation. Therefore the optimal sensor querying

sequence is the one that can achieve the minimum voltage deviation estimation error.

The estimation error covariance is given by

Pk = E[(∆xk −∆x̂k)(∆xk −∆x̂k)
T ]. (3.49)

From k = 1 to k = K, our goal consequently becomes finding the optimal (or near

optimal) sensor querying sequence I which minimizes overall estimation error, which

can be written as

min
I
{
k=K∑
k=1

trace(Pk)}. (3.50)

By employing Eq. 3.45 and the iterative updating process for Kalman gain Kk,

the estimation error covariance evolves as follows:

Pk = [I − P−k H
T
ik(HikP

−
k H

T
ik +Ri)

−1Hik]P
−
k , (3.51)

P−k = APk−1A
T +Q. (3.52)

The initial value P0 can be an approximate one which reflects estimation accuracy of

given x̂0.

Starting from the selection of sensor at k = 1 until the voltage is adjusted to the

desired value at k = K, we have N choices in each step. Thus, we can grow a tree

structure for all possible sensor querying sequences. To find the optimal sequence,

one straightforward but inefficient method is the brute force strategy which traverses

all sequences and selects the one with the minimum estimation error as required by
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Eq. 3.50. While it guarantees to find the optimal sequence, the brute force strategy

suffers the exponential increase of computational cost.

We seek a trade-off between the sub-optimality sensor sequence and reasonable

computation effort by adopting the sliding window algorithm (Chung et al., 2004).

Given a window size d (steps), the algorithm proceeds as follows:

1. Initialization: start from root node with time k = 1.

2. Traversal :

(a) Traverse all the possible paths in the tree for the next d levels from the

present node;

(b) Identify the optimal sensor sequence within the d-window;

(c) Put the first sensor of the optimal sequence into the output sensor

sequence.

3. Sliding the window :

(a) If k = K then quit, otherwise go to the next step;

(b) Use the sensor which has just been selected as the new root;

(c) Update time k = k + 1;

(d) Repeat the traversal step.

In the algorithm, the window size d is an adjustable parameter determining the

trade-off between the sequence optimality and computational cost (or the speed of

decision making). Larger window size d results in a better sensor sequence but more

computational intensity, and vice versa. As pointed out in Chung et al. (2004), when

we slide the window, the first d− 1 steps’ error covariances in the new window have

already been calculated in the previous window and are available for immediate use.

This merit of the algorithm considerably reduces computational demand.
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Figure 3.18: Example Power System Model

3.3.3 Example Application and Simulation Results

In this section, we use an example application of power voltage control (Fig. 3.18)

to demonstrate the effectiveness of our proposed sensor selection strategy. In this

example application, three voltage controlling/regulating DERs and three voltage

monitoring sensors are installed in the power system. The system matrices in the

power system equation 3.37 are give by

A =


1.03 0 0

0 1.02 0

0 0 1.05

 , (3.53)
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and

B =


0.6 0.1 0.2

0.1 0.7 0.15

0.2 0.15 0.8

 . (3.54)

Elements in A being larger than 1 means that, without timely curbing voltage

deviated from desired value, the state in the system will keep deteriorating. B shows

that action of any single DER affects the state of the entire power system and DERs’

control capabilities are coupled with one another, though each DER has its own

primary control area. The covariance matrices of the system process noise w and the

sensor measurement noise v are given by

Q =


0.05 0 0

0 0.02 0

0 0 0.01

 , (3.55)

and

R =


0.1 0 0

0 0.2 0

0 0 2

 . (3.56)

The noise power at sensor 3 is set to be much larger than those at the other

two sensors, because we want to show that our sensor selection strategy is able to

compensate the inferior condition by optimally allocating the shared communication

channel. We also give voltage deviation penalty matrix D and control input (DER
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operation) cost matrix E in Eq. 3.39, which are given by

D =


1 0 0

0 2 0

0 0 3

 , and E =


5 0 0

0 5 0

0 0 5

 . (3.57)

We set the initial voltage deviation as ∆x0 = [30, 10, 20]T , and use two different

methods to perform the sensor selection: one is using our proposed sensor selection

strategy which returns the sensor querying sequence below; the other is to use the

round-robin polling {2 3 1 2 3 1 . . . }, and this method is used as our baseline. The

sliding window size d is set as d = 5.

Sensor querying sequence: {1 2 3 3 1 3 2 3 1 3 1 3 2 1 3 3 1 2 3 1 3 1 2 3 1 3 1 3

2 1 3 3 1 2 3 1 3 1 2 3}

Table 3.2 gives the communication channel allocation statistics for all three

sensors. Sensor 3 receives the highest utilization percentage of the channel, i.e., 45%

of channel accesses, while sensor 1 and sensor 2 receive 35% and 20% respectively.

According to the noise covariance matrices Q and R, sensor 3 suffers the highest level

of measurement noise which is overwhelming compared with the other two’s; thus

it is granted the highest utilization percentage. Sensor 1 has a lower measurement

noise but higher process noise than sensor 2; consequently, sensor 1’s combined noise

effect gives it larger channel utilization percentage (35%) than what sensor 2 receives

(20%).

Fig. 3.19 depicts the voltage state of the system during the control process

using both methods. The lower figure uses the round-robin polling, and the upper

Table 3.2: Communication Channel Allocation

Sensor S1 S2 S3

Allocated Slots 14 8 18
Percentage 35% 20% 45%
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Figure 3.19: Voltage State Evolution. Controlled by sensor selection strategy, deviation of
voltage is eliminated by the time k = 30; Without the strategy, deviation still exists after k = 40.

figure shows results using our proposed strategy. Both methods successfully pull the

deviated voltage back to the desired value (deviation becomes zero), while our method

forces the voltage to converge faster, in particular for voltage 3 (the green line).

Approaching the desired voltage x∗ faster results in less time staying deviated

from x∗ and thus reduces the cost. Fig. 3.20 shows the costs for both voltage control

methods. Our proposed strategy outperforms the baseline of round-robin algorithm

by reducing the cost by approximately 40%. One of the key reasons that our sensor

selection method is able to beat the round-robin method is that our method achieves

smaller voltage state estimation error, as demonstrated in Fig. 3.21. The more

accurate state estimation of our proposed algorithm helps the control center to timely

use DERs to adjust voltage states and reduce the state fluctuation. In Fig. 3.22, the

voltage state controlled by the round-robin method, namely the upper curve, has

moderate fluctuation from time k = 5 to k = 25; while the voltage state controlled by

65



0 5 10 15 20 25 30 35 40
2000

4000

6000

8000

10000

12000

14000

16000

Discrete Time

U
n

it
 C

o
s
t

Cost

 

 

with strategy

without strategy

Figure 3.20: Cost Comparison. The method with sensor selection strategy reduces cost by
approximately 40% compared with the method using round-robin sensor polling

our sensor selection strategy, the lower curve, shows smooth transition. Furthermore,

the voltage state with a smoother transition like the one controlled by our sensor

selection strategy is much more desired.

3.3.4 Conclusion

In this section, we study prioritized multiple access in CPS. We have treated the

power system with sensors and shared communication channel as a hybrid dynamical

system, which switches its mode by selecting different sensors. The approach to

obtain the optimal sensor querying sequence has been analyzed by minimizing overall

system cost. Both LQR control and Kalman filter have been applied for the control.

A sub-optimal but computational efficient sliding window algorithm has been applied
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Figure 3.21: State Estimation Error.

and has been demonstrated to achieve a 40% performance gain compared with the

simple round-robin sensor polling baseline.
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Figure 3.22: Voltage State Transition. round-robin sensor polling results in moderate state
fluctuation (the upper curve); voltage state controlled by sensor selection strategy has smoother
transition (the lower curve).
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Chapter 4

Core Network in Cyber-Physical

System

In chapter 3, we discussed reliable and selective multiple access in CPS. The base

station to which multiple sensors are connected is actually one of many key nodes in

CPS’ core network. The core network in CPS is illustrated by Fig. 4.1, in which

sensors/actuators (represented by stars) are associated with key nodes, which in

turn form the core network. Global controller collects and disseminates information

through this core network; local controllers reside in key nodes in its neighborhood.

In this chapter, we study how to manage core network in CPS to provide reliable

and timely service. In the first section of the chapter, we propose to increase network

reliability and predictability by creating backup paths. Service interruption at certain

group of key nodes is anticipated, and backup paths are created accordingly through

integer programming. In the second section, we address the problem stem from

network dynamics by designing an online multipath routing algorithm that is able to

adaptively update backup paths.
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Sensor/Actuator

Key Node

Figure 4.1: Core Network in CPS

4.1 Create Backup Path in Core Network

High reliability is essential for CPS. We define two types of users in CPS: Primary

User (PU) and Secondary Users (SU), with PU having higher priority. When a set

of nodes in CPS realize that the data from a user A (sensor or controller) is more

important than the data from user B, the set of nodes would grant higher access

priority to user A, and deny service for user B by stop serving user B. In a situation

like this, user A is PU and user B is SU. SU suffers from interruption on its traffic

flow when PU appears, which may cause severe damages to CPS.

It is well known that, in the area of reliability engineering, an effective approach

to improve the reliability of a complex system is to prepare backup elements. For

example, preparing backup parts for each functional block can significantly improve

the overall reliability of a rocket. In this chapter, we study preparing backup paths for

improving the reliability of traffic flows. To that end, we predetermine one or more

backup paths for each traffic flow. When the current path, called working path, is

interrupted by primary users, the source node can switch to a backup path such that
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the traffic flow can be resumed at the minimum performance loss. There also have

been many studies on survivable networks, which focus on improving the reliability of

networks by preparing multiple paths for each traffic flow. For example, a redundancy

tree can be designed for a graph, thus providing multiple redundant paths (Médard

et al., 1999). In Li et al. (2008), the self-healing algorithm is studied to improve the

survivability. Plenty of algorithms for designing survivable networks are summarized

in Stoer (1991).
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Figure 4.2: An Illustration of Backup Path.

An illustrative example is given in Fig. 4.2 to explain how the backup scheme

works. It is possible that nodes B and D or nodes B and C are simultaneously

interrupted by the primary user. Suppose that A → B → C → D → E is the

working path. Then, we set path A → F → G → H → D as the backup path

for protecting the working path, when secondary users B and C along the working

path are disrupted. If secondary users B and D are interrupted, the backup path

A→ F → G→ I → J → K → E will be activated.
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The following two challenges must be addressed for the backup path scheme:

• How to design the backup path?

• When to switch to the backup path?

For the first challenge, we formulate the problem of designing backup paths as an

integer programming. We formulate the second problem as a Bayesian decision

problem by identifying the cost and a posteriori probabilities that the working path

is interrupted. The switching rule is implemented and optimized in a USRP GNU

Radio node based testbed. The hardware experiment shows that the system cost,

defined as a weighted sum of throughput loss and average packet delay, is reduced by

around 50% in a typical setup, compared with the scenario of no backup paths.

4.1.1 Backup Path Design

In this section, we present an integer programming formulation for determining the

backup path. First, we introduce the concept of shared risk node group (SRNG), a key

concept facilitating the creation of backup path, followed by the detailed description

of the integer programming. Finally, we provide the performance evaluation of the

proposed algorithm.

Shared Risk Node Group

A shared risk node group (SRNG) is a group of nodes which may be interrupted by

primary users (PU) at the same time. An illustrative example is given in Fig. 4.3,

where nodes 1, 2 and 3, under the influence of primary user A, and nodes 2, 3, 4, 5

and 6, under the influence of primary user B, are obviously two SRNGs. However,

there exists the third SRNG which includes all the nodes since it is possible that

both primary users A and B emerge at the same time. Hence, the set of SRNGs

in Fig. 4.3 is {{1, 2, 3}, {2, 3, 3, 5, 6}, {1, 2, 3, 4, 5, 6}}. SRNGs can be obtained by
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neighboring nodes exchanging and merging the operation history of the network in

the neighborhood.

Integer Programming Formulation

Suppose that there are K working paths in a CPS, which have been predetermined by

certain routing algorithms. We plan to build a backup path for each SRNG associated

with a traffic flow such that the data can be switched to the backup path once the

nodes in the SRNG are interrupted by any primary user∗. This task is formulated

as an integer programming problem, whose essential task is to determine whether a

given link is used by any backup path; if yes, which SRNG the link protects. All

decisions should be made towards the objective of minimizing overall delay cost in

the entire network with various constraints.

Figure 4.3: An Illustration of SRNG.

Notations

Table 4.1 lists notations used in this section.

∗This is an ideal case. In practice, there could exist many SRNG’s and it is difficult to find one
backup path for every SRNG. Then, we need to study the trade-off between the reliability and the
complexity
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Table 4.1: Notations.

G the set of all SRNGs.
N the set of nodes in the network.
WPk the kth working path.
K total number of working paths.
ck unit delay cost of the kth working path.
Gk the set of SRNGs that WPk traverses.
BP k

g backup path that protects WPk interrupted by SRNG g.

BP k
Gk

set of all backup paths that protect WPk.
ρg the interrupting probability of SRNG g.
Rmn
BPk

g
the transmission rate of BP k

g at link (m,n).

Cmn the link capacity of link (m,n).
F (n) the set of links from node n.
T (n) the set of links to node n.

Variables

The primary variable is Smn
BPk

g
which indicates whether existing link between node m

and node n, (m,n), is used by backup path BP k
g or not. All Smn

BPk
g

form a variable set

V.

SmnBPk
g

=

 1, (m,n) ∈ BP k
g

0, (m,n) /∈ BP k
g

. (4.1)

Two auxiliary variables are used to compute the numbers of outgoing links and

incoming links respectively, which are given by

S
F (n)

BPk
g

=
∑

(m,n)∈F (n)

SmnBPk
g
, (4.2)

and

S
T (n)

BPk
g

=
∑

(m,n)∈T (n)

SmnBPk
g
. (4.3)
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Objective

We assume that each node causes one unit delay to the data stream on backup path.

Thus, the delay of BP k
g at node n is given by

Dn
BPk

g
=

 1, n ∈ BP k
g

0, n /∈ BP k
g

. (4.4)

According to definition of Smn
BPk

g
, Dn

BPk
g

can also be written as

Dn
BPk

g
= SmnBPk

g
, m ∈ BP k

g . (4.5)

The delay of BP k
Gk

at node n is given by

Dn
BPk

Gk

=
∑
g∈Gk

(ρg ×Dn
BPk

g
). (4.6)

Altogether, the total cost of all backup path’s delay at node n is given by

Cn =
K∑
k=1

(
ck ×Dn

BPk
Gk

)
. (4.7)

Finally, the ultimate objective is to minimize the delay cost of all backup paths in

the entire network, which is given by

min
V

∑
n/∈WP

Cn. (4.8)

Constraints

We assume that any node at any time can support only one backup path. Therefore,

for any node, all backup paths that traverse it should protect different SRNG’s. This
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constraint can be expressed as

K∑
k=1

S
F (n)

BPk
g
≤ 1, ∀n ∈ N, g ∈ G, (4.9)

and
K∑
k=1

S
T (n)

BPk
g
≤ 1, ∀n ∈ N, g ∈ G. (4.10)

In addition, we apply the following constraints:

• Continuity : for k = 1, ..., K,∀n ∈ N, g ∈ G,

S
F (n)

BPk
g
− ST (n)

BPk
g

=


1, if BP k

g begins at node n

0, if BP k
g traverses node n

−1, if BP k
g ends at node n

. (4.11)

• Link Capacity : The maximum transmission rate should be less than or equal

to the capacity.

max
g∈G

(
Rmn
BPk

g
× SmnBPk

g

)
≤ Cmn, ∀m,n ∈ N. (4.12)

• Relationship between Working Path and Backup Path: A backup path should

have equal numbers of outgoing and incoming links with the working path it

protects to make sure that the backup path can send data back to the working

path or the destination:

∑
n∈WPk

S
F (n)

BPk
g
−
∑

n∈WPk

S
T (n)

BPk
g

= 0, g ∈ Gk, k = 1, ..., K. (4.13)

• Constraint on BP k
g : Any backup path should not use node that is in the SRNG

it protects, which is expressed as

SmnBPk
g

= 0, if m ∈ g or n ∈ g. (4.14)
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Figure 4.4: Example of Backup Path.

Performance Evaluation

We evaluate the cost of the created backup paths by solving the proposed integer

programming problem in a simple 225-node network with a 15×15 grid topology.

The integer programming problem is solved by CPLEX 11.2 solver of AMPL (AMPL,

2012). We assume that there are two data flows in the network. The distance between

two adjacent nodes (not diagonal) is D and only adjacent nodes can communicate

with each other. Primary users are randomly distributed in the network with a

covering diameter 3D and interrupting probability p. The ratio of capacities of links

in working paths and backup paths isR > 1, which implies that, when not interrupted,

the working path is always the preferred transmission path. We assign a unit cost to

each link along the backup path and 1
R

to each working path links. The total cost

of the backup path is a function of its length, while the total cost of working path

is a function of both p and the number of corresponding SRNG’s. Fig. 4.4 shows
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Figure 4.5: Backup Path Versus Working Path.

the result by solving integer programming problem under configuration mentioned

above. In the figure, red stars represent SRNG’s; blue circles are nodes unaffected

by primary users; light blue dash lines denote backup paths; green solid lines denote

the working paths, part of which could be covered by backup path. We first vary p

from 0.2 to 0.8 and the number of primary users from 3 to 11. The performance of

both backup path and working path is given in the left figure of Fig. 4.5. With an

increased chance of interruption, the cost of the working paths increases significantly.

Compared with the cost at the working path, the cost of backup paths only sees a

moderate increase of less than 40% due to its inherent nature of protection. In the

right figure of Fig. 4.5, we also assess the impact of the ratio of link capacities R.

The conclusion is quite straightforward: the higher the capacity ratio is, the less the

cost is, i.e., a better working path has less intention to switch to backup path.
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As shown in above performance evaluation, the cost of working path can be worse

than that of backup path if a working path is interrupted by a primary user and the

data flow is not switched to the backup path. This implies a pressing need to study

the rule of switching to backup path, which is the focus of the next section.

4.1.2 Switching Policy

In this section, we study the switching policy given predetermined working path

and backup path, i.e., when to switch to the backup path if the working path is

malfunctioning, by using a simple USRP node based testbed. We first introduce the

configuration of the testbed network. Then, we formulate the switching policy as a

Bayesian decision problem, thus obtaining the optimal strategy. Finally, we provide

the performance metrics obtained from the experiment in the testbed network. In

the following, we briefly introduce the configurations of the testbed, including the

network topology, hardware, channel assignment and MAC layer protocol.

Topology

Built in a 10m×4m lab, the testbed consists of four GNU Radio USRP nodes, whose

picture and topology are shown in Fig. 4.6a and Fig. 4.6b. The primary user’s

activity is generated by another dedicated USRP node (not shown in the picture).

The testbed has one source node, one relay node (for the working path) and one

backup relay node (for the backup path) and one destination node, labeled by nodes 1,

2, 3 and 4, respectively. Therefore, the source has two possible paths for transmitting

to the destination. Only the relay node (2) is affected by the primary user node

because they use the same channel.

Hardware

Each USRP node is connected to a host computer through a USB cable (Ettus

Research LLC, 2012). In each node, the motherboard is mounted by a RFX400

79



(a) A picture of the testbed network (b) Topology of the testbed network

Figure 4.6: Testbed

daughterboard which covers frequencies from 400MHz to 500MHz. Each node

has independent Tx and Rx paths but shares the same antenna. Therefore, they

work in the half-duplex mode and cannot receive any data when transmitting.

The transmitting power of each USRP node is controlled by setting parameter tx-

amplitude to 0.01. Carrier sense threshold is 50dB. Each USRP node uses DBPSK

modulation/demodulation with bitrate of 125kb/s. It takes around 20ms for a USRP

node to switch channel. Note that these USRP nodes are not time synchronized.

Channel Assignment

We use a fixed channel assignment scheme, i.e., each node has its own dedicated

receiving channel. For example, when node 1 wants to send packets to node 2, it

tunes its transmitting channel to the receiving channel of node 2. There are totally

four channels used by the testbed, ranging from frequency 428M to 431M with 1M

interval. We assign the four channels to the four nodes as their receiving channels, i.e.,

node i uses channel i as its receiving channel. The primary user node uses channels

1 and 4, thus interfering the transmission of the relay node 2. Note that the primary

user only affects the transmission, not the receiving, of each node. No common control

channel is specified.
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Transmission Procedure

Figure 4.7: An Illustration of The Timing for Transmission.

The mechanism of RTS/CTS (Request To Send/Clear To Send) is used for

coordination between nodes. When a node wants to transmit, it first senses primary

user over the receiving channel of its receiver, which costs 40ms. If no primary user is

detected, it sends an RTS in the receiving channel of the receiver and then waits for

the CTS in its own receiving channel. Upon receiving a CTS signal from the receiver,

it begins to transmit. The procedure of RTS/CTS costs around 150ms and timing

structure is shown in Fig. 4.7.

Decision Making for Path Switching

At the first sight, the decision making for path switching looks to be straightforward:

the source node can simply switch to the backup path when the working path is

damaged by the primary user. However, the challenge is how can the source node

know that the working path is damaged by the primary user? Two facts make the

source node unable to perfectly determine the working path status. First, an emerging

primary user prevents relay node from responding to source node’s RTS; second, relay

node is unable to hear the RTS from the source while it is transmitting.

Therefore, the source node should distinguish the case of an emerging primary user

and the case of a transmitting relay node. For the former case, the source node should
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switch to the backup path while it should stay in the working path and continue to

contact the relay node in the latter situation. Due to the probabilistic nature of

this decision problem, we adopt the Bayesian framework to solve this problem by

minimizing the Bayesian risk. To that end, we first define the costs of different

scenarios, then compute the a posteriori probabilities and finally obtain the decision

rule.

Cost

For the Bayesian decision framework, we need to define the costs for different

scenarios. There are totally three scenarios in the network, namely transmitting along

the working path with an active primary user (S1), transmitting over the backup path

(S2) and transmitting over the working path without primary user (S3). We denote by

C1, C2 and C3 their costs, respectively, which satisfy the relationship C1 > C2 > C3.

For defining the costs, we employ two metrics: end-to-end delay and throughput loss.

End-to-end delay is the average delays normalized by that of S1; throughput loss is

the normalized gap between the throughput of the corresponding scheme and that of

scheme S3. We define the cost of each scenario as a weighted sum of the end-to-end

delay and the throughput loss with both weighting factors being 0.5

A Posteriori Probability

The second element in the Bayesian decision is the a posteriori probability for the

primary user presence given the number of RTS’s without responses from the relay

node, denoted by n. Applying the Bayesian rule, we have

P (PU|n) =
P (PU, n)

P (n)

=
P (n|PU)P (PU)

P (n|PU)P (PU) + P (n|no PU)P (no PU)
. (4.15)
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Figure 4.8: Conditional Probabilities of The Number of RTS’s Without Responses
in Different Scenarios.

We count the number of times when n RTS’s are not responded in scenarios S1

and S3, respectively, which were measured in the testbed (the numbers are shown in

Table 4.2). Then, we calculate the conditional probabilities P (n|PU) and P (n|no PU)

correspondingly. The obtained conditional probabilities are shown in Fig. 4.8. Shown

by curve P (n|no PU), when there is no primary user, there are only 1 or 2 consecutive

RTS’s not responded for most of the time. It is rare to find 5 or more consecutive

RTS’s not responded by the relay node. When there is primary user, the probability

that 3 or more consecutive RTS’s not responded increases significantly, as shown by

curve P (n|PU).
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Table 4.2: The Number of Consecutive Unresponded RTS’s.

The Number of Unresponded RTS’s (n)
1 2 3 4 5 6 7 8 9

PU 28 25 21 19 19 19 18 18 18
no PU 104 59 27 6 2 0 0 0 0

Table 4.3: Costs of Different Decisions and States.

Working Path Backup Path
PU C1 C2

no PU C3 C2

Decision Rule

Table 4.3 shows the costs when different actions, staying in the working path or

switching to the backup path, are taken in different primary user states. Note that,

once switched to the backup path, the cost is irrelevant to the primary user state.

When the number of RTS’s without responses at the source node is n, the expected

cost of staying in the working path is given by

E[C|n] = P (PU|n)C1 + (1− P (PU|n))C3. (4.16)

If switching to the backup path, the expected cost is C2.

To minimize the Bayesian risk, the decision rule is given by

decision =

 backup path if E[C|n] > C2

working path if E[C|n] ≤ C2

(4.17)

Note that we choose the working path when there is a tie.
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Switch Back to Working Path

After switching to the backup path, the source node will frequently check the status

of the working path (once per 10 seconds in the testbed). Once receiving a CTS

response from the relay node, the traffic flow will be switched back to the working

path.

Performance Evaluation

We let the source node generate a bursty data stream, with the interval of 1s. Each

time 10 packets of size 1kb are placed in the source node’s sending queue, thus

achieving a source rate of 10kb/s. The statistics are obtained from 10 experiments of

the testbed, each lasting 500s. We denote by S4 for the scheme of dynamic switching

between the two paths.
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Figure 4.9: CDF Curves of Expected Packet Delay (Normalized).

Fig. 4.9 shows the CDF curves of packet delay, normalized by S1’s average

delay. The scheme of dynamic switching, S4, achieves an expected delay of 0.34,
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i.e., 66% less delay than S1. Therefore, the dynamic switching scheme attains a much

smaller packet delay compared with the scheme of always staying on the working

path. Meanwhile, the expected delay of S4 is slightly larger than S3, the scheme of

using working path without primary user emergence. Note that the expected delay is

measured for only the packets successfully arriving at the destination. The expected

delay of S2, always using backup path, is even smaller than that of S3. The reason is,

in our experiment, inferior backup path carries only half of the working path’s data

rate load; thus reducing the chance of congestion on the backup path.

The overall performance metrics, the weighted sums of the throughput loss and

expected delay, of different schemes are plotted in Fig. 4.10. We observe that the ideal

case, S3, achieves the best performance since there is no primary user in this scenario

and the working path has a better quality than the backup path. Compared with

the practical cases, S1 and S2, the dynamic switching strategy S4 achieves relative

performance gains of 51.2% and 23.4% respectively.

4.1.3 Conclusion

In this section, we have studied the backup path mechanism in CPS. Backup paths

improve the reliability of the core network, which is subject to the interruptions from

primary users. An integer programming problem has been formulated to obtain the

optimal backup paths. Once the backup path is fixed, a switching algorithm, which

determines when to switch to the backup path, has been proposed based on the

Bayesian decision framework. The algorithm has been implemented and optimized

over a USRP GNU Radio testbed which consists of four secondary users and one

primary user. The experiments using the testbed has shown that the performance

of the data transmission in CPS can be significantly improved by this backup path

mechanism.
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Figure 4.10: Comparison of Performances for The Four Scenarios.

4.2 Online Multipath Routing

In previous section, we discussed creating backup path in CPS core network by solving

an integer programming problem, in which global information of the system, such as

SRNGs, has to be available. Thus, the integer programming approach is suitable

for networks that have low dynamics. In this section we study an online multipath

routing approach that is derived from Ant Colony Optimization (ACO), and adapted

for networks that contain SRNG.

ACO is a biologically inspired stochastic optimization algorithm that iteratively

and incrementally searches for good (but not necessarily globally optimal) solutions

(Chen et al., 2006). When an ant colony is trying to trace out the shortest path from
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its nest to a food source, each ant as an individual will do two simple things: one,

it leaves pheromone along the route it has just past; second, it tends to follow the

path that has higher pheromone accumulation. Through this indirect communication

mediated by pheromone secretion, ants are able to interact with one another and form

a mechanism of positive feedback, which implies that the shorter a path is, the more

likely ants are going to follow it. Another important feature in ant path exploration is

the evaporation of pheromone. The evaporation prevents pheromone accumulating to

a dominant level along a few paths, which would handicap path exploration process.

Given the simple action of an ant in ACO, it is easy to implement ACO in a distributed

manner. The decision of an ant is completely based on local information, and no global

information is needed.

4.2.1 Description of the Algorithm

In a wireless communication system for CPS, a controller subscribes information

from multiple sensors in the network. As discussed in the previous section, at network

layer, we strive to achieve reliable and timely data delivery from sensors to controllers.

With service interruption at nodes anticipated, we create multiple path to circumvent

potential zone of service interruption. Compared with conventional multipath routing

protocols (Mohammed Tariquea et al., 2009), our online multipath routing protocol

for wireless communication in CPS has two major features. First, the multipath

created by our approach specifically addresses the problem of service interruption

caused by SRNG; second, QoS requirements in CPS’ wireless communication, such

as reliability and real-time, are incorporated into our ACO based design. We will

show only one source one destination case in the following. Multiple sources and one

destination case can be easily handled by merging routes from different sources then

forwarding along the routes that have already explored.
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4.2.2 Forward Route Exploration

Routes from data source to destination are maintained by the source periodically

sending out route maintaining packet to the destination that has subscribed data

service from the source. The maintaining packet performs a function similar to that

of an ant trying to trace out the route from its nest to food source.

n2n1

n5
d

Zone A
s

n4n3

n7

n6n8

n9

Figure 4.11: Route Exploration

Take Fig. 4.11 as an example, starting from the source, s, the maintaining

packet records the nodes that it has traversed into a tabu list. next node is chosen

opportunistically from nodes that are in the neighborhood of current node. The

selecting probability that is assigned to each neighboring node is calculated according

the amount of pheromone accumulated on the corresponding link between current

node and the neighboring node. Higher level of pheromone accumulation is granted

larger chance of being selected. When service in a zone is interrupted, as illustrated

in Fig. 4.11’s “Zone A”, maintaining packet will notice that links to the interrupted

zone, such as n1 − n2 and n5 − n9, are down. Those tabbed unresponsive nodes are

marked by a black list, which will be utilized at pheromone updating stage. Sudden

appearance of interrupted zone could make immediate detour an inferior one before
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it is gradually improved. Thus, the detour could take n5 − n8 − n6 before it go

through n5 − n6, the better one, directly. Forward route exploration procedures are

summarized by algorithm 4.

Algorithm 4 Forward Route Exploration

next = null
tabu list = {source}
black list = {}
while next 6= dest do
current = tabu list(end)
if Ncurrent ⊂ tabu list then

Reset
end if
compute current’s neighboring nodes’ selecting probability.
select next based on selecting probability.
if current− next link broken then
black list← next
Reselect

end if
tabu list← next

end while

4.2.3 Backward Feedback

When a route maintaining packet arrives at its destination, it submits the tabu list

indicating the route it has travelled. In route maintenance and exploration, proper

route reinforcement is critical. Whether or not, or how much to reinforce a route

submitted by a maintaining packet is determined by the value of the route. Shorter

distance and smaller delay result in higher reward through pheromone updating. On

the other hand, there are two sources that decrease pheromone. One is pheromone

evaporation, which applies to all links; the other one is penalty to links connected

to black nodes. When tracing backwards along the tabu list, any link between a

node in the tabu list and a node in the black node list will be penalized by reducing

its pheromone level. Algorithm 5 describes backward feedback through pheromone

updating.
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Algorithm 5 Backward Feedback

Initialize path length heap to inf (size n)
//Pheromone evaporation
Ph = Ph× p (0 < p < 1)
if Path Length < heapmax then

update heap
Reward = Q/Path Lenghth

else
Reward = 0

end if
for i in tabu list do

Phi,i+1 = Phi,i+1 +Reward
//Ni is the set of neighboring nodes of node i
for j in Ni do

if j in black list then
//Penalty for black nodes
Phi,j = Phi,j × q (0 < q < 1)

end if
end for

end for

Fig. 4.12 shows the performance of ACO based online routing. From source

(cross) to destination (star), after iterative update and improvement, the light blue

route becomes a stable one. Then comes the interruption whose affected nodes are

marked as red circles. A detour has to be immediately established. The detour will

be gradually improved and becomes stable, as shown in Fig. 4.13. X-axis of the figure

is the number of maintaining packet, and y-axis is the hop number of a route. Before

interruption comes, after about 80 packets, the original route has improved itself to

around 15 hops and stabilized. When interruption comes at around 100th packet,

the initial detour’s distance is long before it finally resettles itself (the green route

in Fig. 4.12). Figures 4.12 and 4.13 together show the effectiveness of our online

routing method’s ability to handle interruption and re-establish backup routes with

competitive distance.
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Chapter 5

Smart Grid Application

In this chapter, we discuss wireless communication’s application for smart grid

in detail. Both power and communication subsystems are carefully examined.

Challenges and implementation of integrating a wireless communication with a

microgrid system are analyzed. We test the integrated system with different

configurations, and show communication’s impact on the state of the microgrid.

The smart grid is an interdisciplinary research topic, and its development requires

effort from researchers with various backgrounds, especially those with expertise

in power, communication, and control. Despite their different backgrounds, these

researchers have a consensus that communication is essential for the smart grid (Wang

et al., 2011; Yan and Qian, 2012). However, the reality is that communication for the

smart grid is still at its infant stage, and a simulator able to integrate the power system

and communication system as we would like is not even available. Communication

experts know network simulators well, such as ns2, OPNET, and Qualnet; similarly,

power system experts know PSSE, PSLF, and SimPowerSystem. “Naturally,” co-

simulators have been devised in an effort to take advantage of original simulators from

both sides (Godfrey et al., 2010; Lin et al., 2011b; Hasan et al., 2009). Unfortunately,

these co-simulators barely hold two parties together; they cannot be on the same

page most of the time (Godfrey et al., 2010; Hasan et al., 2009), which means they
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fail to synchronize. In addition, these co-simulators present a tremendous challenge

because they demand that researchers from either field dive into another field with

an overwhelming body of knowledge unfamiliar to them.

We present a well-integrated smart grid simulation of moderate complexity,

consisting of both a power system and a communication system. It covers realistic

power and communication characteristics and is not overwhelmingly complex; thus

it serves as a thought-provoking example and encourages researchers in need of

such a tool to obtain hands-on experience in simulating a smart grid system. The

platform we choose is Simulink because of its abundant resources for power system

modeling, versatility, and powerful user-defined function block. The power system

we simulate is a microgrid that can operate in either on-grid or islanding mode.

For communication, we use multiple access approaches we have proposed, and we

constrain the communication within one hop. This is a basic setting, but enough for

us to study the impact of important communication performance metrics, such as

data rate and packet delay, on a power system.

The microgrid has been an evolving concept since it was defined (Microgrid, 2012).

Although the definition of a microgrid differs, all definitions have some fundamental

functions in common: (1) the capability of stable operation in islanding and/or on-

grid modes, (2) minimum load disruption and shedding during transition, and (3) the

capability to transition from one mode to the other and stabilize the microgrid after

transitions. Many of the issues related to microgrid topology, control, and protection

were summarized in Peng et al. (2009). Microgrid control problems, such as islanding

detection (Hung et al., 2003; Lopes and Sun, 2006), droop control (Kim et al., 2011;

Rokrok and Golshan, 2010), inverter control, and mode transition (Lei et al., 2011;

Mohamed and A., 2011) are under intensive study, and results are reported in the

literature.

Co-simulation involving both control and communication subsystems has long

been an interesting topic. Although the fundamental microgrid functions can be easily

performed locally and automatically based on local measurements, communication

94



in the microgrid is essential in order to achieve high performance and high

efficiency. Requirements for communication capability vary with the different

microgrid functions. For instance, closed-loop voltage and frequency control

require more real-time information exchange than does economical dispatch. Co-

simulation helps to quantitatively identify the microgrid application’s requirements

for communication. Also, co-simulation results are closer to the phenomena in real

systems and hence give more accurate feedback for better control design.

A networked control system (NCS), the category to which a microgrid with

communication belongs, provides a general guideline for these types of co-simulations

(Branicky et al., 2003). Andersson et al. (2005) gives an example of NCS

implemented in Simulink. There are also Simulink-based smart grid simulations,

such as Pipattanasomporn et al. (2009). Despite the progress all these efforts

have made, they either lack in-depth treatment of interaction between smart grid

and communication or provide little or no flexibility for configuration by which

the impact of communication on the smart grid can be studied. Several projects

have been working toward more smart grid–oriented simulation; however, they need

improvement. In Godfrey et al. (2010), a smart grid application co-simulation using

OpenDSS and ns-2 is reported. OpenDSS is not suitable for time series system

simulation, and the approach for exchanging information between OpenDSS and ns-

2 through feeding scripts to each other has obvious limitations. Lin et al. (2011b)

models a smart grid system with PSLF and ns-2; however, creating an interface

logic and integrating two sub-simulators remain challenging tasks. Finally, regarding

our chosen platform of Matlab/Simulink, we note that Matlab has made noticeable

improvements and is completely capable of simulating a complex communication

system. Mehlfhrer et al. (2011) has presented a complete LTE simulator, both

link level and system level; Truetime (2012) has showcased a Matlab/Simulink-based

simulator for real-time control system with communication.
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5.1 Power Grid Subsystem

In this section, we describe the power grid subsystem, shown in Fig. 5.1, from

two different perspectives: one presenting its layered structure, which consists of

grid-level, microgrid-level, and device-level details; the other outlining its operations,

highlighting the microgrid’s reactions to events happening in the system.

At the grid level, the microgrid as a single entity is connected to the main grid

through a microgrid switch, which in turn is connected to the transformer. On the

main grid side of the transformer is the feeder, both ends of which have circuit breakers

installed. In case of a fault, the circuit breakers trip. If the disconnection resulting

from the fault is long enough, the microgrid switch cuts off the microgrid from the

main grid, forcing the microgrid into islanding mode from on-grid mode.

At the microgrid level, we have three buses; each bus has one DER (distributed

energy resource) and one load. However, the most important component at this

level is the microgrid controller, which manages the actions of other components.

By exchanging information with devices and the main grid, the microgrid controller

conducts system situation awareness, operation mode selection, and power dispatch

to achieve optimal power flow, maximum utilization of DER, and system efficiency

improvement.

At the device level, we focus on the DER. A simplified circuit diagram of the

DER is shown in Fig. 5.3. The DER is connected in parallel with the grid through

a coupling inductor Lc. The connection point is referred to as the point of common

coupling (PCC), and the PCC voltage is denoted as vt. The equivalent local load is

also connected at the PCC. The rest of the system is simplified as an infinite voltage

source with system impedance Zs. The DER energy source is connected on the DC

side of the inverter with a capacitor. The inverter current ic is controlled so that the

desired amount of active power and reactive power is provided from the DER. Let

vt(t) and vc(t) denote the instantaneous PCC voltage and the inverter output voltage

(harmonics are neglected), respectively, and α be the phase angle of vc(t) relative to
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Figure 5.1: A 3-bus 3-DER Microgrid Topology

the PCC voltage. In steady state, the average active power P (t) and average reactive

power Q(t) of the inverter can be approximated by the first terms of the Taylor series

if the angle α is small, as shown in Eq.5.1 and Eq.5.2, where Q(t) is defined as positive

if the inverter injects reactive power to the utility and negative if the inverter absorbs

Figure 5.2: DER Implementation in Simulink
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Figure 5.3: Simplified DER Circuit Diagram

reactive power from the utility.

P (t) ≈ vtvc
ωLc

α. (5.1)

Q(t) ≈ vt
ωLc

(vc − vt). (5.2)

Assuming that α is small (< π/8 rad) and the system voltage variation is low (true at

steady state), the control of active power P and reactive power Q can be decoupled.

They can be controlled simultaneously and independently; however, there is some

coupling during a transient period. Inverter control methods can be developed based

on Eqs. 5.1 and 5.2. The inverter is controlled as a voltage source. The inverter

output active power is controlled by controlling the phase angle of the inverter output

voltage (vc), and the reactive power is controlled by adjusting the magnitude of

the inverter voltage. Furthermore, different variables can be controlled based on

different objectives. The frequency, active power, and active current are in the group

of variables related to active power; and the voltage, reactive power, and reactive

current are in the group of variables related to reactive power. Any combination of
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variables with one from each group can be controlled together. Fig. 5.2 shows our

DER model in Simulink.

Microgrid Operation

The microgrid can operate in on-grid mode and islanding mode. In our simulation, we

carefully study the microgrid’s behaviors in both modes; more important, we examine

the transitions between modes, because smooth transition between different modes is

essential to a microgrid.

In the on-grid mode, DER1 and DER2 generate a fixed amount of active power;

DER3 generates the active power following the P-f droop control curve. All of the

three DERs perform Q-V droop control with the droop curves to control Bus1 voltage.

When a fault occurs on the feeder line, as shown in Fig. 5.1, the circuit breakers on

both ends of the feeder trip, and the microgrid is disconnected from the main grid with

some other local loads. The islanding detection is based on the magnitude of Bus1

voltage. A microgrid should have some low/high voltage ride-through capability and

stay connected before the relay protection trips, as long as the fault current from the

DER does not exceed the microgrid protection settings or the DER device protection

settings.

The feeder circuit breakers trip first; then, following German low-voltage ride-

through standards (BDEW German Association of Energy and Water Industries,

2011), 7.5 cycles after the fault occurs, the microgrid switch is opened. The microgrid

starts switching into islanding mode. When the microgrid is operating in the islanding

mode, the load and the DER must be rebalanced to maintain the voltage and

frequency stability. Because, in on-grid mode, power is usually imported from or

exported to the main grid, the total load and the total DER generation within the

microgrid are not balanced. Load shedding may be required if the available maximum

power from the DER cannot meet the total load demand.

When the main grid is recovered from a fault and back to a normal condition, the

microgrid switch will close and the microgrid will transition from islanding to on-grid
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mode. A resynchronization signal, either sent by the upper level system operator

or generated by the microgrid switch itself based on the local measurement, will

trigger the resynchronization process. During the resynchronization, the active power

and reactive power will be re-dispatched among the DER so that the magnitude,

frequency, and phase angle of the Bus1 voltage are adjusted to synchronize with the

system voltage. In the simulation, when the magnitude difference is within 1 V, the

frequency difference is within 0.01 Hz, and the phase angle difference is within 5◦, the

microgrid switch is closed.

5.2 Communication Subsystem

In a microgrid, we assume that all communication nodes are within a one-hop distance

of one another and thus are able to communicate with one another directly. Nodes

share the same wireless channel and contend for time slots to transmit packets.

Each power system component that needs communication capability is associated

with a designated communication module/node. In our specific system, there are

eight devices that have a communication module: the microgrid controller (MGC),

the microgrid switch (MGS), three DERs (DER1, DER2, DER3), and three Loads

(Load1, Load2, Load3). MGC is the communication hub in the system. DERs and

Loads report their status to MGC; MGC broadcasts a controlling message to DERs

and Loads.

Communication modules are implemented using matlab function, which is a type

of block in Simulink’s user-defined functions category. In a matlab function block,

users implement a matlab function, whose input and output correspond to the input

and output ports generated in the block. When a communication module is connected

to its corresponding microgrid component, in data receiving flow, the communication

module’s data output ports are connected to the microgrid component’s data input

ports; in data sending flow, the data output ports of the microgrid component are

connected to the communication module’s data input ports. For example, Fig. 5.4
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shows the pairing structure of the MGC component and its communication module.

In a Simulink environment, matlab function blocks are similar to different threads in

a multi-threaded program; however, each matlab function block completes a complete

run whenever the simulation clock moves forward by one step.

Figure 5.4: Pairing of Communication and Power Components

Synchronization and State Machine

The tactic to achieve synchronization in co-simulation is of prominent importance.

In NCS, which usually consists of an event-driven network communication subsystem

and a time-driven continuous control subsystem, arranging proper and sufficient

common time points at which both systems can share and update their respective

statuses is critical for successful and accurate system simulation. Many papers on

co-simulation have addressed this problem. They propose and implement various

approaches (Lin et al., 2011b; Hasan et al., 2009). Several methods are representative.

In Lin et al. (2011b), a global scheduler is created to keep a global event list that

contains events sorted by their occurrence times from both systems. This method

requires continuous system modeling, which usually has much smaller simulation

steps, pauses at every simulation step, and checks possible event(s) from an event-

driven communication system outside. This forced pause negatively affects simulation

efficiency tremendously; moreover, creating glue code for interfaces to both system is
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a delicate task requiring considerable effort. In Hasan et al. (2009), the event-driven

network subsystem controls the time-driven control subsystem’s progress by setting

a pause point in the control subsystem ahead of time. This method is more efficient

and easier to implement. However, determining the control subsystem’s proper pause

point is a challenging job with a noticeable probability of missing an event of interest

in the control subsystem.

As opposed to other co-simulation systems, our system is inherently synchronized,

taking the Simulink simulation clock (shown at upper left in Fig. 5.5) as a global

reference. Recall that each communication module implemented in the matlab

function block is executed in every simulation step. Not having the freedom to move

the simulation clock forward by itself, the communication subsystem runs in parallel

with the microgrid subsystem. Without an event queue, we use a state machine to

manage the behavior of each communication module. We define a persistent variable

(the matlab counterpart of a static variable in C language) state whose possible values

are predetermined. We have state such as idle, send, receive, wait and so on. At each

time step, the module combines the current state, event in current state, and input

to make a decision on state transition. Through this state machine, communication

modules proceed following strict procedure.

Access to Common Channel

In Simulink, it is a challenging task to implement a common channel that all

communication nodes are able to monitor and access. Unlike in conventional network

simulators, which use object-oriented programming techniques and could easily define

a globally accessible channel object, defining a global variable itself in Simulink is not

easy. To create a global object, we use the Data Store Memory component, which

provides an interface for defining a user-defined object that is accessible in all matlab

function blocks.

Two key variables of our channel modeling are channel status and channel packet,

which have the respective functions of carrying channel status information for channel
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contention and delivering a packet through the channel to a designated destination.

Taking theChStatus and theChPacket (in Fig. 5.5) as examples, we give a detailed

description of how to use the Data Store Memory component for the communication

subsystem’s channel modeling in Simulink. At the top level, through the data store

name attribute of Data Store Memory, a name is given to the global variable; in our

case, it is either theChStatus or theChPacket. The data type of the variable could

be user-defined, and the user-defined data type is best saved into a .mat file. Before

running the simulation in Simulink each time, the file should be loaded and the user-

defined data type made available in the co-simulation project’s current workspace. In

any matlab function block that wants to use this global variable, the final step is using

its edit data/ports tool to register the variable and declaring a global variable with

the same name. If these steps are followed, every communication module declares

theChStatus and theChPacket global variables for channel access. Note that in the

Simulink settings, Data Store Memory’s “read before write” warning/error may have

to be deactivated.

Figure 5.5: Global Clock, Data Store Memory, and Constants for Configuration.

5.3 Results and Analysis

The simulation’s time step size is 10us. In our simulation, at t = 1s, a ground fault

happens at the feeder from the main grid to the microgrid. After the ride-through
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period, the microgrid enters the islanding mode from the on-grid mode, managing

to rebalance the power flow in the microgrid. At around t = 3s, the fault at the

feeder is cleared. Only the transition from the on-grid mode to the islanding mode

is simulated because it has higher requirements on the real-time system data. The

voltage profile in Fig. 5.6 illustrates this process.

Sampling Period Impact

By changing the signal sampling period, T0, we study the microgrid system’s tolerance

to different data updating periods, which is determined by the signal sampling period.

The results are shown in Fig. 5.6. As we can see in the figure, the voltage profiles are

almost identical with T0 = 0.02s and T0 = 0.05s. However, increasing the sampling

period to T0 = 0.08s makes a big difference. With this setting, not only does the

voltage converge in a slower manner, but also there are a frequency deviation and a

phase oscillation. Further increasing the sampling period, we find that the microgrid

system becomes unstable over a long period and phase oscillation is observed. With

a longer sampling period, the controllers inside the microgrid obtain less frequent

feedback on the system situation; when the information-updating delay exceeds some

critical time, the controllers may fail to make timely control adjustments, and as a

result, the system may lose stability. The sampling period makes a substantial impact,

especially when the microgrid transits from on-grid to islanding mode. During the

transition, in order to maintain frequency and voltage stability, all the controllable

components, including DERs and controllable loads, must receive the islanding signal

and make control mode switches accordingly as soon as possible, or at least before

some critical point. The risk that the system will lose stability substantially increases

with the growth of the control-mode-switch delay, as shown in Fig. 5.6.
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Figure 5.6: Microgrid Voltage Profile with Different Sampling Periods.

Impact of Data Rate and Packet Delay

In a microgrid, messages exchanged among different components usually have prede-

fined formats. For example, in our 3-bus microgrid, at every transmitting opportunity,

MGC sends 24 messages to DERs and 6 messages to Loads (broadcasting), Load

and DER both send 6 messages to MGC, and MGS sends 10 messages to MGC.

A message as payload is enclosed into a packet with auxiliary information, such as

source, destination, error detection and correction, in packet header. Setting overhead

size as 8 messages and each datum being a 4-byte double, we calculate total data

volume as [(6 + 8) ∗ 7 + (10 + 8) + (24 + 8) + (1 + 8) ∗ 9] ∗ 32 = 7328bits, with the

ACK packets counted. Hence, when the system sampling/updating period is set at

T0, the data rate generated by our microgrid system is R1 = 7.328/T0kbps.

With each component transmitting its latest data at fixed intervals, the microgrid

uses its communication subsystem similarly to the TDMA (Time Division Multiple

Access) format. If no other traffic is involved, such as other control messages or
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Internet service, packet transmission uncertainty (e.g. packet delay) is mainly from

a noise-corrupted packet that needs retransmission. Delay resulting from packet

collision is much less likely, as long as the channel capacity rate is large enough to

accommodate packets generated by the microgrid. To better study the impact of the

transmission delay on the microgrid when local DERs are allowed to spontaneously

talk to neighbors for the purpose of local control, we provide a component in our

communication subsystem, modeling the “other traffic.” The “other traffic” generates

data with size uniformly distributed in the range [1, Ds], and its packet arrival interval

follows poisson distribution, with the expected value being λ time steps Thus, the

data rate generated by the“other traffic” is

R2 = (Ds/2 + 8) ∗ 32/(λTs), (5.3)

where Ts = 10us is the time step in the simulation.

Table 5.1 lists four settings we used to study the impact of the packet delay on

the microgrid. In the table, R is the data transmission rate. Setting 1 represents

moderate traffic; setting 3, crowded traffic; and setting 2 congested traffic. The

packet delay CDFs (cumulative distribution functions) of the first three settings are

given in Fig. 5.7a. As expected, among the three settings, setting 2 has the largest

delay and setting 1 the smallest.

Table 5.1: Four Different Settings Used for Studying the Impact of Packet Delay on
the Microgrid

1 2 3 4
T0 2000Ts 1000Ts 2000Ts 5000Ts
Ds 20 20 40 40
λ 250 250 250 500
R1 366k 732k 366k 147k
R2 230k 230k 358k 179k
R 1M 1M 1M 300k

Ploss% 0% 7.1% 0% 2.8%
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Figure 5.7: Packet Delay CDF.

Microgrid voltage profiles corresponding to these three settings are almost the

same, as shown in Fig. 5.8. The reason is that, although packets suffer considerable

delay, they are still well within the microgrid’s tolerance range. Even with a 7.1%

packet loss rate in setting 2, it is almost certain that there is new data for updating

within 0.05s. In setting 4, we create an overcrowded traffic scenario with a larger

sampling period at 0.05s. With a packet delay as large as 0.05s (Fig. 5.7b) and

possibly a packet lost (at 2.8%), this setting could result in a period longer than 0.1s

without new updating data being received. The microgrid voltage profile in setting

4 is also shown in Fig. 5.8. Obviously, the result is not good: the magnitude and

frequency have more deviations and the angle oscillates. It is straightforward that the

microgrid controllable components can only make timely and correct control actions

based on fast and accurate updating of the system situation.

5.4 Conclusion

We have presented a communication-enhanced microgrid in Simulink. The modeling

of the power subsystem, implementation tactics, and details of the communication
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Figure 5.8: Microgrid Voltage Profiles with Different Packet Delays.

subsystem are the primary issues addressed. Simulation performance and results

are reported, with emphasis given to the impact of the communication subsystem

on the power subsystem. Impacts of communication on microgrid operation have

been investigated by varying communication configurations. The results have shown

that communication has a substantial impact on microgrid performance, especially in

system dynamical transitions. If the delay in updating the controllers with the new

system status exceeds a certain critical point, the system will lose stability. The results

will help to quantitatively identify the microgrid’s requirements on communication

and help to improve control designs.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have studied the problem of designing wireless communication

networks for CPS. CPS are generally large and complex systems with a large variety of

components, including geographically distributed sensors monitoring different events,

actuators carrying out various control actions, and controllers collecting information

for their own individual needs. To provide a robust channel for information delivery

among components in CPS, its communication network has to be efficient, reliable,

responsive, and adaptable.

In our design of wireless communication networks for CPS, we divide the network

into layers, and have studied multiple access layer and network layer in detail.

At multiple access layer, we devise three multiple access approaches: compressed

multiple access, sample-contention multiple access, and prioritized multiple access.

Compressed multiple access uses compressed sensing at base station to recover data

when traffic load is sparse. With no need to worry about possible transmission

collision and having transmitter identified automatically in the process of data

recovery, compressed multiple access is an efficient and flexible scheme. Sample-

contention multiple access allows base station to first survey a field of transmitters
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with data, then assess a cut. Eligible transmitters made the cut move to the next

round of contention. Prioritized multiple access provides a method to select data

that is more desirable for transmission when bandwidth is limited. Both sample-

contention and prioritized multiple access incorporate demands from application

layer, and use cross-layer optimization. Three approaches at multiple access layer

complement one another, allowing them together to provide efficient, reliable service

to network layer. At network layer, we focus on creating robust route for data

delivery in CPS’ core communication network. By creating backup path, transmission

interruption is avoided. We use integer programming in creating backup path when

global information is available, and Ant Colony Optimization (ACO) and positive

feedback in the distributed online method.

For each module in our design, either access scheme or routing method, we evaluate

it in a CPS based setting, such as voltage control application in a smart grid.

Comparison of performance with conventional counterpart confirms the advantage

of our design. We also have specifically discussed the integration of our wireless

communication network into a microgrid, a typical smart grid system.

6.2 Future Work

While we have designed building blocks and integrated them at layer-level for

wireless communication in CPS, more research work is needed for improvement. The

followings are the aspects on which we are working or plan to work.

Addressing Communication Needs of New Components in CPS: CPS them-

selves are still in the early stage of development. An increasing number of

heterogeneous components are expected to connect to CPS. For example, in

smart grid, while distributed energy resources bring considerable amount of

energy capacity, they also introduce noticeable uncertainties into the power

system. As real-time interactions among components are essential in CPS,

communication infrastructures, especially wireless, are indispensable in the
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processing of integrating more components, and forming large-scale CPS. Our

wireless communication design has shown promising results. Obtaining in-depth

knowledge of interaction among components in large-scale CPS, identifying and

addressing their communication needs through communication network design

are one of our research goals next.

Security in CPS Communication Network: We have not specifically studied

security problem in our design in this dissertation, but this does not indicate

that security is an easy or trivial problem. Actually, communication security is

one of the most important problems in CPS , if it is not the most important

one. Authentication, Deny of Service and others are all critical topics in CPS.

In our future work, we plan to tackle these issues from the perspective of

communication network architecture. For example, in our compressed multiple

access scheme, each transmitter’s random code could be strong encryption code.
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.1 Proof of Proposition 1

Proof. It has been shown in Donoho (2006, 2004) that optimizations P1 and P0 are

equivalent if the following conditions about Φ are satisfied, where J is an arbitrary

subset of (1, ...,m) :

• C1: The minimum singular value of ΦJ is larger than η1 uniformly for J

satisfying |J | < ρ1n;

• C2: ‖v‖1 ≥ η2
√
n‖v‖2 uniformly for J satisfying |J | < ρ2n, where v = ΦJxJ ;

• C3: ‖xJc‖1 ≥ η3‖v‖1 uniformly for J satisfying |J | < ρ3n, where v = −ΦJcxJc .

We check the conditions C1–C3, separately. Throughout the proof, we assume

that J = {1, 2, ..., k}, without loss of generality.

We first check condition C1. The proof follows the argument of Lemma 3.1 in

Donoho (2004). We define

Ri =

(
1

n

n∑
j=1

Z2
ij

) 1
2

,

where {Zij} are independent and identically distributed standard Gaussian random

variables, being independent of Φ. Let R = diag
({

Ri

‖hi‖

})
and X = ΦR−1. Then,

we have

λmin

(
ΦT
JΦJ

)
≥ h2minλmin

(
XT
JXJ

) (
max
i
Ri

)−2
,

where we applied the assumption that ‖hi‖ ≥ hmin. The subsequent argument is the

same as that of Donoho (2004).
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Next, we check condition C2. By applying the assumption that hij ≥ hmin, for

any vector α ∈ R|J |, we have

‖ΦJα‖1

= ‖HJ ◦ SJα‖1

=
∑
i

∣∣∣∣∣∑
j

Hij (SJ)ij αj

∣∣∣∣∣
≥ hmin

∑
i

∣∣∣∣∣∑
j

(SJ)ij αj

∣∣∣∣∣
= hmin ‖SJα‖1 .

Following the same argument as in Donoho (2004), we can show that C2 also holds.

Finally, we check condition C3. Similar to Eq. (5.4) in Donoho (2004), we set the

following linear programming problem:

min
δJc
‖hJc ◦ δJc‖ , s.t. ΦJcδJc = −v. (1)

Applying the assumption that hij ≤ hmax, we have

‖δJc‖ ≥ 1

hmax

‖hJc ◦ δJc‖ . (2)

It is easy to check that the dual linear programming of (1) is the same as that in

Donoho (2004).

Then, by applying Lemma 5.1 in Donoho (2004), we have shown that condition

C3 holds with probability 1 as n,m→∞. This concludes the proof.

.2 Proof of Proposition 2

Proof. The proof is the same as that of Theorem 3.1 in Donoho et al. (2006a) before

the optimization problem (3.9) in Donoho et al. (2006a). We define G = ΦTΦ. The
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constraint ‖Φw‖22 ≤ ∆2, where ∆ , δ + ε, implies

1

γmax

=
∆2

h2max

≥ wTGw

h2max

= ‖w‖22 −wT

(
1

h2max

G− I

)
w

≥ ‖w‖22 − |w|
T

∣∣∣∣ 1

h2max

G− I

∣∣∣∣ |w|
≥ ‖w‖22 −M |w|

T |1− I| |w|

− |w|T (1− f)I |w|

= (M + f) ‖w‖22 −M ‖w‖
2
1 . (3)

The following argument remains the same as that in Donoho et al. (2006a). Then,

the condition (3.17) in Donoho et al. (2006a) becomes

(f +M)V −MµV ≤ 1

γmax

. (4)

This concludes the proof.
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