5 research outputs found

    Raptor codes for infrastructure-to-vehicular broadcast services

    Get PDF

    Beacon delivery over practical V2X channels

    Get PDF
    International audienceThe problem of modelling V2X system based on partial (RSSI) measurements of the wireless propagation channel is considered. The study shows that the dual slope linear model well approximates pathloss in the V2X systems. We also show that in addition to distance dependent pathloss, incorporation of fast fading as well as its frequency selectivity have significant effect on the overall performance of the system. Interference from simultaneous transmissions is estimated based on medium access control (MAC) and realistic road traffic models. Our simulation results show how car traffic parameters and MAC behavior provide direct impact on the effective communication range of the V2X system

    Beacon delivery over practical V2X channels

    Full text link

    Performance and Reliability Evaluation for DSRC Vehicular Safety Communication

    Get PDF
    <p>Inter-Vehicle Communication (IVC) is a vital part of Intelligent Transportation System (ITS), which has been extensively researched in recent years. Dedicated Short Range Communication (DSRC) is being seriously considered by automotive industry and government agencies as a promising wireless technology for enhancing transportation safety and efficiency of road utilization. In the DSRC based vehicular ad hoc networks (VANETs), the transportation safety is one of the most crucial features that needs to be addressed. Safety applications usually demand direct vehicle-to-vehicle ad hoc communication due to a highly dynamic network topology and strict delay requirements. Such direct safety communication will involve a broadcast service because safety information can be beneficial to all vehicles around a sender. Broadcasting safety messages is one of the fundamental services in DSRC. In order to provide satisfactory quality of services (QoS) for various safety applications, safety messages need to be delivered both timely and reliably. To support the stringent delay and reliability requirements of broadcasting safety messages, researchers have been seeking to test proposed DSRC protocols and suggesting improvements. A major hurdle in the development of VANET for safety-critical services is the lack of methods that enable one to determine the effectiveness of VANET design mechanism for predictable QoS and allow one to evaluate the tradeoff between network parameters. Computer simulations are extensively used for this purpose. A few analytic models and experiments have been developed to study the performance and reliability of IEEE 802.11p for safety-related applications. In this thesis, we propose to develop detailed analytic models to capture various safety message dissemination features such as channel contention, backoff behavior, concurrent transmissions, hidden terminal problems, channel fading with path loss, multi-channel operations, multi-hop dissemination in 1-Dimentional or 2-Dimentional traffic scenarios. MAC-level and application-level performance metrics are derived to evaluate the performance and reliability of message broadcasting, which provide insights on network parameter settings. Extensive simulations in either Matlab or NS2 are conducted to validate the accuracy of our proposed models.</p>Dissertatio

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies
    corecore