2,219 research outputs found

    A Robust Localization System for Inspection Robots in Sewer Networks †

    Get PDF
    Sewers represent a very important infrastructure of cities whose state should be monitored periodically. However, the length of such infrastructure prevents sensor networks from being applicable. In this paper, we present a mobile platform (SIAR) designed to inspect the sewer network. It is capable of sensing gas concentrations and detecting failures in the network such as cracks and holes in the floor and walls or zones were the water is not flowing. These alarms should be precisely geo-localized to allow the operators performing the required correcting measures. To this end, this paper presents a robust localization system for global pose estimation on sewers. It makes use of prior information of the sewer network, including its topology, the different cross sections traversed and the position of some elements such as manholes. The system is based on a Monte Carlo Localization system that fuses wheel and RGB-D odometry for the prediction stage. The update step takes into account the sewer network topology for discarding wrong hypotheses. Additionally, the localization is further refined with novel updating steps proposed in this paper which are activated whenever a discrete element in the sewer network is detected or the relative orientation of the robot over the sewer gallery could be estimated. Each part of the system has been validated with real data obtained from the sewers of Barcelona. The whole system is able to obtain median localization errors in the order of one meter in all cases. Finally, the paper also includes comparisons with state-of-the-art Simultaneous Localization and Mapping (SLAM) systems that demonstrate the convenience of the approach.Unión Europea ECHORD ++ 601116Ministerio de Ciencia, Innovación y Universidades de España RTI2018-100847-B-C2

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Autonomous Pathfinding for Planetary Rover by Implementing A* Algorithm on an Aerial Map Processed Using MATLAB Image Processing Tool

    Get PDF
    Human curiosity to discover new things and exploring unknown regions, have continually to development of robots, which became a powerful tools for accessing dangerous environments or exploring regions too distant for human. Previous robot technology functioned under continues human supervision, limiting the robot to confined area and pre-programmed task. However,as exploration moved to regions where communication is ineffective or unviable, robots were used to carry out complex tasks without human supervision. To empower such capacities, robots are being upgraded by advances extending from new sensor improvement to automated mission planning software, circulated automated control, and more proficient power systems. With the advancement of autonomy science robotics technology developed and the robots became more and more capable of operating multi task, under minimal human supervision. In this project work we aim at designing an ONS (Offline Navigation System) system for the planetary rover which will use aerial map taken from satellite and pre-process into a grid map which is then will be used by the rover to travel from one place to another place and completing its mission. The aerial map is processed using Matlab image processing tool to convert into a grid map and search for shortest route is implemented using A* algorithm. The shortest route result is then converted into microcontroller signal to move the rover. With this system the rovers will have the ability to predict the best possible path even if the communication to the satellite is broken

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations

    Topological local-metric framework for mobile robots navigation: a long term perspective

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Long term mapping and localization are the primary components for mobile robots in real world application deployment, of which the crucial challenge is the robustness and stability. In this paper, we introduce a topological local-metric framework (TLF), aiming at dealing with environmental changes, erroneous measurements and achieving constant complexity. TLF organizes the sensor data collected by the robot in a topological graph, of which the geometry is only encoded in the edge, i.e. the relative poses between adjacent nodes, relaxing the global consistency to local consistency. Therefore the TLF is more robust to unavoidable erroneous measurements from sensor information matching since the error is constrained in the local. Based on TLF, as there is no global coordinate, we further propose the localization and navigation algorithms by switching across multiple local metric coordinates. Besides, a lifelong memorizing mechanism is presented to memorize the environmental changes in the TLF with constant complexity, as no global optimization is required. In experiments, the framework and algorithms are evaluated on 21-session data collected by stereo cameras, which are sensitive to illumination, and compared with the state-of-art global consistent framework. The results demonstrate that TLF can achieve similar localization accuracy with that from global consistent framework, but brings higher robustness with lower cost. The localization performance can also be improved from sessions because of the memorizing mechanism. Finally, equipped with TLF, the robot navigates itself in a 1 km session autonomously

    Indoor Geo-location And Tracking Of Mobile Autonomous Robot

    Get PDF
    The field of robotics has always been one of fascination right from the day of Terminator. Even though we still do not have robots that can actually replicate human action and intelligence, progress is being made in the right direction. Robotic applications range from defense to civilian, in public safety and fire fighting. With the increase in urban-warfare robot tracking inside buildings and in cities form a very important application. The numerous applications range from munitions tracking to replacing soldiers for reconnaissance information. Fire fighters use robots for survey of the affected area. Tracking robots has been limited to the local area under consideration. Decision making is inhibited due to limited local knowledge and approximations have to be made. An effective decision making would involve tracking the robot in earth co-ordinates such as latitude and longitude. GPS signal provides us sufficient and reliable data for such decision making. The main drawback of using GPS is that it is unavailable indoors and also there is signal attenuation outdoors. Indoor geolocation forms the basis of tracking robots inside buildings and other places where GPS signals are unavailable. Indoor geolocation has traditionally been the field of wireless networks using techniques such as low frequency RF signals and ultra-wideband antennas. In this thesis we propose a novel method for achieving geolocation and enable tracking. Geolocation and tracking are achieved by a combination of Gyroscope and encoders together referred to as the Inertial Navigation System (INS). Gyroscopes have been widely used in aerospace applications for stabilizing aircrafts. In our case we use gyroscope as means of determining the heading of the robot. Further, commands can be sent to the robot when it is off balance or off-track. Sensors are inherently error prone; hence the process of geolocation is complicated and limited by the imperfect mathematical modeling of input noise. We make use of Kalman Filter for processing erroneous sensor data, as it provides us a robust and stable algorithm. The error characteristics of the sensors are input to the Kalman Filter and filtered data is obtained. We have performed a large set of experiments, both indoors and outdoors to test the reliability of the system. In outdoors we have used the GPS signal to aid the INS measurements. When indoors we utilize the last known position and extrapolate to obtain the GPS co-ordinates
    corecore