6 research outputs found

    Using Landsat Images to Determine Water Storing Capacity in Mediterranean Environments

    Get PDF
    Reservoirs play an important role in water management and are key elements for water supply. Monitoring is needed in order to guarantee the quantity and quality of stored water. However, this task is sometimes not easy. The objective of this study was to develop a procedure for predicting volume of stored water with remote sensing in water bodies under Mediterranean climate conditions. To achieve this objective,multispectral Landsat 7 and 8 images (NASA) were analyzed for the following five reservoirs: La Serena,La Pedrera, Beniarrés, Cubillas and Negratín (Spain). Reservoirs water surface was computed with the spectral angle mapper (SAM) algorithm.After that, cross-validation regression models were computed in order to assess the capability of water surface estimations to predict stored water in each of the reservoirs. The statistical models were trained with Landsat 7 images and were validated by using Landsat 8 images. Our results suggest a good capability of water volume prediction from free satellite imagery derived from surface water estimations. Combining free remote sensing images and open source GIS algorithms can be a very useful tool for water management and an integrated and efficient way to control water storage,especially in low accessible sites

    A comparison of machine learning models for the mapping of groundwater spring potential

    Get PDF
    Groundwater resources are vitally important in arid and semi-arid areas meaning that spatial planning tools are required for their exploration and mapping. Accordingly, this research compared the predictive powers of five machine learning models for groundwater potential spatial mapping in Wadi az-Zarqa watershed in Jordan. The five models were random forest (RF), boosted regression tree (BRT), support vector machine (SVM), mixture discriminant analysis (MDA), and multivariate adaptive regression spline (MARS). These algorithms explored spatial distributions of 12 hydrological-geological-physiographical (HGP) conditioning factors (slope, altitude, profile curvature, plan curvature, slope aspect, slope length (SL), lithology, soil texture, average annual rainfall, topographic wetness index (TWI), distance to drainage network, and distance to faults) that determine where groundwater springs are located. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was employed to evaluate the prediction accuracies of the five individual models. Here the results were ranked in descending order as MDA (83.2%), RF (80.6%), SVM (80.2%), BRT (78.0%), and MARS (75.5%).The results show good potential for further use of machine learning techniques for mapping groundwater spring potential in other places where the use and management of groundwater resources is essential for sustaining rural or urban life

    Inland Waters

    Get PDF
    Inland waters, lakes, rivers, and their connected wetlands are the most important and the most vulnerable sources of freshwater on the planet. The ecology of these systems includes biology as well as human populations and civilization. Inland waters and wetlands are highly susceptible to chemical and biological pollutants from natural or human sources, changes in watershed dynamics due to the establishment of dams and reservoirs, and land use changes from agriculture and industry. This book provides a comprehensive review of issues involving inland waters and discusses many worldwide inland water systems. The main topics of this text are water quality investigation, analyses of the ecology of inland water systems, remote sensing observation and numerical modeling methods, and biodiversity investigations

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Satellite Information Classification and Interpretation

    No full text
    Without a doubt, understanding what we must do to save our home, our planet, and how we are to do it is of the gravest importance for the present generation and the next. Clearly, advances won through space technology and applications of the same to the study of Earth play an excellent and vital role in classification and interpretation of the processes taking place on the Earth and in space. Today, space technology helps us understand Earth and how we can support and manage its state, to keep it in working condition under the current circumstances.How can we do this? Obviously, we must use appropriate methods and instruments to collect the information we need. In the meantime, it is necessary to develop systems to analyze and process the data collected
    corecore