4,285 research outputs found

    Phase Diagram for Turbulent Transport: Sampling Drift, Eddy Diffusivity and Variational Principles

    Get PDF
    We study the long-time, large scale transport in a three-parameter family of isotropic, incompressible velocity fields with power-law spectra. Scaling law for transport is characterized by the scaling exponent qq and the Hurst exponent HH, as functions of the parameters. The parameter space is divided into regimes of scaling laws of different {\em functional forms} of the scaling exponent and the Hurst exponent. We present the full three-dimensional phase diagram. The limiting process is one of three kinds: Brownian motion (H=1/2H=1/2), persistent fractional Brownian motions (1/2<H<11/2<H<1) and regular (or smooth) motion (H=1). We discover that a critical wave number divides the infrared cutoffs into three categories, critical, subcritical and supercritical; they give rise to different scaling laws and phase diagrams. We introduce the notions of sampling drift and eddy diffusivity, and formulate variational principles to estimate the eddy diffusivity. We show that fractional Brownian motions result from a dominant sampling drift

    Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations

    Get PDF
    Schur-Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the tensor powers of all unitaries is spanned by the permutations of the tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: (1) We resolve an open problem in quantum property testing by showing that "stabilizerness" is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. (2) We find that tensor powers of stabilizer states have an increased symmetry group. We provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). (3) We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) -- a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. (4) We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.Comment: 60 pages, 2 figure

    Homogenization of lateral diffusion on a random surface

    Get PDF
    We study the problem of lateral diffusion on a static, quasi-planar surface generated by a stationary, ergodic random field possessing rapid small-scale spatial fluctuations. The aim is to study the effective behaviour of a particle undergoing Brownian motion on the surface viewed as a projection on the underlying plane. By formulating the problem as a diffusion in a random medium, we are able to use known results from the theory of stochastic homogenization of SDEs to show that, in the limit of small scale fluctuations, the diffusion process behaves quantitatively like a Brownian motion with constant diffusion tensor DD. While DD will not have a closed-form expression in general, we are able to derive variational bounds for the effective diffusion tensor, and using a duality transformation argument, obtain a closed form expression for DD in the special case where DD is isotropic. We also describe a numerical scheme for approximating the effective diffusion tensor and illustrate this scheme with two examples.Comment: 25 pages, 7 figure
    corecore