1,307 research outputs found

    Labelled transition systems as a Stone space

    Get PDF
    A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.Comment: Changes since v2: Metadata updat

    Polynomial Lawvere Logic

    Full text link
    In this paper, we study Polynomial Lawvere logic (PL), a logic on the quantale of the extended positive reals, developed for reasoning about metric spaces. PL is appropriate for encoding quantitative reasoning principles, such as quantitative equational logic. PL formulas include the polynomial functions on the extended positive reals, and its judgements include inequalities between polynomials. We present an inference system for PL and prove a series of completeness and incompleteness results relying and the Krivine-Stengle Positivstellensatz (a variant of Hilbert's Nullstellensatz) including completeness for finitely axiomatisable PL theories. We also study complexity results both for both PL and its affine fragment (AL). We demonstrate that the satisfiability of a finite set of judgements is NP-complete in AL and in PSPACE for PL; and that deciding the semantical consequence from a finite set of judgements is co-NP complete in AL and in PSPACE in PL

    A Generic Framework for Reasoning about Dynamic Networks of Infinite-State Processes

    Full text link
    We propose a framework for reasoning about unbounded dynamic networks of infinite-state processes. We propose Constrained Petri Nets (CPN) as generic models for these networks. They can be seen as Petri nets where tokens (representing occurrences of processes) are colored by values over some potentially infinite data domain such as integers, reals, etc. Furthermore, we define a logic, called CML (colored markings logic), for the description of CPN configurations. CML is a first-order logic over tokens allowing to reason about their locations and their colors. Both CPNs and CML are parametrized by a color logic allowing to express constraints on the colors (data) associated with tokens. We investigate the decidability of the satisfiability problem of CML and its applications in the verification of CPNs. We identify a fragment of CML for which the satisfiability problem is decidable (whenever it is the case for the underlying color logic), and which is closed under the computations of post and pre images for CPNs. These results can be used for several kinds of analysis such as invariance checking, pre-post condition reasoning, and bounded reachability analysis.Comment: 29 pages, 5 tables, 1 figure, extended version of the paper published in the the Proceedings of TACAS 2007, LNCS 442

    Computabilities of Validity and Satisfiability in Probability Logics over Finite and Countable Models

    Full text link
    The ϵ\epsilon-logic (which is called ϵ\epsilonE-logic in this paper) of Kuyper and Terwijn is a variant of first order logic with the same syntax, in which the models are equipped with probability measures and in which the x\forall x quantifier is interpreted as "there exists a set AA of measure 1ϵ\ge 1 - \epsilon such that for each xAx \in A, ...." Previously, Kuyper and Terwijn proved that the general satisfiability and validity problems for this logic are, i) for rational ϵ(0,1)\epsilon \in (0, 1), respectively Σ11\Sigma^1_1-complete and Π11\Pi^1_1-hard, and ii) for ϵ=0\epsilon = 0, respectively decidable and Σ10\Sigma^0_1-complete. The adjective "general" here means "uniformly over all languages." We extend these results in the scenario of finite models. In particular, we show that the problems of satisfiability by and validity over finite models in ϵ\epsilonE-logic are, i) for rational ϵ(0,1)\epsilon \in (0, 1), respectively Σ10\Sigma^0_1- and Π10\Pi^0_1-complete, and ii) for ϵ=0\epsilon = 0, respectively decidable and Π10\Pi^0_1-complete. Although partial results toward the countable case are also achieved, the computability of ϵ\epsilonE-logic over countable models still remains largely unsolved. In addition, most of the results, of this paper and of Kuyper and Terwijn, do not apply to individual languages with a finite number of unary predicates. Reducing this requirement continues to be a major point of research. On the positive side, we derive the decidability of the corresponding problems for monadic relational languages --- equality- and function-free languages with finitely many unary and zero other predicates. This result holds for all three of the unrestricted, the countable, and the finite model cases. Applications in computational learning theory, weighted graphs, and neural networks are discussed in the context of these decidability and undecidability results.Comment: 47 pages, 4 tables. Comments welcome. Fixed errors found by Rutger Kuype

    Behavioural Preorders on Stochastic Systems - Logical, Topological, and Computational Aspects

    Get PDF
    corecore