35,355 research outputs found

    High-Order Stochastic Gradient Thermostats for Bayesian Learning of Deep Models

    Full text link
    Learning in deep models using Bayesian methods has generated significant attention recently. This is largely because of the feasibility of modern Bayesian methods to yield scalable learning and inference, while maintaining a measure of uncertainty in the model parameters. Stochastic gradient MCMC algorithms (SG-MCMC) are a family of diffusion-based sampling methods for large-scale Bayesian learning. In SG-MCMC, multivariate stochastic gradient thermostats (mSGNHT) augment each parameter of interest, with a momentum and a thermostat variable to maintain stationary distributions as target posterior distributions. As the number of variables in a continuous-time diffusion increases, its numerical approximation error becomes a practical bottleneck, so better use of a numerical integrator is desirable. To this end, we propose use of an efficient symmetric splitting integrator in mSGNHT, instead of the traditional Euler integrator. We demonstrate that the proposed scheme is more accurate, robust, and converges faster. These properties are demonstrated to be desirable in Bayesian deep learning. Extensive experiments on two canonical models and their deep extensions demonstrate that the proposed scheme improves general Bayesian posterior sampling, particularly for deep models.Comment: AAAI 201

    Bayesian autoencoders for data-driven discovery of coordinates, governing equations and fundamental constants

    Full text link
    Recent progress in autoencoder-based sparse identification of nonlinear dynamics (SINDy) under β„“1\ell_1 constraints allows joint discoveries of governing equations and latent coordinate systems from spatio-temporal data, including simulated video frames. However, it is challenging for β„“1\ell_1-based sparse inference to perform correct identification for real data due to the noisy measurements and often limited sample sizes. To address the data-driven discovery of physics in the low-data and high-noise regimes, we propose Bayesian SINDy autoencoders, which incorporate a hierarchical Bayesian sparsifying prior: Spike-and-slab Gaussian Lasso. Bayesian SINDy autoencoder enables the joint discovery of governing equations and coordinate systems with a theoretically guaranteed uncertainty estimate. To resolve the challenging computational tractability of the Bayesian hierarchical setting, we adapt an adaptive empirical Bayesian method with Stochatic gradient Langevin dynamics (SGLD) which gives a computationally tractable way of Bayesian posterior sampling within our framework. Bayesian SINDy autoencoder achieves better physics discovery with lower data and fewer training epochs, along with valid uncertainty quantification suggested by the experimental studies. The Bayesian SINDy autoencoder can be applied to real video data, with accurate physics discovery which correctly identifies the governing equation and provides a close estimate for standard physics constants like gravity gg, for example, in videos of a pendulum.Comment: 28 pages, 11 figure

    Variational Dropout and the Local Reparameterization Trick

    Get PDF
    We investigate a local reparameterizaton technique for greatly reducing the variance of stochastic gradients for variational Bayesian inference (SGVB) of a posterior over model parameters, while retaining parallelizability. This local reparameterization translates uncertainty about global parameters into local noise that is independent across datapoints in the minibatch. Such parameterizations can be trivially parallelized and have variance that is inversely proportional to the minibatch size, generally leading to much faster convergence. Additionally, we explore a connection with dropout: Gaussian dropout objectives correspond to SGVB with local reparameterization, a scale-invariant prior and proportionally fixed posterior variance. Our method allows inference of more flexibly parameterized posteriors; specifically, we propose variational dropout, a generalization of Gaussian dropout where the dropout rates are learned, often leading to better models. The method is demonstrated through several experiments
    • …
    corecore