142 research outputs found

    KLEIN: A New Family of Lightweight Block Ciphers

    Get PDF
    Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Integrals go Statistical: Cryptanalysis of Full Skipjack Variants

    Get PDF
    Integral attacks form a powerful class of cryptanalytic techniques that have been widely used in the security analysis of block ciphers. The integral distinguishers are based on balanced properties holding with probability one. To obtain a distinguisher covering more rounds, an attacker will normally increase the data complexity by iterating through more plaintexts with a given structure under the strict limitation of the full codebook. On the other hand, an integral property can only be deterministically verified if the plaintexts cover all possible values of a bit selection. These circumstances have somehow restrained the applications of integral cryptanalysis. In this paper, we aim to address these limitations and propose a novel \emph{statistical integral distinguisher} where only a part of value sets for these input bit selections are taken into consideration instead of all possible values. This enables us to achieve significantly lower data complexities for our statistical integral distinguisher as compared to those of traditional integral distinguisher. As an illustration, we successfully attack the full-round Skipjack-BABABABA for the first time, which is the variant of NSA\u27s Skipjack block cipher

    Links Between Truncated Differential and Multidimensional Linear Properties of Block Ciphers and Underlying Attack Complexities

    Get PDF
    The mere number of various apparently different statistical attacks on block ciphers has raised the question about their relationships which would allow to classify them and determine those that give essentially complementary information about the security of block ciphers. While mathematical links between some statistical attacks have been derived in the last couple of years, the important link between general truncated differential and multidimensional linear attacks has been missing. In this work we close this gap. The new link is then exploited to relate the complexities of chosen-plaintext and known-plaintext distinguishing attacks of differential and linear types, and further, to explore the relations between the key-recovery attacks. Our analysis shows that a statistical saturation attack is the same as a truncated differential attack, which allows us, for the first time, to provide a justifiable analysis of the complexity of the statistical saturation attack and discuss its validity on 24 rounds of the PRESENT block cipher. By studying the data, time and memory complexities of a multidimensional linear key-recovery attack and its relation with a truncated differential one, we also show that in most cases a known-plaintext attack can be transformed into a less costly chosen-plaintext attack. In particular, we show that there is a differential attack in the chosen-plaintext model on 26 rounds of PRESENT with less memory complexity than the best previous attack, which assumes known plaintext. The links between the statistical attacks discussed in this paper give further examples of attacks where the method used to sample the data required by the statistical test is more differentiating than the method used for finding the distinguishing propert

    Links among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis

    Get PDF
    As two important cryptanalytic methods, impossible differential cryptanalysis and integral cryptanalysis have attracted much attention in recent years. Although relations among other important cryptanalytic approaches have been investigated, the link between these two methods has been missing. The motivation in this paper is to fix this gap and establish links between impossible differential cryptanalysis and integral cryptanalysis. Firstly, by introducing the concept of structure and dual structure, we prove that aba\rightarrow b is an impossible differential of a structure E\mathcal E if and only if it is a zero correlation linear hull of the dual structure E\mathcal E^\bot. More specifically, constructing a zero correlation linear hull of a Feistel structure with SPSP-type round function where PP is invertible, is equivalent to constructing an impossible differential of the same structure with PTP^T instead of PP. Constructing a zero correlation linear hull of an SPN structure is equivalent to constructing an impossible differential of the same structure with (P1)T(P^{-1})^T instead of PP. Meanwhile, our proof shows that the automatic search tool presented by Wu and Wang could find all impossible differentials of both Feistel structures with SPSP-type round functions and SPN structures, which is useful in provable security of block ciphers against impossible differential cryptanalysis. Secondly, by establishing some boolean equations, we show that a zero correlation linear hull always indicates the existence of an integral distinguisher while a special integral implies the existence of a zero correlation linear hull. With this observation we improve the integral distinguishers of Feistel structures by 11 round, build a 2424-round integral distinguisher of CAST-256256 based on which we propose the best known key recovery attack on reduced round CAST-256256 in the non-weak key model, present a 1212-round integral distinguisher of SMS4 and an 88-round integral distinguisher of Camellia without FL/FL1FL/FL^{-1}. Moreover, this result provides a novel way for establishing integral distinguishers and converting known plaintext attacks to chosen plaintext attacks. Finally, we conclude that an rr-round impossible differential of E\mathcal E always leads to an rr-round integral distinguisher of the dual structure E\mathcal E^\bot. In the case that E\mathcal E and E\mathcal E^\bot are linearly equivalent, we derive a direct link between impossible differentials and integral distinguishers of E\mathcal E. Specifically, we obtain that an rr-round impossible differential of an SPN structure, which adopts a bit permutation as its linear layer, always indicates the existence of an rr-round integral distinguisher. Based on this newly established link, we deduce that impossible differentials of SNAKE(2), PRESENT, PRINCE and ARIA, which are independent of the choices of the SS-boxes, always imply the existence of integral distinguishers. Our results could help to classify different cryptanalytic tools. Furthermore, when designing a block cipher, the designers need to demonstrate that the cipher has sufficient security margins against important cryptanalytic approaches, which is a very tough task since there have been so many cryptanalytic tools up to now. Our results certainly facilitate this security evaluation process

    SoK: Security Evaluation of SBox-Based Block Ciphers

    Get PDF
    Cryptanalysis of block ciphers is an active and important research area with an extensive volume of literature. For this work, we focus on SBox-based ciphers, as they are widely used and cover a large class of block ciphers. While there have been prior works that have consolidated attacks on block ciphers, they usually focus on describing and listing the attacks. Moreover, the methods for evaluating a cipher\u27s security are often ad hoc, differing from cipher to cipher, as attacks and evaluation techniques are developed along the way. As such, we aim to organise the attack literature, as well as the work on security evaluation. In this work, we present a systematization of cryptanalysis of SBox-based block ciphers focusing on three main areas: (1) Evaluation of block ciphers against standard cryptanalytic attacks; (2) Organisation and relationships between various attacks; (3) Comparison of the evaluation and attacks on existing ciphers

    Related-Tweak Statistical Saturation Cryptanalysis and Its Application on QARMA

    Get PDF
    Statistical saturation attack takes advantage of a set of plaintext with some bits fixed while the others vary randomly, and then track the evolution of a non-uniform plaintext distribution through the cipher. Previous statistical saturation attacks are all implemented under single-key setting, and there is no public attack models under related-key/tweak setting. In this paper, we propose a new cryptanalytic method which can be seen as related-key/tweak statistical saturation attack by revealing the link between the related-key/tweak statistical saturation distinguishers and KDIB (Key Difference Invariant Bias) / TDIB (Tweak Difference Invariant Bias) ones. KDIB cryptanalysis was proposed by Bogdanov et al. at ASIACRYPT’13 and utilizes the property that there can exist linear trails such that their biases are deterministically invariant under key difference. And this method can be easily extended to TDIB distinguishers if the tweak is also alternated. The link between them provides a new and more efficient way to find related-key/tweak statistical saturation distinguishers in ciphers. Thereafter, an automatic searching algorithm for KDIB/TDIB distinguishers is also given in this paper, which can be implemented to find word-level KDIB distinguishers for S-box based key-alternating ciphers. We apply this algorithm to QARMA-64 and give related-tweak statistical saturation attack for 10-round QARMA-64 with outer whitening key. Besides, an 11-round attack on QARMA-128 is also given based on the TDIB technique. Compared with previous public attacks on QARMA including outer whitening key, all attacks presented in this paper are the best ones in terms of the number of rounds
    corecore